Second batch of dma-mapping updates for 4.20:
- various swiotlb cleanups - do not dip into the ѕwiotlb pool for dma coherent allocations - add support for not cache coherent DMA to swiotlb - switch ARM64 to use the generic swiotlb_dma_ops -----BEGIN PGP SIGNATURE----- iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlvTDNELHGhjaEBsc3Qu ZGUACgkQD55TZVIEUYOfdg//a4nGw5bTwj2uol/oS/vOdpE0otR3XpnNC3oopHd3 3xbb0LUR12A0YJmV5Ao9iIRFc60boLNblZglho8Diqks3P9+nYWCQ2rQ+o7ZsfK9 xGBNP0HrdGKPBzs9JodvhP/WBNWEReNbb6KwMe63LtDqUqNDNFmlYfxUgQ+fbgST ZscR7iHJT1Nl0PoJ0mVziPFDA5DFB6JN7z0nU9uddVXLM7MPOFVX/WsFdLZLg/8W /jgQ1gQ+gRMBSyctR8u+LG5KTxtYofiPo46lbyuSa5sx+cnZmjo7Uk5OZgs3soHn gnobSjxgNbPgt8ttaKoFtOpyuO/3cLQeObS8i2MQuzvYpUD/nBT5q6l8XZBAFQCc BkOe0qaBa2BrSG2O7BRgagHuSUjpgkxR3vyVT5e6eyr7uFk+LWslJKx4Uem3uIRf yfNQzx91Xaw7ypaF7//jVPeWucLFZuwYsy13ZAg5D71vYpZBkfgHoMSCrmZQT9o/ V1ijmJy2ZDlGIKH95A0Utr6QKrci1drigg8Zce5A2E2EPAzTiro90ZeGT2tcJmVs LOrbxEN1Dctkkk5l6PJE3k4zYCP7rW4lbW7wPcLZrJoptsm3sQprE10zaAFGKks6 vPLY615FK/JydJ9AIjx6PhFiY6M6Zb2er6CbRo18BjpqjKHgmK0A/uCbLhN+Qnac IoE= =pI5p -----END PGP SIGNATURE----- Merge tag 'dma-mapping-4.20-1' of git://git.infradead.org/users/hch/dma-mapping Pull more dma-mapping updates from Christoph Hellwig: - various swiotlb cleanups - do not dip into the ѕwiotlb pool for dma coherent allocations - add support for not cache coherent DMA to swiotlb - switch ARM64 to use the generic swiotlb_dma_ops * tag 'dma-mapping-4.20-1' of git://git.infradead.org/users/hch/dma-mapping: arm64: use the generic swiotlb_dma_ops swiotlb: add support for non-coherent DMA swiotlb: don't dip into swiotlb pool for coherent allocations swiotlb: refactor swiotlb_map_page swiotlb: use swiotlb_map_page in swiotlb_map_sg_attrs swiotlb: merge swiotlb_unmap_page and unmap_single swiotlb: remove the overflow buffer swiotlb: do not panic on mapping failures swiotlb: mark is_swiotlb_buffer static swiotlb: remove a pointless comment
This commit is contained in:
commit
befa936331
|
@ -11,6 +11,8 @@ config ARM64
|
|||
select ARCH_CLOCKSOURCE_DATA
|
||||
select ARCH_HAS_DEBUG_VIRTUAL
|
||||
select ARCH_HAS_DEVMEM_IS_ALLOWED
|
||||
select ARCH_HAS_DMA_COHERENT_TO_PFN
|
||||
select ARCH_HAS_DMA_MMAP_PGPROT
|
||||
select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
|
||||
select ARCH_HAS_ELF_RANDOMIZE
|
||||
select ARCH_HAS_FAST_MULTIPLIER
|
||||
|
@ -24,6 +26,8 @@ config ARM64
|
|||
select ARCH_HAS_SG_CHAIN
|
||||
select ARCH_HAS_STRICT_KERNEL_RWX
|
||||
select ARCH_HAS_STRICT_MODULE_RWX
|
||||
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
|
||||
select ARCH_HAS_SYNC_DMA_FOR_CPU
|
||||
select ARCH_HAS_SYSCALL_WRAPPER
|
||||
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
|
||||
select ARCH_HAVE_NMI_SAFE_CMPXCHG
|
||||
|
|
|
@ -23,7 +23,6 @@ struct dev_archdata {
|
|||
#ifdef CONFIG_XEN
|
||||
const struct dma_map_ops *dev_dma_ops;
|
||||
#endif
|
||||
bool dma_coherent;
|
||||
};
|
||||
|
||||
struct pdev_archdata {
|
||||
|
|
|
@ -44,10 +44,13 @@ void arch_teardown_dma_ops(struct device *dev);
|
|||
#define arch_teardown_dma_ops arch_teardown_dma_ops
|
||||
#endif
|
||||
|
||||
/* do not use this function in a driver */
|
||||
/*
|
||||
* Do not use this function in a driver, it is only provided for
|
||||
* arch/arm/mm/xen.c, which is used by arm64 as well.
|
||||
*/
|
||||
static inline bool is_device_dma_coherent(struct device *dev)
|
||||
{
|
||||
return dev->archdata.dma_coherent;
|
||||
return dev->dma_coherent;
|
||||
}
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <linux/slab.h>
|
||||
#include <linux/genalloc.h>
|
||||
#include <linux/dma-direct.h>
|
||||
#include <linux/dma-noncoherent.h>
|
||||
#include <linux/dma-contiguous.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/swiotlb.h>
|
||||
|
@ -32,16 +33,6 @@
|
|||
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
static int swiotlb __ro_after_init;
|
||||
|
||||
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
|
||||
bool coherent)
|
||||
{
|
||||
if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
|
||||
return pgprot_writecombine(prot);
|
||||
return prot;
|
||||
}
|
||||
|
||||
static struct gen_pool *atomic_pool __ro_after_init;
|
||||
|
||||
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
|
||||
|
@ -91,18 +82,16 @@ static int __free_from_pool(void *start, size_t size)
|
|||
return 1;
|
||||
}
|
||||
|
||||
static void *__dma_alloc(struct device *dev, size_t size,
|
||||
dma_addr_t *dma_handle, gfp_t flags,
|
||||
unsigned long attrs)
|
||||
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
||||
gfp_t flags, unsigned long attrs)
|
||||
{
|
||||
struct page *page;
|
||||
void *ptr, *coherent_ptr;
|
||||
bool coherent = is_device_dma_coherent(dev);
|
||||
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
|
||||
pgprot_t prot = pgprot_writecombine(PAGE_KERNEL);
|
||||
|
||||
size = PAGE_ALIGN(size);
|
||||
|
||||
if (!coherent && !gfpflags_allow_blocking(flags)) {
|
||||
if (!gfpflags_allow_blocking(flags)) {
|
||||
struct page *page = NULL;
|
||||
void *addr = __alloc_from_pool(size, &page, flags);
|
||||
|
||||
|
@ -112,14 +101,10 @@ static void *__dma_alloc(struct device *dev, size_t size,
|
|||
return addr;
|
||||
}
|
||||
|
||||
ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
|
||||
ptr = dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs);
|
||||
if (!ptr)
|
||||
goto no_mem;
|
||||
|
||||
/* no need for non-cacheable mapping if coherent */
|
||||
if (coherent)
|
||||
return ptr;
|
||||
|
||||
/* remove any dirty cache lines on the kernel alias */
|
||||
__dma_flush_area(ptr, size);
|
||||
|
||||
|
@ -133,132 +118,59 @@ static void *__dma_alloc(struct device *dev, size_t size,
|
|||
return coherent_ptr;
|
||||
|
||||
no_map:
|
||||
swiotlb_free(dev, size, ptr, *dma_handle, attrs);
|
||||
dma_direct_free_pages(dev, size, ptr, *dma_handle, attrs);
|
||||
no_mem:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void __dma_free(struct device *dev, size_t size,
|
||||
void *vaddr, dma_addr_t dma_handle,
|
||||
unsigned long attrs)
|
||||
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
|
||||
dma_addr_t dma_handle, unsigned long attrs)
|
||||
{
|
||||
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
|
||||
if (!__free_from_pool(vaddr, PAGE_ALIGN(size))) {
|
||||
void *kaddr = phys_to_virt(dma_to_phys(dev, dma_handle));
|
||||
|
||||
size = PAGE_ALIGN(size);
|
||||
|
||||
if (!is_device_dma_coherent(dev)) {
|
||||
if (__free_from_pool(vaddr, size))
|
||||
return;
|
||||
vunmap(vaddr);
|
||||
dma_direct_free_pages(dev, size, kaddr, dma_handle, attrs);
|
||||
}
|
||||
swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
|
||||
}
|
||||
|
||||
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
|
||||
dma_addr_t dma_addr)
|
||||
{
|
||||
dma_addr_t dev_addr;
|
||||
|
||||
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
|
||||
if (!is_device_dma_coherent(dev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
||||
|
||||
return dev_addr;
|
||||
return __phys_to_pfn(dma_to_phys(dev, dma_addr));
|
||||
}
|
||||
|
||||
|
||||
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
||||
size_t size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
|
||||
unsigned long attrs)
|
||||
{
|
||||
if (!is_device_dma_coherent(dev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
||||
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
|
||||
if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
|
||||
return pgprot_writecombine(prot);
|
||||
return prot;
|
||||
}
|
||||
|
||||
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
||||
int nelems, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
|
||||
size_t size, enum dma_data_direction dir)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i, ret;
|
||||
__dma_map_area(phys_to_virt(paddr), size, dir);
|
||||
}
|
||||
|
||||
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
|
||||
if (!is_device_dma_coherent(dev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
for_each_sg(sgl, sg, ret, i)
|
||||
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
||||
sg->length, dir);
|
||||
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
|
||||
size_t size, enum dma_data_direction dir)
|
||||
{
|
||||
__dma_unmap_area(phys_to_virt(paddr), size, dir);
|
||||
}
|
||||
|
||||
static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
|
||||
struct page *page, size_t size)
|
||||
{
|
||||
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
||||
|
||||
if (!ret)
|
||||
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __swiotlb_unmap_sg_attrs(struct device *dev,
|
||||
struct scatterlist *sgl, int nelems,
|
||||
enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
if (!is_device_dma_coherent(dev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
||||
sg->length, dir);
|
||||
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
|
||||
}
|
||||
|
||||
static void __swiotlb_sync_single_for_cpu(struct device *dev,
|
||||
dma_addr_t dev_addr, size_t size,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
if (!is_device_dma_coherent(dev))
|
||||
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
||||
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
|
||||
}
|
||||
|
||||
static void __swiotlb_sync_single_for_device(struct device *dev,
|
||||
dma_addr_t dev_addr, size_t size,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
|
||||
if (!is_device_dma_coherent(dev))
|
||||
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
||||
}
|
||||
|
||||
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
|
||||
struct scatterlist *sgl, int nelems,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
if (!is_device_dma_coherent(dev))
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
||||
sg->length, dir);
|
||||
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
|
||||
}
|
||||
|
||||
static void __swiotlb_sync_sg_for_device(struct device *dev,
|
||||
struct scatterlist *sgl, int nelems,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
|
||||
if (!is_device_dma_coherent(dev))
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
||||
sg->length, dir);
|
||||
}
|
||||
|
||||
static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
|
||||
unsigned long pfn, size_t size)
|
||||
{
|
||||
|
@ -277,74 +189,6 @@ static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
|
|||
return ret;
|
||||
}
|
||||
|
||||
static int __swiotlb_mmap(struct device *dev,
|
||||
struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
||||
unsigned long attrs)
|
||||
{
|
||||
int ret;
|
||||
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
|
||||
|
||||
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
|
||||
is_device_dma_coherent(dev));
|
||||
|
||||
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
||||
return ret;
|
||||
|
||||
return __swiotlb_mmap_pfn(vma, pfn, size);
|
||||
}
|
||||
|
||||
static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
|
||||
struct page *page, size_t size)
|
||||
{
|
||||
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
||||
|
||||
if (!ret)
|
||||
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
|
||||
void *cpu_addr, dma_addr_t handle, size_t size,
|
||||
unsigned long attrs)
|
||||
{
|
||||
struct page *page = phys_to_page(dma_to_phys(dev, handle));
|
||||
|
||||
return __swiotlb_get_sgtable_page(sgt, page, size);
|
||||
}
|
||||
|
||||
static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
||||
{
|
||||
if (swiotlb)
|
||||
return swiotlb_dma_supported(hwdev, mask);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
|
||||
{
|
||||
if (swiotlb)
|
||||
return swiotlb_dma_mapping_error(hwdev, addr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct dma_map_ops arm64_swiotlb_dma_ops = {
|
||||
.alloc = __dma_alloc,
|
||||
.free = __dma_free,
|
||||
.mmap = __swiotlb_mmap,
|
||||
.get_sgtable = __swiotlb_get_sgtable,
|
||||
.map_page = __swiotlb_map_page,
|
||||
.unmap_page = __swiotlb_unmap_page,
|
||||
.map_sg = __swiotlb_map_sg_attrs,
|
||||
.unmap_sg = __swiotlb_unmap_sg_attrs,
|
||||
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
|
||||
.sync_single_for_device = __swiotlb_sync_single_for_device,
|
||||
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
|
||||
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
|
||||
.dma_supported = __swiotlb_dma_supported,
|
||||
.mapping_error = __swiotlb_dma_mapping_error,
|
||||
};
|
||||
|
||||
static int __init atomic_pool_init(void)
|
||||
{
|
||||
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
|
||||
|
@ -500,10 +344,6 @@ EXPORT_SYMBOL(dummy_dma_ops);
|
|||
|
||||
static int __init arm64_dma_init(void)
|
||||
{
|
||||
if (swiotlb_force == SWIOTLB_FORCE ||
|
||||
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
|
||||
swiotlb = 1;
|
||||
|
||||
WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
|
||||
TAINT_CPU_OUT_OF_SPEC,
|
||||
"ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
|
||||
|
@ -528,7 +368,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
|
|||
dma_addr_t *handle, gfp_t gfp,
|
||||
unsigned long attrs)
|
||||
{
|
||||
bool coherent = is_device_dma_coherent(dev);
|
||||
bool coherent = dev_is_dma_coherent(dev);
|
||||
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
|
||||
size_t iosize = size;
|
||||
void *addr;
|
||||
|
@ -569,7 +409,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
|
|||
addr = NULL;
|
||||
}
|
||||
} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
||||
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
|
||||
pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
|
||||
struct page *page;
|
||||
|
||||
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
|
||||
|
@ -596,7 +436,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
|
|||
size >> PAGE_SHIFT);
|
||||
}
|
||||
} else {
|
||||
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
|
||||
pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
|
||||
struct page **pages;
|
||||
|
||||
pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
|
||||
|
@ -658,8 +498,7 @@ static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|||
struct vm_struct *area;
|
||||
int ret;
|
||||
|
||||
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
|
||||
is_device_dma_coherent(dev));
|
||||
vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
|
||||
|
||||
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
||||
return ret;
|
||||
|
@ -709,11 +548,11 @@ static void __iommu_sync_single_for_cpu(struct device *dev,
|
|||
{
|
||||
phys_addr_t phys;
|
||||
|
||||
if (is_device_dma_coherent(dev))
|
||||
if (dev_is_dma_coherent(dev))
|
||||
return;
|
||||
|
||||
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
|
||||
__dma_unmap_area(phys_to_virt(phys), size, dir);
|
||||
arch_sync_dma_for_cpu(dev, phys, size, dir);
|
||||
}
|
||||
|
||||
static void __iommu_sync_single_for_device(struct device *dev,
|
||||
|
@ -722,11 +561,11 @@ static void __iommu_sync_single_for_device(struct device *dev,
|
|||
{
|
||||
phys_addr_t phys;
|
||||
|
||||
if (is_device_dma_coherent(dev))
|
||||
if (dev_is_dma_coherent(dev))
|
||||
return;
|
||||
|
||||
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
|
||||
__dma_map_area(phys_to_virt(phys), size, dir);
|
||||
arch_sync_dma_for_device(dev, phys, size, dir);
|
||||
}
|
||||
|
||||
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
|
||||
|
@ -734,7 +573,7 @@ static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
|
|||
enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
bool coherent = is_device_dma_coherent(dev);
|
||||
bool coherent = dev_is_dma_coherent(dev);
|
||||
int prot = dma_info_to_prot(dir, coherent, attrs);
|
||||
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
|
||||
|
||||
|
@ -762,11 +601,11 @@ static void __iommu_sync_sg_for_cpu(struct device *dev,
|
|||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
if (is_device_dma_coherent(dev))
|
||||
if (dev_is_dma_coherent(dev))
|
||||
return;
|
||||
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
__dma_unmap_area(sg_virt(sg), sg->length, dir);
|
||||
arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
|
||||
}
|
||||
|
||||
static void __iommu_sync_sg_for_device(struct device *dev,
|
||||
|
@ -776,18 +615,18 @@ static void __iommu_sync_sg_for_device(struct device *dev,
|
|||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
if (is_device_dma_coherent(dev))
|
||||
if (dev_is_dma_coherent(dev))
|
||||
return;
|
||||
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
__dma_map_area(sg_virt(sg), sg->length, dir);
|
||||
arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
|
||||
}
|
||||
|
||||
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
||||
int nelems, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
bool coherent = is_device_dma_coherent(dev);
|
||||
bool coherent = dev_is_dma_coherent(dev);
|
||||
|
||||
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
|
||||
|
@ -879,9 +718,9 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|||
const struct iommu_ops *iommu, bool coherent)
|
||||
{
|
||||
if (!dev->dma_ops)
|
||||
dev->dma_ops = &arm64_swiotlb_dma_ops;
|
||||
dev->dma_ops = &swiotlb_dma_ops;
|
||||
|
||||
dev->archdata.dma_coherent = coherent;
|
||||
dev->dma_coherent = coherent;
|
||||
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
|
||||
|
||||
#ifdef CONFIG_XEN
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/dma-direct.h>
|
||||
#include <linux/memblock.h>
|
||||
#include <linux/pfn.h>
|
||||
#include <linux/of_platform.h>
|
||||
|
@ -59,7 +59,7 @@ const struct dma_map_ops powerpc_swiotlb_dma_ops = {
|
|||
.sync_single_for_device = swiotlb_sync_single_for_device,
|
||||
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
||||
.sync_sg_for_device = swiotlb_sync_sg_for_device,
|
||||
.mapping_error = swiotlb_dma_mapping_error,
|
||||
.mapping_error = dma_direct_mapping_error,
|
||||
.get_required_mask = swiotlb_powerpc_get_required,
|
||||
};
|
||||
|
||||
|
|
|
@ -5,6 +5,8 @@
|
|||
#include <linux/dma-mapping.h>
|
||||
#include <linux/mem_encrypt.h>
|
||||
|
||||
#define DIRECT_MAPPING_ERROR 0
|
||||
|
||||
#ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA
|
||||
#include <asm/dma-direct.h>
|
||||
#else
|
||||
|
|
|
@ -67,11 +67,6 @@ extern void swiotlb_tbl_sync_single(struct device *hwdev,
|
|||
|
||||
/* Accessory functions. */
|
||||
|
||||
void *swiotlb_alloc(struct device *hwdev, size_t size, dma_addr_t *dma_handle,
|
||||
gfp_t flags, unsigned long attrs);
|
||||
void swiotlb_free(struct device *dev, size_t size, void *vaddr,
|
||||
dma_addr_t dma_addr, unsigned long attrs);
|
||||
|
||||
extern dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction dir,
|
||||
|
@ -106,9 +101,6 @@ extern void
|
|||
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
|
||||
int nelems, enum dma_data_direction dir);
|
||||
|
||||
extern int
|
||||
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr);
|
||||
|
||||
extern int
|
||||
swiotlb_dma_supported(struct device *hwdev, u64 mask);
|
||||
|
||||
|
@ -121,7 +113,6 @@ static inline unsigned int swiotlb_max_segment(void) { return 0; }
|
|||
#endif
|
||||
|
||||
extern void swiotlb_print_info(void);
|
||||
extern int is_swiotlb_buffer(phys_addr_t paddr);
|
||||
extern void swiotlb_set_max_segment(unsigned int);
|
||||
|
||||
extern const struct dma_map_ops swiotlb_dma_ops;
|
||||
|
|
|
@ -14,8 +14,6 @@
|
|||
#include <linux/pfn.h>
|
||||
#include <linux/set_memory.h>
|
||||
|
||||
#define DIRECT_MAPPING_ERROR 0
|
||||
|
||||
/*
|
||||
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
|
||||
* some use it for entirely different regions:
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#include <linux/cache.h>
|
||||
#include <linux/dma-direct.h>
|
||||
#include <linux/dma-noncoherent.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/spinlock.h>
|
||||
|
@ -72,13 +73,6 @@ static phys_addr_t io_tlb_start, io_tlb_end;
|
|||
*/
|
||||
static unsigned long io_tlb_nslabs;
|
||||
|
||||
/*
|
||||
* When the IOMMU overflows we return a fallback buffer. This sets the size.
|
||||
*/
|
||||
static unsigned long io_tlb_overflow = 32*1024;
|
||||
|
||||
static phys_addr_t io_tlb_overflow_buffer;
|
||||
|
||||
/*
|
||||
* This is a free list describing the number of free entries available from
|
||||
* each index
|
||||
|
@ -126,7 +120,6 @@ setup_io_tlb_npages(char *str)
|
|||
return 0;
|
||||
}
|
||||
early_param("swiotlb", setup_io_tlb_npages);
|
||||
/* make io_tlb_overflow tunable too? */
|
||||
|
||||
unsigned long swiotlb_nr_tbl(void)
|
||||
{
|
||||
|
@ -194,16 +187,10 @@ void __init swiotlb_update_mem_attributes(void)
|
|||
bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
|
||||
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
|
||||
memset(vaddr, 0, bytes);
|
||||
|
||||
vaddr = phys_to_virt(io_tlb_overflow_buffer);
|
||||
bytes = PAGE_ALIGN(io_tlb_overflow);
|
||||
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
|
||||
memset(vaddr, 0, bytes);
|
||||
}
|
||||
|
||||
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
||||
{
|
||||
void *v_overflow_buffer;
|
||||
unsigned long i, bytes;
|
||||
|
||||
bytes = nslabs << IO_TLB_SHIFT;
|
||||
|
@ -212,17 +199,6 @@ int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
|||
io_tlb_start = __pa(tlb);
|
||||
io_tlb_end = io_tlb_start + bytes;
|
||||
|
||||
/*
|
||||
* Get the overflow emergency buffer
|
||||
*/
|
||||
v_overflow_buffer = memblock_virt_alloc_low_nopanic(
|
||||
PAGE_ALIGN(io_tlb_overflow),
|
||||
PAGE_SIZE);
|
||||
if (!v_overflow_buffer)
|
||||
return -ENOMEM;
|
||||
|
||||
io_tlb_overflow_buffer = __pa(v_overflow_buffer);
|
||||
|
||||
/*
|
||||
* Allocate and initialize the free list array. This array is used
|
||||
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
|
||||
|
@ -330,7 +306,6 @@ int
|
|||
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
||||
{
|
||||
unsigned long i, bytes;
|
||||
unsigned char *v_overflow_buffer;
|
||||
|
||||
bytes = nslabs << IO_TLB_SHIFT;
|
||||
|
||||
|
@ -341,19 +316,6 @@ swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
|||
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
|
||||
memset(tlb, 0, bytes);
|
||||
|
||||
/*
|
||||
* Get the overflow emergency buffer
|
||||
*/
|
||||
v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
|
||||
get_order(io_tlb_overflow));
|
||||
if (!v_overflow_buffer)
|
||||
goto cleanup2;
|
||||
|
||||
set_memory_decrypted((unsigned long)v_overflow_buffer,
|
||||
io_tlb_overflow >> PAGE_SHIFT);
|
||||
memset(v_overflow_buffer, 0, io_tlb_overflow);
|
||||
io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
|
||||
|
||||
/*
|
||||
* Allocate and initialize the free list array. This array is used
|
||||
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
|
||||
|
@ -390,10 +352,6 @@ cleanup4:
|
|||
sizeof(int)));
|
||||
io_tlb_list = NULL;
|
||||
cleanup3:
|
||||
free_pages((unsigned long)v_overflow_buffer,
|
||||
get_order(io_tlb_overflow));
|
||||
io_tlb_overflow_buffer = 0;
|
||||
cleanup2:
|
||||
io_tlb_end = 0;
|
||||
io_tlb_start = 0;
|
||||
io_tlb_nslabs = 0;
|
||||
|
@ -407,8 +365,6 @@ void __init swiotlb_exit(void)
|
|||
return;
|
||||
|
||||
if (late_alloc) {
|
||||
free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
|
||||
get_order(io_tlb_overflow));
|
||||
free_pages((unsigned long)io_tlb_orig_addr,
|
||||
get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
|
||||
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
|
||||
|
@ -416,8 +372,6 @@ void __init swiotlb_exit(void)
|
|||
free_pages((unsigned long)phys_to_virt(io_tlb_start),
|
||||
get_order(io_tlb_nslabs << IO_TLB_SHIFT));
|
||||
} else {
|
||||
memblock_free_late(io_tlb_overflow_buffer,
|
||||
PAGE_ALIGN(io_tlb_overflow));
|
||||
memblock_free_late(__pa(io_tlb_orig_addr),
|
||||
PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
|
||||
memblock_free_late(__pa(io_tlb_list),
|
||||
|
@ -429,7 +383,7 @@ void __init swiotlb_exit(void)
|
|||
max_segment = 0;
|
||||
}
|
||||
|
||||
int is_swiotlb_buffer(phys_addr_t paddr)
|
||||
static int is_swiotlb_buffer(phys_addr_t paddr)
|
||||
{
|
||||
return paddr >= io_tlb_start && paddr < io_tlb_end;
|
||||
}
|
||||
|
@ -590,26 +544,6 @@ found:
|
|||
return tlb_addr;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocates bounce buffer and returns its physical address.
|
||||
*/
|
||||
static phys_addr_t
|
||||
map_single(struct device *hwdev, phys_addr_t phys, size_t size,
|
||||
enum dma_data_direction dir, unsigned long attrs)
|
||||
{
|
||||
dma_addr_t start_dma_addr;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE) {
|
||||
dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
|
||||
&phys);
|
||||
return SWIOTLB_MAP_ERROR;
|
||||
}
|
||||
|
||||
start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
|
||||
return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
|
||||
dir, attrs);
|
||||
}
|
||||
|
||||
/*
|
||||
* tlb_addr is the physical address of the bounce buffer to unmap.
|
||||
*/
|
||||
|
@ -689,104 +623,32 @@ void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
|
|||
}
|
||||
}
|
||||
|
||||
static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
|
||||
size_t size)
|
||||
static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys,
|
||||
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
||||
{
|
||||
u64 mask = DMA_BIT_MASK(32);
|
||||
dma_addr_t dma_addr;
|
||||
|
||||
if (dev && dev->coherent_dma_mask)
|
||||
mask = dev->coherent_dma_mask;
|
||||
return addr + size - 1 <= mask;
|
||||
}
|
||||
|
||||
static void *
|
||||
swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
||||
unsigned long attrs)
|
||||
{
|
||||
phys_addr_t phys_addr;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
||||
goto out_warn;
|
||||
|
||||
phys_addr = swiotlb_tbl_map_single(dev,
|
||||
__phys_to_dma(dev, io_tlb_start),
|
||||
0, size, DMA_FROM_DEVICE, attrs);
|
||||
if (phys_addr == SWIOTLB_MAP_ERROR)
|
||||
goto out_warn;
|
||||
|
||||
*dma_handle = __phys_to_dma(dev, phys_addr);
|
||||
if (!dma_coherent_ok(dev, *dma_handle, size))
|
||||
goto out_unmap;
|
||||
|
||||
memset(phys_to_virt(phys_addr), 0, size);
|
||||
return phys_to_virt(phys_addr);
|
||||
|
||||
out_unmap:
|
||||
dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
|
||||
(unsigned long long)dev->coherent_dma_mask,
|
||||
(unsigned long long)*dma_handle);
|
||||
|
||||
/*
|
||||
* DMA_TO_DEVICE to avoid memcpy in unmap_single.
|
||||
* DMA_ATTR_SKIP_CPU_SYNC is optional.
|
||||
*/
|
||||
swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
|
||||
DMA_ATTR_SKIP_CPU_SYNC);
|
||||
out_warn:
|
||||
if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
|
||||
dev_warn(dev,
|
||||
"swiotlb: coherent allocation failed, size=%zu\n",
|
||||
size);
|
||||
dump_stack();
|
||||
if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
|
||||
dev_warn_ratelimited(dev,
|
||||
"Cannot do DMA to address %pa\n", phys);
|
||||
return DIRECT_MAPPING_ERROR;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static bool swiotlb_free_buffer(struct device *dev, size_t size,
|
||||
dma_addr_t dma_addr)
|
||||
{
|
||||
phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
|
||||
/* Oh well, have to allocate and map a bounce buffer. */
|
||||
*phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
|
||||
*phys, size, dir, attrs);
|
||||
if (*phys == SWIOTLB_MAP_ERROR)
|
||||
return DIRECT_MAPPING_ERROR;
|
||||
|
||||
WARN_ON_ONCE(irqs_disabled());
|
||||
/* Ensure that the address returned is DMA'ble */
|
||||
dma_addr = __phys_to_dma(dev, *phys);
|
||||
if (unlikely(!dma_capable(dev, dma_addr, size))) {
|
||||
swiotlb_tbl_unmap_single(dev, *phys, size, dir,
|
||||
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
||||
return DIRECT_MAPPING_ERROR;
|
||||
}
|
||||
|
||||
if (!is_swiotlb_buffer(phys_addr))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
|
||||
* DMA_ATTR_SKIP_CPU_SYNC is optional.
|
||||
*/
|
||||
swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
|
||||
DMA_ATTR_SKIP_CPU_SYNC);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void
|
||||
swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
|
||||
int do_panic)
|
||||
{
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Ran out of IOMMU space for this operation. This is very bad.
|
||||
* Unfortunately the drivers cannot handle this operation properly.
|
||||
* unless they check for dma_mapping_error (most don't)
|
||||
* When the mapping is small enough return a static buffer to limit
|
||||
* the damage, or panic when the transfer is too big.
|
||||
*/
|
||||
dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
|
||||
size);
|
||||
|
||||
if (size <= io_tlb_overflow || !do_panic)
|
||||
return;
|
||||
|
||||
if (dir == DMA_BIDIRECTIONAL)
|
||||
panic("DMA: Random memory could be DMA accessed\n");
|
||||
if (dir == DMA_FROM_DEVICE)
|
||||
panic("DMA: Random memory could be DMA written\n");
|
||||
if (dir == DMA_TO_DEVICE)
|
||||
panic("DMA: Random memory could be DMA read\n");
|
||||
return dma_addr;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -801,7 +663,7 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
|
|||
enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
phys_addr_t map, phys = page_to_phys(page) + offset;
|
||||
phys_addr_t phys = page_to_phys(page) + offset;
|
||||
dma_addr_t dev_addr = phys_to_dma(dev, phys);
|
||||
|
||||
BUG_ON(dir == DMA_NONE);
|
||||
|
@ -810,28 +672,17 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
|
|||
* we can safely return the device addr and not worry about bounce
|
||||
* buffering it.
|
||||
*/
|
||||
if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
|
||||
return dev_addr;
|
||||
|
||||
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
|
||||
|
||||
/* Oh well, have to allocate and map a bounce buffer. */
|
||||
map = map_single(dev, phys, size, dir, attrs);
|
||||
if (map == SWIOTLB_MAP_ERROR) {
|
||||
swiotlb_full(dev, size, dir, 1);
|
||||
return __phys_to_dma(dev, io_tlb_overflow_buffer);
|
||||
if (!dma_capable(dev, dev_addr, size) ||
|
||||
swiotlb_force == SWIOTLB_FORCE) {
|
||||
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
|
||||
dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs);
|
||||
}
|
||||
|
||||
dev_addr = __phys_to_dma(dev, map);
|
||||
if (!dev_is_dma_coherent(dev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
arch_sync_dma_for_device(dev, phys, size, dir);
|
||||
|
||||
/* Ensure that the address returned is DMA'ble */
|
||||
if (dma_capable(dev, dev_addr, size))
|
||||
return dev_addr;
|
||||
|
||||
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
|
||||
swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
|
||||
|
||||
return __phys_to_dma(dev, io_tlb_overflow_buffer);
|
||||
return dev_addr;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -842,14 +693,18 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
|
|||
* After this call, reads by the cpu to the buffer are guaranteed to see
|
||||
* whatever the device wrote there.
|
||||
*/
|
||||
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
|
||||
size_t size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
|
||||
size_t size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
|
||||
|
||||
BUG_ON(dir == DMA_NONE);
|
||||
|
||||
if (!dev_is_dma_coherent(hwdev) &&
|
||||
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
||||
arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
|
||||
|
||||
if (is_swiotlb_buffer(paddr)) {
|
||||
swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
|
||||
return;
|
||||
|
@ -867,13 +722,6 @@ static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
|
|||
dma_mark_clean(phys_to_virt(paddr), size);
|
||||
}
|
||||
|
||||
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
|
||||
size_t size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
unmap_single(hwdev, dev_addr, size, dir, attrs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Make physical memory consistent for a single streaming mode DMA translation
|
||||
* after a transfer.
|
||||
|
@ -893,15 +741,17 @@ swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
|
|||
|
||||
BUG_ON(dir == DMA_NONE);
|
||||
|
||||
if (is_swiotlb_buffer(paddr)) {
|
||||
if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU)
|
||||
arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
|
||||
|
||||
if (is_swiotlb_buffer(paddr))
|
||||
swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
|
||||
return;
|
||||
}
|
||||
|
||||
if (dir != DMA_FROM_DEVICE)
|
||||
return;
|
||||
if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE)
|
||||
arch_sync_dma_for_device(hwdev, paddr, size, dir);
|
||||
|
||||
dma_mark_clean(phys_to_virt(paddr), size);
|
||||
if (!is_swiotlb_buffer(paddr) && dir == DMA_FROM_DEVICE)
|
||||
dma_mark_clean(phys_to_virt(paddr), size);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -925,48 +775,31 @@ swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
|
|||
* appropriate dma address and length. They are obtained via
|
||||
* sg_dma_{address,length}(SG).
|
||||
*
|
||||
* NOTE: An implementation may be able to use a smaller number of
|
||||
* DMA address/length pairs than there are SG table elements.
|
||||
* (for example via virtual mapping capabilities)
|
||||
* The routine returns the number of addr/length pairs actually
|
||||
* used, at most nents.
|
||||
*
|
||||
* Device ownership issues as mentioned above for swiotlb_map_page are the
|
||||
* same here.
|
||||
*/
|
||||
int
|
||||
swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
|
||||
swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems,
|
||||
enum dma_data_direction dir, unsigned long attrs)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
BUG_ON(dir == DMA_NONE);
|
||||
|
||||
for_each_sg(sgl, sg, nelems, i) {
|
||||
phys_addr_t paddr = sg_phys(sg);
|
||||
dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
|
||||
|
||||
if (swiotlb_force == SWIOTLB_FORCE ||
|
||||
!dma_capable(hwdev, dev_addr, sg->length)) {
|
||||
phys_addr_t map = map_single(hwdev, sg_phys(sg),
|
||||
sg->length, dir, attrs);
|
||||
if (map == SWIOTLB_MAP_ERROR) {
|
||||
/* Don't panic here, we expect map_sg users
|
||||
to do proper error handling. */
|
||||
swiotlb_full(hwdev, sg->length, dir, 0);
|
||||
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
|
||||
swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
|
||||
attrs);
|
||||
sg_dma_len(sgl) = 0;
|
||||
return 0;
|
||||
}
|
||||
sg->dma_address = __phys_to_dma(hwdev, map);
|
||||
} else
|
||||
sg->dma_address = dev_addr;
|
||||
sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset,
|
||||
sg->length, dir, attrs);
|
||||
if (sg->dma_address == DIRECT_MAPPING_ERROR)
|
||||
goto out_error;
|
||||
sg_dma_len(sg) = sg->length;
|
||||
}
|
||||
|
||||
return nelems;
|
||||
|
||||
out_error:
|
||||
swiotlb_unmap_sg_attrs(dev, sgl, i, dir,
|
||||
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
||||
sg_dma_len(sgl) = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -984,7 +817,7 @@ swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
|
|||
BUG_ON(dir == DMA_NONE);
|
||||
|
||||
for_each_sg(sgl, sg, nelems, i)
|
||||
unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
|
||||
swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir,
|
||||
attrs);
|
||||
}
|
||||
|
||||
|
@ -1022,12 +855,6 @@ swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
|
|||
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
|
||||
}
|
||||
|
||||
int
|
||||
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
|
||||
{
|
||||
return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
|
||||
}
|
||||
|
||||
/*
|
||||
* Return whether the given device DMA address mask can be supported
|
||||
* properly. For example, if your device can only drive the low 24-bits
|
||||
|
@ -1040,39 +867,10 @@ swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
|||
return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
|
||||
}
|
||||
|
||||
void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
||||
gfp_t gfp, unsigned long attrs)
|
||||
{
|
||||
void *vaddr;
|
||||
|
||||
/* temporary workaround: */
|
||||
if (gfp & __GFP_NOWARN)
|
||||
attrs |= DMA_ATTR_NO_WARN;
|
||||
|
||||
/*
|
||||
* Don't print a warning when the first allocation attempt fails.
|
||||
* swiotlb_alloc_coherent() will print a warning when the DMA memory
|
||||
* allocation ultimately failed.
|
||||
*/
|
||||
gfp |= __GFP_NOWARN;
|
||||
|
||||
vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
|
||||
if (!vaddr)
|
||||
vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
|
||||
return vaddr;
|
||||
}
|
||||
|
||||
void swiotlb_free(struct device *dev, size_t size, void *vaddr,
|
||||
dma_addr_t dma_addr, unsigned long attrs)
|
||||
{
|
||||
if (!swiotlb_free_buffer(dev, size, dma_addr))
|
||||
dma_direct_free(dev, size, vaddr, dma_addr, attrs);
|
||||
}
|
||||
|
||||
const struct dma_map_ops swiotlb_dma_ops = {
|
||||
.mapping_error = swiotlb_dma_mapping_error,
|
||||
.alloc = swiotlb_alloc,
|
||||
.free = swiotlb_free,
|
||||
.mapping_error = dma_direct_mapping_error,
|
||||
.alloc = dma_direct_alloc,
|
||||
.free = dma_direct_free,
|
||||
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
|
||||
.sync_single_for_device = swiotlb_sync_single_for_device,
|
||||
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
||||
|
|
Loading…
Reference in New Issue