kasan: split out shadow.c from common.c
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory. Move all shadow-related code to shadow.c, which is only enabled for software KASAN modes that use shadow memory. No functional changes for software modes. Link: https://lkml.kernel.org/r/17d95cfa7d5cf9c4fcd9bf415f2a8dea911668df.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
b266e8fee9
commit
bb359dbcb7
|
@ -10,6 +10,7 @@ CFLAGS_REMOVE_generic_report.o = $(CC_FLAGS_FTRACE)
|
|||
CFLAGS_REMOVE_init.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_quarantine.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_report.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_shadow.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_tags.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_tags_report.o = $(CC_FLAGS_FTRACE)
|
||||
|
||||
|
@ -26,9 +27,10 @@ CFLAGS_generic_report.o := $(CC_FLAGS_KASAN_RUNTIME)
|
|||
CFLAGS_init.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
CFLAGS_quarantine.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
CFLAGS_report.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
CFLAGS_shadow.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
CFLAGS_tags.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
CFLAGS_tags_report.o := $(CC_FLAGS_KASAN_RUNTIME)
|
||||
|
||||
obj-$(CONFIG_KASAN) := common.o report.o
|
||||
obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o generic_report.o quarantine.o
|
||||
obj-$(CONFIG_KASAN_SW_TAGS) += init.o tags.o tags_report.o
|
||||
obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o generic_report.o shadow.o quarantine.o
|
||||
obj-$(CONFIG_KASAN_SW_TAGS) += init.o shadow.o tags.o tags_report.o
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* This file contains common generic and tag-based KASAN code.
|
||||
* This file contains common KASAN code.
|
||||
*
|
||||
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
||||
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
||||
|
@ -13,7 +13,6 @@
|
|||
#include <linux/init.h>
|
||||
#include <linux/kasan.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/kmemleak.h>
|
||||
#include <linux/linkage.h>
|
||||
#include <linux/memblock.h>
|
||||
#include <linux/memory.h>
|
||||
|
@ -26,12 +25,8 @@
|
|||
#include <linux/stacktrace.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/bug.h>
|
||||
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
||||
#include "kasan.h"
|
||||
#include "../slab.h"
|
||||
|
||||
|
@ -61,93 +56,6 @@ void kasan_disable_current(void)
|
|||
current->kasan_depth--;
|
||||
}
|
||||
|
||||
bool __kasan_check_read(const volatile void *p, unsigned int size)
|
||||
{
|
||||
return check_memory_region((unsigned long)p, size, false, _RET_IP_);
|
||||
}
|
||||
EXPORT_SYMBOL(__kasan_check_read);
|
||||
|
||||
bool __kasan_check_write(const volatile void *p, unsigned int size)
|
||||
{
|
||||
return check_memory_region((unsigned long)p, size, true, _RET_IP_);
|
||||
}
|
||||
EXPORT_SYMBOL(__kasan_check_write);
|
||||
|
||||
#undef memset
|
||||
void *memset(void *addr, int c, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memset(addr, c, len);
|
||||
}
|
||||
|
||||
#ifdef __HAVE_ARCH_MEMMOVE
|
||||
#undef memmove
|
||||
void *memmove(void *dest, const void *src, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
|
||||
!check_memory_region((unsigned long)dest, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memmove(dest, src, len);
|
||||
}
|
||||
#endif
|
||||
|
||||
#undef memcpy
|
||||
void *memcpy(void *dest, const void *src, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
|
||||
!check_memory_region((unsigned long)dest, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memcpy(dest, src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Poisons the shadow memory for 'size' bytes starting from 'addr'.
|
||||
* Memory addresses should be aligned to KASAN_GRANULE_SIZE.
|
||||
*/
|
||||
void poison_range(const void *address, size_t size, u8 value)
|
||||
{
|
||||
void *shadow_start, *shadow_end;
|
||||
|
||||
/*
|
||||
* Perform shadow offset calculation based on untagged address, as
|
||||
* some of the callers (e.g. kasan_poison_object_data) pass tagged
|
||||
* addresses to this function.
|
||||
*/
|
||||
address = reset_tag(address);
|
||||
|
||||
shadow_start = kasan_mem_to_shadow(address);
|
||||
shadow_end = kasan_mem_to_shadow(address + size);
|
||||
|
||||
__memset(shadow_start, value, shadow_end - shadow_start);
|
||||
}
|
||||
|
||||
void unpoison_range(const void *address, size_t size)
|
||||
{
|
||||
u8 tag = get_tag(address);
|
||||
|
||||
/*
|
||||
* Perform shadow offset calculation based on untagged address, as
|
||||
* some of the callers (e.g. kasan_unpoison_object_data) pass tagged
|
||||
* addresses to this function.
|
||||
*/
|
||||
address = reset_tag(address);
|
||||
|
||||
poison_range(address, size, tag);
|
||||
|
||||
if (size & KASAN_GRANULE_MASK) {
|
||||
u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
|
||||
*shadow = tag;
|
||||
else
|
||||
*shadow = size & KASAN_GRANULE_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
void kasan_unpoison_range(const void *address, size_t size)
|
||||
{
|
||||
unpoison_range(address, size);
|
||||
|
@ -540,395 +448,3 @@ void kasan_kfree_large(void *ptr, unsigned long ip)
|
|||
kasan_report_invalid_free(ptr, ip);
|
||||
/* The object will be poisoned by page_alloc. */
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MEMORY_HOTPLUG
|
||||
static bool shadow_mapped(unsigned long addr)
|
||||
{
|
||||
pgd_t *pgd = pgd_offset_k(addr);
|
||||
p4d_t *p4d;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
|
||||
if (pgd_none(*pgd))
|
||||
return false;
|
||||
p4d = p4d_offset(pgd, addr);
|
||||
if (p4d_none(*p4d))
|
||||
return false;
|
||||
pud = pud_offset(p4d, addr);
|
||||
if (pud_none(*pud))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* We can't use pud_large() or pud_huge(), the first one is
|
||||
* arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
|
||||
* pud_bad(), if pud is bad then it's bad because it's huge.
|
||||
*/
|
||||
if (pud_bad(*pud))
|
||||
return true;
|
||||
pmd = pmd_offset(pud, addr);
|
||||
if (pmd_none(*pmd))
|
||||
return false;
|
||||
|
||||
if (pmd_bad(*pmd))
|
||||
return true;
|
||||
pte = pte_offset_kernel(pmd, addr);
|
||||
return !pte_none(*pte);
|
||||
}
|
||||
|
||||
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
|
||||
unsigned long action, void *data)
|
||||
{
|
||||
struct memory_notify *mem_data = data;
|
||||
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
|
||||
unsigned long shadow_end, shadow_size;
|
||||
|
||||
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
|
||||
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
|
||||
shadow_size = nr_shadow_pages << PAGE_SHIFT;
|
||||
shadow_end = shadow_start + shadow_size;
|
||||
|
||||
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
|
||||
WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
|
||||
return NOTIFY_BAD;
|
||||
|
||||
switch (action) {
|
||||
case MEM_GOING_ONLINE: {
|
||||
void *ret;
|
||||
|
||||
/*
|
||||
* If shadow is mapped already than it must have been mapped
|
||||
* during the boot. This could happen if we onlining previously
|
||||
* offlined memory.
|
||||
*/
|
||||
if (shadow_mapped(shadow_start))
|
||||
return NOTIFY_OK;
|
||||
|
||||
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
|
||||
shadow_end, GFP_KERNEL,
|
||||
PAGE_KERNEL, VM_NO_GUARD,
|
||||
pfn_to_nid(mem_data->start_pfn),
|
||||
__builtin_return_address(0));
|
||||
if (!ret)
|
||||
return NOTIFY_BAD;
|
||||
|
||||
kmemleak_ignore(ret);
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
case MEM_CANCEL_ONLINE:
|
||||
case MEM_OFFLINE: {
|
||||
struct vm_struct *vm;
|
||||
|
||||
/*
|
||||
* shadow_start was either mapped during boot by kasan_init()
|
||||
* or during memory online by __vmalloc_node_range().
|
||||
* In the latter case we can use vfree() to free shadow.
|
||||
* Non-NULL result of the find_vm_area() will tell us if
|
||||
* that was the second case.
|
||||
*
|
||||
* Currently it's not possible to free shadow mapped
|
||||
* during boot by kasan_init(). It's because the code
|
||||
* to do that hasn't been written yet. So we'll just
|
||||
* leak the memory.
|
||||
*/
|
||||
vm = find_vm_area((void *)shadow_start);
|
||||
if (vm)
|
||||
vfree((void *)shadow_start);
|
||||
}
|
||||
}
|
||||
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
static int __init kasan_memhotplug_init(void)
|
||||
{
|
||||
hotplug_memory_notifier(kasan_mem_notifier, 0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
core_initcall(kasan_memhotplug_init);
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_KASAN_VMALLOC
|
||||
|
||||
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
||||
void *unused)
|
||||
{
|
||||
unsigned long page;
|
||||
pte_t pte;
|
||||
|
||||
if (likely(!pte_none(*ptep)))
|
||||
return 0;
|
||||
|
||||
page = __get_free_page(GFP_KERNEL);
|
||||
if (!page)
|
||||
return -ENOMEM;
|
||||
|
||||
memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
|
||||
pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
|
||||
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
if (likely(pte_none(*ptep))) {
|
||||
set_pte_at(&init_mm, addr, ptep, pte);
|
||||
page = 0;
|
||||
}
|
||||
spin_unlock(&init_mm.page_table_lock);
|
||||
if (page)
|
||||
free_page(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
|
||||
{
|
||||
unsigned long shadow_start, shadow_end;
|
||||
int ret;
|
||||
|
||||
if (!is_vmalloc_or_module_addr((void *)addr))
|
||||
return 0;
|
||||
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
|
||||
shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
|
||||
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
|
||||
shadow_end = ALIGN(shadow_end, PAGE_SIZE);
|
||||
|
||||
ret = apply_to_page_range(&init_mm, shadow_start,
|
||||
shadow_end - shadow_start,
|
||||
kasan_populate_vmalloc_pte, NULL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
flush_cache_vmap(shadow_start, shadow_end);
|
||||
|
||||
/*
|
||||
* We need to be careful about inter-cpu effects here. Consider:
|
||||
*
|
||||
* CPU#0 CPU#1
|
||||
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
|
||||
* p[99] = 1;
|
||||
*
|
||||
* With compiler instrumentation, that ends up looking like this:
|
||||
*
|
||||
* CPU#0 CPU#1
|
||||
* // vmalloc() allocates memory
|
||||
* // let a = area->addr
|
||||
* // we reach kasan_populate_vmalloc
|
||||
* // and call unpoison_range:
|
||||
* STORE shadow(a), unpoison_val
|
||||
* ...
|
||||
* STORE shadow(a+99), unpoison_val x = LOAD p
|
||||
* // rest of vmalloc process <data dependency>
|
||||
* STORE p, a LOAD shadow(x+99)
|
||||
*
|
||||
* If there is no barrier between the end of unpoisioning the shadow
|
||||
* and the store of the result to p, the stores could be committed
|
||||
* in a different order by CPU#0, and CPU#1 could erroneously observe
|
||||
* poison in the shadow.
|
||||
*
|
||||
* We need some sort of barrier between the stores.
|
||||
*
|
||||
* In the vmalloc() case, this is provided by a smp_wmb() in
|
||||
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
|
||||
* get_vm_area() and friends, the caller gets shadow allocated but
|
||||
* doesn't have any pages mapped into the virtual address space that
|
||||
* has been reserved. Mapping those pages in will involve taking and
|
||||
* releasing a page-table lock, which will provide the barrier.
|
||||
*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Poison the shadow for a vmalloc region. Called as part of the
|
||||
* freeing process at the time the region is freed.
|
||||
*/
|
||||
void kasan_poison_vmalloc(const void *start, unsigned long size)
|
||||
{
|
||||
if (!is_vmalloc_or_module_addr(start))
|
||||
return;
|
||||
|
||||
size = round_up(size, KASAN_GRANULE_SIZE);
|
||||
poison_range(start, size, KASAN_VMALLOC_INVALID);
|
||||
}
|
||||
|
||||
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
|
||||
{
|
||||
if (!is_vmalloc_or_module_addr(start))
|
||||
return;
|
||||
|
||||
unpoison_range(start, size);
|
||||
}
|
||||
|
||||
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
||||
void *unused)
|
||||
{
|
||||
unsigned long page;
|
||||
|
||||
page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
|
||||
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
|
||||
if (likely(!pte_none(*ptep))) {
|
||||
pte_clear(&init_mm, addr, ptep);
|
||||
free_page(page);
|
||||
}
|
||||
spin_unlock(&init_mm.page_table_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Release the backing for the vmalloc region [start, end), which
|
||||
* lies within the free region [free_region_start, free_region_end).
|
||||
*
|
||||
* This can be run lazily, long after the region was freed. It runs
|
||||
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
|
||||
* infrastructure.
|
||||
*
|
||||
* How does this work?
|
||||
* -------------------
|
||||
*
|
||||
* We have a region that is page aligned, labelled as A.
|
||||
* That might not map onto the shadow in a way that is page-aligned:
|
||||
*
|
||||
* start end
|
||||
* v v
|
||||
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
|
||||
* -------- -------- -------- -------- --------
|
||||
* | | | | |
|
||||
* | | | /-------/ |
|
||||
* \-------\|/------/ |/---------------/
|
||||
* ||| ||
|
||||
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
|
||||
* (1) (2) (3)
|
||||
*
|
||||
* First we align the start upwards and the end downwards, so that the
|
||||
* shadow of the region aligns with shadow page boundaries. In the
|
||||
* example, this gives us the shadow page (2). This is the shadow entirely
|
||||
* covered by this allocation.
|
||||
*
|
||||
* Then we have the tricky bits. We want to know if we can free the
|
||||
* partially covered shadow pages - (1) and (3) in the example. For this,
|
||||
* we are given the start and end of the free region that contains this
|
||||
* allocation. Extending our previous example, we could have:
|
||||
*
|
||||
* free_region_start free_region_end
|
||||
* | start end |
|
||||
* v v v v
|
||||
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
|
||||
* -------- -------- -------- -------- --------
|
||||
* | | | | |
|
||||
* | | | /-------/ |
|
||||
* \-------\|/------/ |/---------------/
|
||||
* ||| ||
|
||||
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
|
||||
* (1) (2) (3)
|
||||
*
|
||||
* Once again, we align the start of the free region up, and the end of
|
||||
* the free region down so that the shadow is page aligned. So we can free
|
||||
* page (1) - we know no allocation currently uses anything in that page,
|
||||
* because all of it is in the vmalloc free region. But we cannot free
|
||||
* page (3), because we can't be sure that the rest of it is unused.
|
||||
*
|
||||
* We only consider pages that contain part of the original region for
|
||||
* freeing: we don't try to free other pages from the free region or we'd
|
||||
* end up trying to free huge chunks of virtual address space.
|
||||
*
|
||||
* Concurrency
|
||||
* -----------
|
||||
*
|
||||
* How do we know that we're not freeing a page that is simultaneously
|
||||
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
|
||||
*
|
||||
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
|
||||
* at the same time. While we run under free_vmap_area_lock, the population
|
||||
* code does not.
|
||||
*
|
||||
* free_vmap_area_lock instead operates to ensure that the larger range
|
||||
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
|
||||
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
|
||||
* no space identified as free will become used while we are running. This
|
||||
* means that so long as we are careful with alignment and only free shadow
|
||||
* pages entirely covered by the free region, we will not run in to any
|
||||
* trouble - any simultaneous allocations will be for disjoint regions.
|
||||
*/
|
||||
void kasan_release_vmalloc(unsigned long start, unsigned long end,
|
||||
unsigned long free_region_start,
|
||||
unsigned long free_region_end)
|
||||
{
|
||||
void *shadow_start, *shadow_end;
|
||||
unsigned long region_start, region_end;
|
||||
unsigned long size;
|
||||
|
||||
region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
free_region_start = ALIGN(free_region_start,
|
||||
PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
if (start != region_start &&
|
||||
free_region_start < region_start)
|
||||
region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
|
||||
|
||||
free_region_end = ALIGN_DOWN(free_region_end,
|
||||
PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
if (end != region_end &&
|
||||
free_region_end > region_end)
|
||||
region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
|
||||
|
||||
shadow_start = kasan_mem_to_shadow((void *)region_start);
|
||||
shadow_end = kasan_mem_to_shadow((void *)region_end);
|
||||
|
||||
if (shadow_end > shadow_start) {
|
||||
size = shadow_end - shadow_start;
|
||||
apply_to_existing_page_range(&init_mm,
|
||||
(unsigned long)shadow_start,
|
||||
size, kasan_depopulate_vmalloc_pte,
|
||||
NULL);
|
||||
flush_tlb_kernel_range((unsigned long)shadow_start,
|
||||
(unsigned long)shadow_end);
|
||||
}
|
||||
}
|
||||
|
||||
#else /* CONFIG_KASAN_VMALLOC */
|
||||
|
||||
int kasan_module_alloc(void *addr, size_t size)
|
||||
{
|
||||
void *ret;
|
||||
size_t scaled_size;
|
||||
size_t shadow_size;
|
||||
unsigned long shadow_start;
|
||||
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
|
||||
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
|
||||
KASAN_SHADOW_SCALE_SHIFT;
|
||||
shadow_size = round_up(scaled_size, PAGE_SIZE);
|
||||
|
||||
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
|
||||
return -EINVAL;
|
||||
|
||||
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
|
||||
shadow_start + shadow_size,
|
||||
GFP_KERNEL,
|
||||
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
|
||||
__builtin_return_address(0));
|
||||
|
||||
if (ret) {
|
||||
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
|
||||
find_vm_area(addr)->flags |= VM_KASAN;
|
||||
kmemleak_ignore(ret);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
void kasan_free_shadow(const struct vm_struct *vm)
|
||||
{
|
||||
if (vm->flags & VM_KASAN)
|
||||
vfree(kasan_mem_to_shadow(vm->addr));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,505 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* This file contains KASAN runtime code that manages shadow memory for
|
||||
* generic and software tag-based KASAN modes.
|
||||
*
|
||||
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
||||
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
||||
*
|
||||
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
||||
* Andrey Konovalov <andreyknvl@gmail.com>
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/kasan.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/kmemleak.h>
|
||||
#include <linux/memory.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/vmalloc.h>
|
||||
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
||||
#include "kasan.h"
|
||||
|
||||
bool __kasan_check_read(const volatile void *p, unsigned int size)
|
||||
{
|
||||
return check_memory_region((unsigned long)p, size, false, _RET_IP_);
|
||||
}
|
||||
EXPORT_SYMBOL(__kasan_check_read);
|
||||
|
||||
bool __kasan_check_write(const volatile void *p, unsigned int size)
|
||||
{
|
||||
return check_memory_region((unsigned long)p, size, true, _RET_IP_);
|
||||
}
|
||||
EXPORT_SYMBOL(__kasan_check_write);
|
||||
|
||||
#undef memset
|
||||
void *memset(void *addr, int c, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memset(addr, c, len);
|
||||
}
|
||||
|
||||
#ifdef __HAVE_ARCH_MEMMOVE
|
||||
#undef memmove
|
||||
void *memmove(void *dest, const void *src, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
|
||||
!check_memory_region((unsigned long)dest, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memmove(dest, src, len);
|
||||
}
|
||||
#endif
|
||||
|
||||
#undef memcpy
|
||||
void *memcpy(void *dest, const void *src, size_t len)
|
||||
{
|
||||
if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
|
||||
!check_memory_region((unsigned long)dest, len, true, _RET_IP_))
|
||||
return NULL;
|
||||
|
||||
return __memcpy(dest, src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Poisons the shadow memory for 'size' bytes starting from 'addr'.
|
||||
* Memory addresses should be aligned to KASAN_GRANULE_SIZE.
|
||||
*/
|
||||
void poison_range(const void *address, size_t size, u8 value)
|
||||
{
|
||||
void *shadow_start, *shadow_end;
|
||||
|
||||
/*
|
||||
* Perform shadow offset calculation based on untagged address, as
|
||||
* some of the callers (e.g. kasan_poison_object_data) pass tagged
|
||||
* addresses to this function.
|
||||
*/
|
||||
address = reset_tag(address);
|
||||
|
||||
shadow_start = kasan_mem_to_shadow(address);
|
||||
shadow_end = kasan_mem_to_shadow(address + size);
|
||||
|
||||
__memset(shadow_start, value, shadow_end - shadow_start);
|
||||
}
|
||||
|
||||
void unpoison_range(const void *address, size_t size)
|
||||
{
|
||||
u8 tag = get_tag(address);
|
||||
|
||||
/*
|
||||
* Perform shadow offset calculation based on untagged address, as
|
||||
* some of the callers (e.g. kasan_unpoison_object_data) pass tagged
|
||||
* addresses to this function.
|
||||
*/
|
||||
address = reset_tag(address);
|
||||
|
||||
poison_range(address, size, tag);
|
||||
|
||||
if (size & KASAN_GRANULE_MASK) {
|
||||
u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
|
||||
*shadow = tag;
|
||||
else
|
||||
*shadow = size & KASAN_GRANULE_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MEMORY_HOTPLUG
|
||||
static bool shadow_mapped(unsigned long addr)
|
||||
{
|
||||
pgd_t *pgd = pgd_offset_k(addr);
|
||||
p4d_t *p4d;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
|
||||
if (pgd_none(*pgd))
|
||||
return false;
|
||||
p4d = p4d_offset(pgd, addr);
|
||||
if (p4d_none(*p4d))
|
||||
return false;
|
||||
pud = pud_offset(p4d, addr);
|
||||
if (pud_none(*pud))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* We can't use pud_large() or pud_huge(), the first one is
|
||||
* arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
|
||||
* pud_bad(), if pud is bad then it's bad because it's huge.
|
||||
*/
|
||||
if (pud_bad(*pud))
|
||||
return true;
|
||||
pmd = pmd_offset(pud, addr);
|
||||
if (pmd_none(*pmd))
|
||||
return false;
|
||||
|
||||
if (pmd_bad(*pmd))
|
||||
return true;
|
||||
pte = pte_offset_kernel(pmd, addr);
|
||||
return !pte_none(*pte);
|
||||
}
|
||||
|
||||
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
|
||||
unsigned long action, void *data)
|
||||
{
|
||||
struct memory_notify *mem_data = data;
|
||||
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
|
||||
unsigned long shadow_end, shadow_size;
|
||||
|
||||
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
|
||||
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
|
||||
shadow_size = nr_shadow_pages << PAGE_SHIFT;
|
||||
shadow_end = shadow_start + shadow_size;
|
||||
|
||||
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
|
||||
WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
|
||||
return NOTIFY_BAD;
|
||||
|
||||
switch (action) {
|
||||
case MEM_GOING_ONLINE: {
|
||||
void *ret;
|
||||
|
||||
/*
|
||||
* If shadow is mapped already than it must have been mapped
|
||||
* during the boot. This could happen if we onlining previously
|
||||
* offlined memory.
|
||||
*/
|
||||
if (shadow_mapped(shadow_start))
|
||||
return NOTIFY_OK;
|
||||
|
||||
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
|
||||
shadow_end, GFP_KERNEL,
|
||||
PAGE_KERNEL, VM_NO_GUARD,
|
||||
pfn_to_nid(mem_data->start_pfn),
|
||||
__builtin_return_address(0));
|
||||
if (!ret)
|
||||
return NOTIFY_BAD;
|
||||
|
||||
kmemleak_ignore(ret);
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
case MEM_CANCEL_ONLINE:
|
||||
case MEM_OFFLINE: {
|
||||
struct vm_struct *vm;
|
||||
|
||||
/*
|
||||
* shadow_start was either mapped during boot by kasan_init()
|
||||
* or during memory online by __vmalloc_node_range().
|
||||
* In the latter case we can use vfree() to free shadow.
|
||||
* Non-NULL result of the find_vm_area() will tell us if
|
||||
* that was the second case.
|
||||
*
|
||||
* Currently it's not possible to free shadow mapped
|
||||
* during boot by kasan_init(). It's because the code
|
||||
* to do that hasn't been written yet. So we'll just
|
||||
* leak the memory.
|
||||
*/
|
||||
vm = find_vm_area((void *)shadow_start);
|
||||
if (vm)
|
||||
vfree((void *)shadow_start);
|
||||
}
|
||||
}
|
||||
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
static int __init kasan_memhotplug_init(void)
|
||||
{
|
||||
hotplug_memory_notifier(kasan_mem_notifier, 0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
core_initcall(kasan_memhotplug_init);
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_KASAN_VMALLOC
|
||||
|
||||
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
||||
void *unused)
|
||||
{
|
||||
unsigned long page;
|
||||
pte_t pte;
|
||||
|
||||
if (likely(!pte_none(*ptep)))
|
||||
return 0;
|
||||
|
||||
page = __get_free_page(GFP_KERNEL);
|
||||
if (!page)
|
||||
return -ENOMEM;
|
||||
|
||||
memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
|
||||
pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
|
||||
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
if (likely(pte_none(*ptep))) {
|
||||
set_pte_at(&init_mm, addr, ptep, pte);
|
||||
page = 0;
|
||||
}
|
||||
spin_unlock(&init_mm.page_table_lock);
|
||||
if (page)
|
||||
free_page(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
|
||||
{
|
||||
unsigned long shadow_start, shadow_end;
|
||||
int ret;
|
||||
|
||||
if (!is_vmalloc_or_module_addr((void *)addr))
|
||||
return 0;
|
||||
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
|
||||
shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
|
||||
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
|
||||
shadow_end = ALIGN(shadow_end, PAGE_SIZE);
|
||||
|
||||
ret = apply_to_page_range(&init_mm, shadow_start,
|
||||
shadow_end - shadow_start,
|
||||
kasan_populate_vmalloc_pte, NULL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
flush_cache_vmap(shadow_start, shadow_end);
|
||||
|
||||
/*
|
||||
* We need to be careful about inter-cpu effects here. Consider:
|
||||
*
|
||||
* CPU#0 CPU#1
|
||||
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
|
||||
* p[99] = 1;
|
||||
*
|
||||
* With compiler instrumentation, that ends up looking like this:
|
||||
*
|
||||
* CPU#0 CPU#1
|
||||
* // vmalloc() allocates memory
|
||||
* // let a = area->addr
|
||||
* // we reach kasan_populate_vmalloc
|
||||
* // and call unpoison_range:
|
||||
* STORE shadow(a), unpoison_val
|
||||
* ...
|
||||
* STORE shadow(a+99), unpoison_val x = LOAD p
|
||||
* // rest of vmalloc process <data dependency>
|
||||
* STORE p, a LOAD shadow(x+99)
|
||||
*
|
||||
* If there is no barrier between the end of unpoisioning the shadow
|
||||
* and the store of the result to p, the stores could be committed
|
||||
* in a different order by CPU#0, and CPU#1 could erroneously observe
|
||||
* poison in the shadow.
|
||||
*
|
||||
* We need some sort of barrier between the stores.
|
||||
*
|
||||
* In the vmalloc() case, this is provided by a smp_wmb() in
|
||||
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
|
||||
* get_vm_area() and friends, the caller gets shadow allocated but
|
||||
* doesn't have any pages mapped into the virtual address space that
|
||||
* has been reserved. Mapping those pages in will involve taking and
|
||||
* releasing a page-table lock, which will provide the barrier.
|
||||
*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Poison the shadow for a vmalloc region. Called as part of the
|
||||
* freeing process at the time the region is freed.
|
||||
*/
|
||||
void kasan_poison_vmalloc(const void *start, unsigned long size)
|
||||
{
|
||||
if (!is_vmalloc_or_module_addr(start))
|
||||
return;
|
||||
|
||||
size = round_up(size, KASAN_GRANULE_SIZE);
|
||||
poison_range(start, size, KASAN_VMALLOC_INVALID);
|
||||
}
|
||||
|
||||
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
|
||||
{
|
||||
if (!is_vmalloc_or_module_addr(start))
|
||||
return;
|
||||
|
||||
unpoison_range(start, size);
|
||||
}
|
||||
|
||||
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
||||
void *unused)
|
||||
{
|
||||
unsigned long page;
|
||||
|
||||
page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
|
||||
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
|
||||
if (likely(!pte_none(*ptep))) {
|
||||
pte_clear(&init_mm, addr, ptep);
|
||||
free_page(page);
|
||||
}
|
||||
spin_unlock(&init_mm.page_table_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Release the backing for the vmalloc region [start, end), which
|
||||
* lies within the free region [free_region_start, free_region_end).
|
||||
*
|
||||
* This can be run lazily, long after the region was freed. It runs
|
||||
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
|
||||
* infrastructure.
|
||||
*
|
||||
* How does this work?
|
||||
* -------------------
|
||||
*
|
||||
* We have a region that is page aligned, labelled as A.
|
||||
* That might not map onto the shadow in a way that is page-aligned:
|
||||
*
|
||||
* start end
|
||||
* v v
|
||||
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
|
||||
* -------- -------- -------- -------- --------
|
||||
* | | | | |
|
||||
* | | | /-------/ |
|
||||
* \-------\|/------/ |/---------------/
|
||||
* ||| ||
|
||||
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
|
||||
* (1) (2) (3)
|
||||
*
|
||||
* First we align the start upwards and the end downwards, so that the
|
||||
* shadow of the region aligns with shadow page boundaries. In the
|
||||
* example, this gives us the shadow page (2). This is the shadow entirely
|
||||
* covered by this allocation.
|
||||
*
|
||||
* Then we have the tricky bits. We want to know if we can free the
|
||||
* partially covered shadow pages - (1) and (3) in the example. For this,
|
||||
* we are given the start and end of the free region that contains this
|
||||
* allocation. Extending our previous example, we could have:
|
||||
*
|
||||
* free_region_start free_region_end
|
||||
* | start end |
|
||||
* v v v v
|
||||
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
|
||||
* -------- -------- -------- -------- --------
|
||||
* | | | | |
|
||||
* | | | /-------/ |
|
||||
* \-------\|/------/ |/---------------/
|
||||
* ||| ||
|
||||
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
|
||||
* (1) (2) (3)
|
||||
*
|
||||
* Once again, we align the start of the free region up, and the end of
|
||||
* the free region down so that the shadow is page aligned. So we can free
|
||||
* page (1) - we know no allocation currently uses anything in that page,
|
||||
* because all of it is in the vmalloc free region. But we cannot free
|
||||
* page (3), because we can't be sure that the rest of it is unused.
|
||||
*
|
||||
* We only consider pages that contain part of the original region for
|
||||
* freeing: we don't try to free other pages from the free region or we'd
|
||||
* end up trying to free huge chunks of virtual address space.
|
||||
*
|
||||
* Concurrency
|
||||
* -----------
|
||||
*
|
||||
* How do we know that we're not freeing a page that is simultaneously
|
||||
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
|
||||
*
|
||||
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
|
||||
* at the same time. While we run under free_vmap_area_lock, the population
|
||||
* code does not.
|
||||
*
|
||||
* free_vmap_area_lock instead operates to ensure that the larger range
|
||||
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
|
||||
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
|
||||
* no space identified as free will become used while we are running. This
|
||||
* means that so long as we are careful with alignment and only free shadow
|
||||
* pages entirely covered by the free region, we will not run in to any
|
||||
* trouble - any simultaneous allocations will be for disjoint regions.
|
||||
*/
|
||||
void kasan_release_vmalloc(unsigned long start, unsigned long end,
|
||||
unsigned long free_region_start,
|
||||
unsigned long free_region_end)
|
||||
{
|
||||
void *shadow_start, *shadow_end;
|
||||
unsigned long region_start, region_end;
|
||||
unsigned long size;
|
||||
|
||||
region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
free_region_start = ALIGN(free_region_start,
|
||||
PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
if (start != region_start &&
|
||||
free_region_start < region_start)
|
||||
region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
|
||||
|
||||
free_region_end = ALIGN_DOWN(free_region_end,
|
||||
PAGE_SIZE * KASAN_GRANULE_SIZE);
|
||||
|
||||
if (end != region_end &&
|
||||
free_region_end > region_end)
|
||||
region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
|
||||
|
||||
shadow_start = kasan_mem_to_shadow((void *)region_start);
|
||||
shadow_end = kasan_mem_to_shadow((void *)region_end);
|
||||
|
||||
if (shadow_end > shadow_start) {
|
||||
size = shadow_end - shadow_start;
|
||||
apply_to_existing_page_range(&init_mm,
|
||||
(unsigned long)shadow_start,
|
||||
size, kasan_depopulate_vmalloc_pte,
|
||||
NULL);
|
||||
flush_tlb_kernel_range((unsigned long)shadow_start,
|
||||
(unsigned long)shadow_end);
|
||||
}
|
||||
}
|
||||
|
||||
#else /* CONFIG_KASAN_VMALLOC */
|
||||
|
||||
int kasan_module_alloc(void *addr, size_t size)
|
||||
{
|
||||
void *ret;
|
||||
size_t scaled_size;
|
||||
size_t shadow_size;
|
||||
unsigned long shadow_start;
|
||||
|
||||
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
|
||||
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
|
||||
KASAN_SHADOW_SCALE_SHIFT;
|
||||
shadow_size = round_up(scaled_size, PAGE_SIZE);
|
||||
|
||||
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
|
||||
return -EINVAL;
|
||||
|
||||
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
|
||||
shadow_start + shadow_size,
|
||||
GFP_KERNEL,
|
||||
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
|
||||
__builtin_return_address(0));
|
||||
|
||||
if (ret) {
|
||||
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
|
||||
find_vm_area(addr)->flags |= VM_KASAN;
|
||||
kmemleak_ignore(ret);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
void kasan_free_shadow(const struct vm_struct *vm)
|
||||
{
|
||||
if (vm->flags & VM_KASAN)
|
||||
vfree(kasan_mem_to_shadow(vm->addr));
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue