s390/docs: Break long lines in Debugging390.txt

There are a lot of lines that are longer than 80 columns in this file,
rendering it hard to read in a terminal window. This patch fixes most
of these long lines, and while we're at it, also makes some sentences
more readable, e.g. by replacing "&" with "and", adding proper
punctuation, removing superfluous clauses, etc.

Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This commit is contained in:
Thomas Huth 2015-01-09 09:49:20 +01:00 committed by Martin Schwidefsky
parent d97d929f06
commit bae2a3cc4f
1 changed files with 233 additions and 223 deletions

View File

@ -1,14 +1,14 @@
Debugging on Linux for s/390 & z/Architecture
by
Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
Best viewed with fixed width fonts
Debugging on Linux for s/390 & z/Architecture
by
Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
Best viewed with fixed width fonts
Overview of Document:
=====================
This document is intended to give a good overview of how to debug
Linux for s/390 & z/Architecture. It isn't intended as a complete reference & not a
This document is intended to give a good overview of how to debug Linux for
s/390 and z/Architecture. It is not intended as a complete reference and not a
tutorial on the fundamentals of C & assembly. It doesn't go into
390 IO in any detail. It is intended to complement the documents in the
reference section below & any other worthwhile references you get.
@ -44,18 +44,20 @@ Register Set
============
The current architectures have the following registers.
16 General propose registers, 32 bit on s/390 64 bit on z/Architecture, r0-r15 or gpr0-gpr15 used for arithmetic & addressing.
16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
16 Control registers, 32 bit on s/390 64 bit on z/Architecture, ( cr0-cr15 kernel usage only ) used for memory management,
interrupt control,debugging control etc.
16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
kernel usage only, used for memory management, interrupt control, debugging
control etc.
16 Access registers ( ar0-ar15 ) 32 bit on s/390 & z/Architecture
not used by normal programs but potentially could
be used as temporary storage. Their main purpose is their 1 to 1
association with general purpose registers and are used in
the kernel for copying data between kernel & user address spaces.
Access register 0 ( & access register 1 on z/Architecture ( needs 64 bit
pointer ) ) is currently used by the pthread library as a pointer to
16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
normally not used by normal programs but potentially could be used as
temporary storage. These registers have a 1:1 association with general
purpose registers and are designed to be used in the so-called access
register mode to select different address spaces.
Access register 0 (and access register 1 on z/Architecture, which needs a
64 bit pointer) is currently used by the pthread library as a pointer to
the current running threads private area.
16 64 bit floating point registers (fp0-fp15 ) IEEE & HFP floating
@ -90,18 +92,19 @@ s/390 z/Architecture
6 6 Input/Output interrupt Mask
7 7 External interrupt Mask used primarily for interprocessor signalling &
clock interrupts.
7 7 External interrupt Mask used primarily for interprocessor
signalling and clock interrupts.
8-11 8-11 PSW Key used for complex memory protection mechanism not used under linux
8-11 8-11 PSW Key used for complex memory protection mechanism
(not used under linux)
12 12 1 on s/390 0 on z/Architecture
13 13 Machine Check Mask 1=enable machine check interrupts
14 14 Wait State set this to 1 to stop the processor except for interrupts & give
time to other LPARS used in CPU idle in the kernel to increase overall
usage of processor resources.
14 14 Wait State. Set this to 1 to stop the processor except for
interrupts and give time to other LPARS. Used in CPU idle in
the kernel to increase overall usage of processor resources.
15 15 Problem state ( if set to 1 certain instructions are disabled )
all linux user programs run with this bit 1
@ -165,21 +168,23 @@ s/390 z/Architecture
when loading the address with LPSWE otherwise a
specification exception occurs, LPSW is fully backward
compatible.
Prefix Page(s)
--------------
--------------
This per cpu memory area is too intimately tied to the processor not to mention.
It exists between the real addresses 0-4096 on s/390 & 0-8192 z/Architecture & is exchanged
with a 1 page on s/390 or 2 pages on z/Architecture in absolute storage by the set
prefix instruction in linux'es startup.
This page is mapped to a different prefix for each processor in an SMP configuration
( assuming the os designer is sane of course :-) ).
Bytes 0-512 ( 200 hex ) on s/390 & 0-512,4096-4544,4604-5119 currently on z/Architecture
are used by the processor itself for holding such information as exception indications &
entry points for exceptions.
Bytes after 0xc00 hex are used by linux for per processor globals on s/390 & z/Architecture
( there is a gap on z/Architecture too currently between 0xc00 & 1000 which linux uses ).
It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
z/Architecture and is exchanged with one page on s/390 or two pages on
z/Architecture in absolute storage by the set prefix instruction during Linux
startup.
This page is mapped to a different prefix for each processor in an SMP
configuration (assuming the OS designer is sane of course).
Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
z/Architecture are used by the processor itself for holding such information
as exception indications and entry points for exceptions.
Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
0x1000, too, which is used by Linux).
The closest thing to this on traditional architectures is the interrupt
vector table. This is a good thing & does simplify some of the kernel coding
however it means that we now cannot catch stray NULL pointers in the
@ -192,26 +197,26 @@ Address Spaces on Intel Linux
The traditional Intel Linux is approximately mapped as follows forgive
the ascii art.
0xFFFFFFFF 4GB Himem *****************
* *
* Kernel Space *
* *
***************** ****************
User Space Himem (typically 0xC0000000 3GB )* User Stack * * *
***************** * *
* Shared Libs * * Next Process *
***************** * to *
* * <== * Run * <==
* User Program * * *
* Data BSS * * *
* Text * * *
* Sections * * *
0x00000000 ***************** ****************
0xFFFFFFFF 4GB Himem *****************
* *
* Kernel Space *
* *
***************** ****************
User Space Himem * User Stack * * *
(typically 0xC0000000 3GB ) ***************** * *
* Shared Libs * * Next Process *
***************** * to *
* * <== * Run * <==
* User Program * * *
* Data BSS * * *
* Text * * *
* Sections * * *
0x00000000 ***************** ****************
Now it is easy to see that on Intel it is quite easy to recognise a kernel address
as being one greater than user space himem ( in this case 0xC0000000).
& addresses of less than this are the ones in the current running program on this
processor ( if an smp box ).
Now it is easy to see that on Intel it is quite easy to recognise a kernel
address as being one greater than user space himem (in this case 0xC0000000),
and addresses of less than this are the ones in the current running program on
this processor (if an smp box).
If using the virtual machine ( VM ) as a debugger it is quite difficult to
know which user process is running as the address space you are looking at
could be from any process in the run queue.
@ -247,8 +252,8 @@ Our addressing scheme is basically as follows:
Himem 0x7fffffff 2GB on s/390 ***************** ****************
currently 0x3ffffffffff (2^42)-1 * User Stack * * *
on z/Architecture. ***************** * *
* Shared Libs * * *
***************** * *
* Shared Libs * * *
***************** * *
* * * Kernel *
* User Program * * *
* Data BSS * * *
@ -301,10 +306,10 @@ Virtual Addresses on s/390 & z/Architecture
===========================================
A virtual address on s/390 is made up of 3 parts
The SX ( segment index, roughly corresponding to the PGD & PMD in linux terminology )
being bits 1-11.
The PX ( page index, corresponding to the page table entry (pte) in linux terminology )
being bits 12-19.
The SX (segment index, roughly corresponding to the PGD & PMD in Linux
terminology) being bits 1-11.
The PX (page index, corresponding to the page table entry (pte) in Linux
terminology) being bits 12-19.
The remaining bits BX (the byte index are the offset in the page )
i.e. bits 20 to 31.
@ -368,9 +373,9 @@ each processor as follows.
* ( 8K ) *
16K aligned ************************
What this means is that we don't need to dedicate any register or global variable
to point to the current running process & can retrieve it with the following
very simple construct for s/390 & one very similar for z/Architecture.
What this means is that we don't need to dedicate any register or global
variable to point to the current running process & can retrieve it with the
following very simple construct for s/390 & one very similar for z/Architecture.
static inline struct task_struct * get_current(void)
{
@ -403,8 +408,8 @@ Note: To follow stackframes requires a knowledge of C or Pascal &
limited knowledge of one assembly language.
It should be noted that there are some differences between the
s/390 & z/Architecture stack layouts as the z/Architecture stack layout didn't have
to maintain compatibility with older linkage formats.
s/390 and z/Architecture stack layouts as the z/Architecture stack layout
didn't have to maintain compatibility with older linkage formats.
Glossary:
---------
@ -440,7 +445,7 @@ The code generated by the compiler to return to the caller.
frameless-function
A frameless function in Linux for s390 & z/Architecture is one which doesn't
need more than the register save area ( 96 bytes on s/390, 160 on z/Architecture )
need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
given to it by the caller.
A frameless function never:
1) Sets up a back chain.
@ -588,8 +593,8 @@ A sample program with comments.
Comments on the function test
-----------------------------
1) It didn't need to set up a pointer to the constant pool gpr13 as it isn't used
( :-( ).
1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
used ( :-( ).
2) This is a frameless function & no stack is bought.
3) The compiler was clever enough to recognise that it could return the
value in r2 as well as use it for the passed in parameter ( :-) ).
@ -743,35 +748,34 @@ Debugging under VM
Notes
-----
Addresses & values in the VM debugger are always hex never decimal
Address ranges are of the format <HexValue1>-<HexValue2> or <HexValue1>.<HexValue2>
e.g. The address range 0x2000 to 0x3000 can be described as 2000-3000 or 2000.1000
Address ranges are of the format <HexValue1>-<HexValue2> or
<HexValue1>.<HexValue2>
For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
or 2000.1000
The VM Debugger is case insensitive.
VM's strengths are usually other debuggers weaknesses you can get at any resource
no matter how sensitive e.g. memory management resources,change address translation
in the PSW. For kernel hacking you will reap dividends if you get good at it.
VM's strengths are usually other debuggers weaknesses you can get at any
resource no matter how sensitive e.g. memory management resources, change
address translation in the PSW. For kernel hacking you will reap dividends if
you get good at it.
The VM Debugger displays operators but not operands, probably because some
of it was written when memory was expensive & the programmer was probably proud that
it fitted into 2k of memory & the programmers & didn't want to shock hardcore VM'ers by
changing the interface :-), also the debugger displays useful information on the same line &
the author of the code probably felt that it was a good idea not to go over
the 80 columns on the screen.
As some of you are probably in a panic now this isn't as unintuitive as it may seem
as the 390 instructions are easy to decode mentally & you can make a good guess at a lot
of them as all the operands are nibble ( half byte aligned ) & if you have an objdump listing
also it is quite easy to follow, if you don't have an objdump listing keep a copy of
the s/390 Reference Summary & look at between pages 2 & 7 or alternatively the
s/390 principles of operation.
The VM Debugger displays operators but not operands, and also the debugger
displays useful information on the same line as the author of the code probably
felt that it was a good idea not to go over the 80 columns on the screen.
This isn't as unintuitive as it may seem as the s/390 instructions are easy to
decode mentally and you can make a good guess at a lot of them as all the
operands are nibble (half byte aligned).
So if you have an objdump listing by hand, it is quite easy to follow, and if
you don't have an objdump listing keep a copy of the s/390 Reference Summary
or alternatively the s/390 principles of operation next to you.
e.g. even I can guess that
0001AFF8' LR 180F CC 0
is a ( load register ) lr r0,r15
Also it is very easy to tell the length of a 390 instruction from the 2 most significant
bits in the instruction ( not that this info is really useful except if you are trying to
make sense of a hexdump of code ).
Also it is very easy to tell the length of a 390 instruction from the 2 most
significant bits in the instruction (not that this info is really useful except
if you are trying to make sense of a hexdump of code).
Here is a table
Bits Instruction Length
------------------------------------------
@ -780,9 +784,6 @@ Bits Instruction Length
10 4 Bytes
11 6 Bytes
The debugger also displays other useful info on the same line such as the
addresses being operated on destination addresses of branches & condition codes.
e.g.
@ -853,8 +854,8 @@ Displaying & modifying Registers
--------------------------------
D G will display all the gprs
Adding a extra G to all the commands is necessary to access the full 64 bit
content in VM on z/Architecture obviously this isn't required for access registers
as these are still 32 bit.
content in VM on z/Architecture. Obviously this isn't required for access
registers as these are still 32 bit.
e.g. DGG instead of DG
D X will display all the control registers
D AR will display all the access registers
@ -870,10 +871,11 @@ Displaying Memory
-----------------
To display memory mapped using the current PSW's mapping try
D <range>
To make VM display a message each time it hits a particular address & continue try
To make VM display a message each time it hits a particular address and
continue try
D I<range> will disassemble/display a range of instructions.
ST addr 32 bit word will store a 32 bit aligned address
D T<range> will display the EBCDIC in an address ( if you are that way inclined )
D T<range> will display the EBCDIC in an address (if you are that way inclined)
D R<range> will display real addresses ( without DAT ) but with prefixing.
There are other complex options to display if you need to get at say home space
but are in primary space the easiest thing to do is to temporarily
@ -884,8 +886,8 @@ restore it.
Hints
-----
If you want to issue a debugger command without halting your virtual machine with the
PA1 key try prefixing the command with #CP e.g.
If you want to issue a debugger command without halting your virtual machine
with the PA1 key try prefixing the command with #CP e.g.
#cp tr i pswa 2000
also suffixing most debugger commands with RUN will cause them not
to stop just display the mnemonic at the current instruction on the console.
@ -903,9 +905,10 @@ This sends a message to your own console each time do_signal is entered.
script with breakpoints on every kernel procedure, this isn't a good idea
because there are thousands of these routines & VM can only set 255 breakpoints
at a time so you nearly had to spend as long pruning the file down as you would
entering the msg's by hand ),however, the trick might be useful for a single object file.
On linux'es 3270 emulator x3270 there is a very useful option under the file ment
Save Screens In File this is very good of keeping a copy of traces.
entering the msgs by hand), however, the trick might be useful for a single
object file. In the 3270 terminal emulator x3270 there is a very useful option
in the file menu called "Save Screen In File" - this is very good for keeping a
copy of traces.
From CMS help <command name> will give you online help on a particular command.
e.g.
@ -920,7 +923,8 @@ SET PF9 IMM B
This does a single step in VM on pressing F8.
SET PF10 ^
This sets up the ^ key.
which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed directly into some 3270 consoles.
which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed directly
into some 3270 consoles.
SET PF11 ^-
This types the starting keystrokes for a sysrq see SysRq below.
SET PF12 RETRIEVE
@ -1014,8 +1018,8 @@ Tracing Program Exceptions
--------------------------
If you get a crash which says something like
illegal operation or specification exception followed by a register dump
You can restart linux & trace these using the tr prog <range or value> trace option.
You can restart linux & trace these using the tr prog <range or value> trace
option.
The most common ones you will normally be tracing for is
@ -1057,9 +1061,10 @@ TR GOTO INITIAL
Tracing linux syscalls under VM
-------------------------------
Syscalls are implemented on Linux for S390 by the Supervisor call instruction (SVC) there 256
possibilities of these as the instruction is made up of a 0xA opcode & the second byte being
the syscall number. They are traced using the simple command.
Syscalls are implemented on Linux for S390 by the Supervisor call instruction
(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
opcode and the second byte being the syscall number. They are traced using the
simple command:
TR SVC <Optional value or range>
the syscalls are defined in linux/arch/s390/include/asm/unistd.h
e.g. to trace all file opens just do
@ -1070,12 +1075,12 @@ SMP Specific commands
---------------------
To find out how many cpus you have
Q CPUS displays all the CPU's available to your virtual machine
To find the cpu that the current cpu VM debugger commands are being directed at do
Q CPU to change the current cpu VM debugger commands are being directed at do
To find the cpu that the current cpu VM debugger commands are being directed at
do Q CPU to change the current cpu VM debugger commands are being directed at do
CPU <desired cpu no>
On a SMP guest issue a command to all CPUs try prefixing the command with cpu all.
To issue a command to a particular cpu try cpu <cpu number> e.g.
On a SMP guest issue a command to all CPUs try prefixing the command with cpu
all. To issue a command to a particular cpu try cpu <cpu number> e.g.
CPU 01 TR I R 2000.3000
If you are running on a guest with several cpus & you have a IO related problem
& cannot follow the flow of code but you know it isn't smp related.
@ -1101,10 +1106,10 @@ D TX0.100
Alternatively
=============
Under older VM debuggers ( I love EBDIC too ) you can use this little program I wrote which
will convert a command line of hex digits to ascii text which can be compiled under linux &
you can copy the hex digits from your x3270 terminal to your xterm if you are debugging
from a linuxbox.
Under older VM debuggers (I love EBDIC too) you can use following little
program which converts a command line of hex digits to ascii text. It can be
compiled under linux and you can copy the hex digits from your x3270 terminal
to your xterm if you are debugging from a linuxbox.
This is quite useful when looking at a parameter passed in as a text string
under VM ( unless you are good at decoding ASCII in your head ).
@ -1114,14 +1119,14 @@ TR SVC 5
We have stopped at a breakpoint
000151B0' SVC 0A05 -> 0001909A' CC 0
D 20.8 to check the SVC old psw in the prefix area & see was it from userspace
( for the layout of the prefix area consult P18 of the s/390 390 Reference Summary
if you have it available ).
D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
(for the layout of the prefix area consult the "Fixed Storage Locations"
chapter of the s/390 Reference Summary if you have it available).
V00000020 070C2000 800151B2
The problem state bit wasn't set & it's also too early in the boot sequence
for it to be a userspace SVC if it was we would have to temporarily switch the
psw to user space addressing so we could get at the first parameter of the open in
gpr2.
psw to user space addressing so we could get at the first parameter of the open
in gpr2.
Next do a
D G2
GPR 2 = 00014CB4
@ -1208,9 +1213,9 @@ Here are the tricks I use 9 out of 10 times it works pretty well,
When your backchain reaches a dead end
--------------------------------------
This can happen when an exception happens in the kernel & the kernel is entered twice
if you reach the NULL pointer at the end of the back chain you should be
able to sniff further back if you follow the following tricks.
This can happen when an exception happens in the kernel and the kernel is
entered twice. If you reach the NULL pointer at the end of the back chain you
should be able to sniff further back if you follow the following tricks.
1) A kernel address should be easy to recognise since it is in
primary space & the problem state bit isn't set & also
The Hi bit of the address is set.
@ -1260,8 +1265,8 @@ V000FFFD0 00010400 80010802 8001085A 000FFFA0
our 3rd return address is 8001085A
as the 04B52002 looks suspiciously like rubbish it is fair to assume that the kernel entry routines
for the sake of optimisation don't set up a backchain.
as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
kernel entry routines for the sake of optimisation don't set up a backchain.
now look at System.map to see if the addresses make any sense.
@ -1289,67 +1294,75 @@ Congrats you've done your first backchain.
s/390 & z/Architecture IO Overview
==================================
I am not going to give a course in 390 IO architecture as this would take me quite a
while & I'm no expert. Instead I'll give a 390 IO architecture summary for Dummies if you have
the s/390 principles of operation available read this instead. If nothing else you may find a few
useful keywords in here & be able to use them on a web search engine like altavista to find
more useful information.
I am not going to give a course in 390 IO architecture as this would take me
quite a while and I'm no expert. Instead I'll give a 390 IO architecture
summary for Dummies. If you have the s/390 principles of operation available
read this instead. If nothing else you may find a few useful keywords in here
and be able to use them on a web search engine to find more useful information.
Unlike other bus architectures modern 390 systems do their IO using mostly
fibre optics & devices such as tapes & disks can be shared between several mainframes,
also S390 can support up to 65536 devices while a high end PC based system might be choking
with around 64. Here is some of the common IO terminology
fibre optics and devices such as tapes and disks can be shared between several
mainframes. Also S390 can support up to 65536 devices while a high end PC based
system might be choking with around 64.
Here is some of the common IO terminology:
Subchannel:
This is the logical number most IO commands use to talk to an IO device there can be up to
0x10000 (65536) of these in a configuration typically there is a few hundred. Under VM
for simplicity they are allocated contiguously, however on the native hardware they are not
they typically stay consistent between boots provided no new hardware is inserted or removed.
Under Linux for 390 we use these as IRQ's & also when issuing an IO command (CLEAR SUBCHANNEL,
HALT SUBCHANNEL,MODIFY SUBCHANNEL,RESUME SUBCHANNEL,START SUBCHANNEL,STORE SUBCHANNEL &
TEST SUBCHANNEL ) we use this as the ID of the device we wish to talk to, the most
important of these instructions are START SUBCHANNEL ( to start IO ), TEST SUBCHANNEL ( to check
whether the IO completed successfully ), & HALT SUBCHANNEL ( to kill IO ), a subchannel
can have up to 8 channel paths to a device this offers redundancy if one is not available.
This is the logical number most IO commands use to talk to an IO device. There
can be up to 0x10000 (65536) of these in a configuration, typically there are a
few hundred. Under VM for simplicity they are allocated contiguously, however
on the native hardware they are not. They typically stay consistent between
boots provided no new hardware is inserted or removed.
Under Linux for s390 we use these as IRQ's and also when issuing an IO command
(CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
of the device we wish to talk to. The most important of these instructions are
START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
up to 8 channel paths to a device, this offers redundancy if one is not
available.
Device Number:
This number remains static & Is closely tied to the hardware, there are 65536 of these
also they are made up of a CHPID ( Channel Path ID, the most significant 8 bits )
& another lsb 8 bits. These remain static even if more devices are inserted or removed
from the hardware, there is a 1 to 1 mapping between Subchannels & Device Numbers provided
devices aren't inserted or removed.
This number remains static and is closely tied to the hardware. There are 65536
of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
another lsb 8 bits. These remain static even if more devices are inserted or
removed from the hardware. There is a 1 to 1 mapping between subchannels and
device numbers, provided devices aren't inserted or removed.
Channel Control Words:
CCWS are linked lists of instructions initially pointed to by an operation request block (ORB),
which is initially given to Start Subchannel (SSCH) command along with the subchannel number
for the IO subsystem to process while the CPU continues executing normal code.
These come in two flavours, Format 0 ( 24 bit for backward )
compatibility & Format 1 ( 31 bit ). These are typically used to issue read & write
( & many other instructions ) they consist of a length field & an absolute address field.
For each IO typically get 1 or 2 interrupts one for channel end ( primary status ) when the
channel is idle & the second for device end ( secondary status ) sometimes you get both
concurrently, you check how the IO went on by issuing a TEST SUBCHANNEL at each interrupt,
from which you receive an Interruption response block (IRB). If you get channel & device end
status in the IRB without channel checks etc. your IO probably went okay. If you didn't you
probably need a doctor to examine the IRB & extended status word etc.
CCWs are linked lists of instructions initially pointed to by an operation
request block (ORB), which is initially given to Start Subchannel (SSCH)
command along with the subchannel number for the IO subsystem to process
while the CPU continues executing normal code.
CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
Format 1 (31 bit). These are typically used to issue read and write (and many
other) instructions. They consist of a length field and an absolute address
field.
Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
when the channel is idle, and the second for device end (secondary status).
Sometimes you get both concurrently. You check how the IO went on by issuing a
TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
response block (IRB). If you get channel and device end status in the IRB
without channel checks etc. your IO probably went okay. If you didn't you
probably need to examine the IRB, extended status word etc.
If an error occurs, more sophisticated control units have a facility known as
concurrent sense this means that if an error occurs Extended sense information will
be presented in the Extended status word in the IRB if not you have to issue a
subsequent SENSE CCW command after the test subchannel.
concurrent sense. This means that if an error occurs Extended sense information
will be presented in the Extended status word in the IRB. If not you have to
issue a subsequent SENSE CCW command after the test subchannel.
TPI( Test pending interrupt) can also be used for polled IO but in multitasking multiprocessor
systems it isn't recommended except for checking special cases ( i.e. non looping checks for
pending IO etc. ).
TPI (Test pending interrupt) can also be used for polled IO, but in
multitasking multiprocessor systems it isn't recommended except for
checking special cases (i.e. non looping checks for pending IO etc.).
Store Subchannel & Modify Subchannel can be used to examine & modify operating characteristics
of a subchannel ( e.g. channel paths ).
Store Subchannel and Modify Subchannel can be used to examine and modify
operating characteristics of a subchannel (e.g. channel paths).
Other IO related Terms:
Sysplex: S390's Clustering Technology
QDIO: S390's new high speed IO architecture to support devices such as gigabit ethernet,
this architecture is also designed to be forward compatible with up & coming 64 bit machines.
QDIO: S390's new high speed IO architecture to support devices such as gigabit
ethernet, this architecture is also designed to be forward compatible with
upcoming 64 bit machines.
General Concepts
@ -1406,37 +1419,40 @@ sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
Interface (OEMI).
This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
& control lines on the "Tag" cable. These can operate in byte multiplex mode for
sharing between several slow devices or burst mode & monopolize the channel for the
whole burst. Up to 256 devices can be addressed on one of these cables. These cables are
about one inch in diameter. The maximum unextended length supported by these cables is
125 Meters but this can be extended up to 2km with a fibre optic channel extended
such as a 3044. The maximum burst speed supported is 4.5 megabytes per second however
some really old processors support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
and control lines on the "Tag" cable. These can operate in byte multiplex mode
for sharing between several slow devices or burst mode and monopolize the
channel for the whole burst. Up to 256 devices can be addressed on one of these
cables. These cables are about one inch in diameter. The maximum unextended
length supported by these cables is 125 Meters but this can be extended up to
2km with a fibre optic channel extended such as a 3044. The maximum burst speed
supported is 4.5 megabytes per second. However, some really old processors
support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
One of these paths can be daisy chained to up to 8 control units.
ESCON if fibre optic it is also called FICON
Was introduced by IBM in 1990. Has 2 fibre optic cables & uses either leds or lasers
for communication at a signaling rate of up to 200 megabits/sec. As 10bits are transferred
for every 8 bits info this drops to 160 megabits/sec & to 18.6 Megabytes/sec once
control info & CRC are added. ESCON only operates in burst mode.
Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
lasers for communication at a signaling rate of up to 200 megabits/sec. As
10bits are transferred for every 8 bits info this drops to 160 megabits/sec
and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
operates in burst mode.
ESCONs typical max cable length is 3km for the led version & 20km for the laser version
known as XDF ( extended distance facility ). This can be further extended by using an
ESCON director which triples the above mentioned ranges. Unlike Bus & Tag as ESCON is
serial it uses a packet switching architecture the standard Bus & Tag control protocol
is however present within the packets. Up to 256 devices can be attached to each control
unit that uses one of these interfaces.
ESCONs typical max cable length is 3km for the led version and 20km for the
laser version known as XDF (extended distance facility). This can be further
extended by using an ESCON director which triples the above mentioned ranges.
Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
the standard Bus & Tag control protocol is however present within the packets.
Up to 256 devices can be attached to each control unit that uses one of these
interfaces.
Common 390 Devices include:
Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
Consoles 3270 & 3215 ( a teletype emulated under linux for a line mode console ).
Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
DASD's direct access storage devices ( otherwise known as hard disks ).
Tape Drives.
CTC ( Channel to Channel Adapters ),
ESCON or Parallel Cables used as a very high speed serial link
between 2 machines. We use 2 cables under linux to do a bi-directional serial link.
between 2 machines.
Debugging IO on s/390 & z/Architecture under VM
@ -1475,9 +1491,9 @@ or the halt subchannels
or TR HSCH 7C08-7C09
MSCH's ,STSCH's I think you can guess the rest
Ingo's favourite trick is tracing all the IO's & CCWS & spooling them into the reader of another
VM guest so he can ftp the logfile back to his own machine.I'll do a small bit of this & give you
a look at the output.
A good trick is tracing all the IO's and CCWS and spooling them into the reader
of another VM guest so he can ftp the logfile back to his own machine. I'll do
a small bit of this and give you a look at the output.
1) Spool stdout to VM reader
SP PRT TO (another vm guest ) or * for the local vm guest
@ -1593,8 +1609,8 @@ undisplay : undo's display's
info breakpoints: shows all current breakpoints
info stack: shows stack back trace ( if this doesn't work too well, I'll show you the
stacktrace by hand below ).
info stack: shows stack back trace (if this doesn't work too well, I'll show
you the stacktrace by hand below).
info locals: displays local variables.
@ -1619,7 +1635,8 @@ next: like step except this will not step into subroutines
stepi: steps a single machine code instruction.
e.g. stepi 100
nexti: steps a single machine code instruction but will not step into subroutines.
nexti: steps a single machine code instruction but will not step into
subroutines.
finish: will run until exit of the current routine
@ -1721,7 +1738,8 @@ e.g.
outputs:
$1 = 11
You might now be thinking that the line above didn't work, something extra had to be done.
You might now be thinking that the line above didn't work, something extra had
to be done.
(gdb) call fflush(stdout)
hello world$2 = 0
As an aside the debugger also calls malloc & free under the hood
@ -1804,26 +1822,17 @@ man gdb or info gdb.
core dumps
----------
What a core dump ?,
A core dump is a file generated by the kernel ( if allowed ) which contains the registers,
& all active pages of the program which has crashed.
From this file gdb will allow you to look at the registers & stack trace & memory of the
program as if it just crashed on your system, it is usually called core & created in the
current working directory.
This is very useful in that a customer can mail a core dump to a technical support department
& the technical support department can reconstruct what happened.
Provided they have an identical copy of this program with debugging symbols compiled in &
the source base of this build is available.
In short it is far more useful than something like a crash log could ever hope to be.
In theory all that is missing to restart a core dumped program is a kernel patch which
will do the following.
1) Make a new kernel task structure
2) Reload all the dumped pages back into the kernel's memory management structures.
3) Do the required clock fixups
4) Get all files & network connections for the process back into an identical state ( really difficult ).
5) A few more difficult things I haven't thought of.
A core dump is a file generated by the kernel (if allowed) which contains the
registers and all active pages of the program which has crashed.
From this file gdb will allow you to look at the registers, stack trace and
memory of the program as if it just crashed on your system. It is usually
called core and created in the current working directory.
This is very useful in that a customer can mail a core dump to a technical
support department and the technical support department can reconstruct what
happened. Provided they have an identical copy of this program with debugging
symbols compiled in and the source base of this build is available.
In short it is far more useful than something like a crash log could ever hope
to be.
Why have I never seen one ?.
Probably because you haven't used the command
@ -1868,7 +1877,7 @@ Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
#3 0x5167e6 in readline_internal_char () at readline.c:454
#4 0x5168ee in readline_internal_charloop () at readline.c:507
#5 0x51692c in readline_internal () at readline.c:521
#6 0x5164fe in readline (prompt=0x7ffff810 "\177ÿøx\177ÿ÷Ø\177ÿøxÀ")
#6 0x5164fe in readline (prompt=0x7ffff810)
at readline.c:349
#7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
annotation_suffix=0x4d6b44 "prompt") at top.c:2091
@ -1929,8 +1938,8 @@ cat /proc/sys/net/ipv4/ip_forward
On my machine now outputs
1
IP forwarding is on.
There is a lot of useful info in here best found by going in & having a look around,
so I'll take you through some entries I consider important.
There is a lot of useful info in here best found by going in and having a look
around, so I'll take you through some entries I consider important.
All the processes running on the machine have their own entry defined by
/proc/<pid>
@ -2060,7 +2069,8 @@ if the device doesn't say up
try
/etc/rc.d/init.d/network start
( this starts the network stack & hopefully calls ifconfig tr0 up ).
ifconfig looks at the output of /proc/net/dev & presents it in a more presentable form
ifconfig looks at the output of /proc/net/dev and presents it in a more
presentable form.
Now ping the device from a machine in the same subnet.
if the RX packets count & TX packets counts don't increment you probably
have problems.