Documentation: net: phy: Add blurb about RGMII

RGMII is a recurring source of pain for people with Gigabit Ethernet
hardware since it may require PHY driver and MAC driver level
configuration hints. Document what are the expectations from PHYLIB and
what options exist.

Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Florian Fainelli 2016-11-27 18:45:14 -08:00 committed by David S. Miller
parent 2fa3e25b45
commit bf8f6952a2
1 changed files with 77 additions and 0 deletions

View File

@ -65,6 +65,83 @@ The MDIO bus
drivers/net/ethernet/freescale/fsl_pq_mdio.c and an associated DTS file drivers/net/ethernet/freescale/fsl_pq_mdio.c and an associated DTS file
for one of the users. (e.g. "git grep fsl,.*-mdio arch/powerpc/boot/dts/") for one of the users. (e.g. "git grep fsl,.*-mdio arch/powerpc/boot/dts/")
(RG)MII/electrical interface considerations
The Reduced Gigabit Medium Independent Interface (RGMII) is a 12-pin
electrical signal interface using a synchronous 125Mhz clock signal and several
data lines. Due to this design decision, a 1.5ns to 2ns delay must be added
between the clock line (RXC or TXC) and the data lines to let the PHY (clock
sink) have enough setup and hold times to sample the data lines correctly. The
PHY library offers different types of PHY_INTERFACE_MODE_RGMII* values to let
the PHY driver and optionally the MAC driver, implement the required delay. The
values of phy_interface_t must be understood from the perspective of the PHY
device itself, leading to the following:
* PHY_INTERFACE_MODE_RGMII: the PHY is not responsible for inserting any
internal delay by itself, it assumes that either the Ethernet MAC (if capable
or the PCB traces) insert the correct 1.5-2ns delay
* PHY_INTERFACE_MODE_RGMII_TXID: the PHY should insert an internal delay
for the transmit data lines (TXD[3:0]) processed by the PHY device
* PHY_INTERFACE_MODE_RGMII_RXID: the PHY should insert an internal delay
for the receive data lines (RXD[3:0]) processed by the PHY device
* PHY_INTERFACE_MODE_RGMII_ID: the PHY should insert internal delays for
both transmit AND receive data lines from/to the PHY device
Whenever possible, use the PHY side RGMII delay for these reasons:
* PHY devices may offer sub-nanosecond granularity in how they allow a
receiver/transmitter side delay (e.g: 0.5, 1.0, 1.5ns) to be specified. Such
precision may be required to account for differences in PCB trace lengths
* PHY devices are typically qualified for a large range of applications
(industrial, medical, automotive...), and they provide a constant and
reliable delay across temperature/pressure/voltage ranges
* PHY device drivers in PHYLIB being reusable by nature, being able to
configure correctly a specified delay enables more designs with similar delay
requirements to be operate correctly
For cases where the PHY is not capable of providing this delay, but the
Ethernet MAC driver is capable of doing so, the correct phy_interface_t value
should be PHY_INTERFACE_MODE_RGMII, and the Ethernet MAC driver should be
configured correctly in order to provide the required transmit and/or receive
side delay from the perspective of the PHY device. Conversely, if the Ethernet
MAC driver looks at the phy_interface_t value, for any other mode but
PHY_INTERFACE_MODE_RGMII, it should make sure that the MAC-level delays are
disabled.
In case neither the Ethernet MAC, nor the PHY are capable of providing the
required delays, as defined per the RGMII standard, several options may be
available:
* Some SoCs may offer a pin pad/mux/controller capable of configuring a given
set of pins'strength, delays, and voltage; and it may be a suitable
option to insert the expected 2ns RGMII delay.
* Modifying the PCB design to include a fixed delay (e.g: using a specifically
designed serpentine), which may not require software configuration at all.
Common problems with RGMII delay mismatch
When there is a RGMII delay mismatch between the Ethernet MAC and the PHY, this
will most likely result in the clock and data line signals to be unstable when
the PHY or MAC take a snapshot of these signals to translate them into logical
1 or 0 states and reconstruct the data being transmitted/received. Typical
symptoms include:
* Transmission/reception partially works, and there is frequent or occasional
packet loss observed
* Ethernet MAC may report some or all packets ingressing with a FCS/CRC error,
or just discard them all
* Switching to lower speeds such as 10/100Mbits/sec makes the problem go away
(since there is enough setup/hold time in that case)
Connecting to a PHY Connecting to a PHY
Sometime during startup, the network driver needs to establish a connection Sometime during startup, the network driver needs to establish a connection