KVM: PPC: E500: Split host and guest MMU parts

This patch splits the file e500_tlb.c into e500_mmu.c (guest TLB handling)
and e500_mmu_host.c (host TLB handling).

The main benefit of this split is readability and maintainability. It's
just a lot harder to write dirty code :).

Signed-off-by: Alexander Graf <agraf@suse.de>
This commit is contained in:
Alexander Graf 2013-01-11 15:22:45 +01:00
parent 9d98b3ff94
commit b71c9e2fb7
4 changed files with 704 additions and 624 deletions

View File

@ -10,7 +10,8 @@ common-objs-y = $(addprefix ../../../virt/kvm/, kvm_main.o coalesced_mmio.o \
eventfd.o)
CFLAGS_44x_tlb.o := -I.
CFLAGS_e500_tlb.o := -I.
CFLAGS_e500_mmu.o := -I.
CFLAGS_e500_mmu_host.o := -I.
CFLAGS_emulate.o := -I.
common-objs-y += powerpc.o emulate.o
@ -35,7 +36,8 @@ kvm-e500-objs := \
booke_emulate.o \
booke_interrupts.o \
e500.o \
e500_tlb.o \
e500_mmu.o \
e500_mmu_host.o \
e500_emulate.o
kvm-objs-$(CONFIG_KVM_E500V2) := $(kvm-e500-objs)
@ -45,7 +47,8 @@ kvm-e500mc-objs := \
booke_emulate.o \
bookehv_interrupts.o \
e500mc.o \
e500_tlb.o \
e500_mmu.o \
e500_mmu_host.o \
e500_emulate.o
kvm-objs-$(CONFIG_KVM_E500MC) := $(kvm-e500mc-objs)

View File

@ -1,10 +1,11 @@
/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
* Alexander Graf, agraf@suse.de
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
@ -33,10 +34,7 @@
#include "e500.h"
#include "trace.h"
#include "timing.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
#include "e500_mmu_host.h"
static inline unsigned int gtlb0_get_next_victim(
struct kvmppc_vcpu_e500 *vcpu_e500)
@ -50,197 +48,6 @@ static inline unsigned int gtlb0_get_next_victim(
return victim;
}
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
{
#ifdef CONFIG_SMP
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
#else
return mas2 & MAS2_ATTRIB_MASK;
#endif
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, stlbe->mas8);
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)));
}
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
#ifdef CONFIG_KVM_E500V2
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
preempt_enable();
}
#endif
static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
/* Don't bother with unmapped entries */
if (!(ref->flags & E500_TLB_VALID))
return;
if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
local_irq_restore(flags);
return;
}
/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
/* Mark the TLB as not backed by the host anymore */
ref->flags &= ~E500_TLB_VALID;
}
static int tlb0_set_base(gva_t addr, int sets, int ways)
{
int set_base;
@ -319,70 +126,6 @@ static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
return -1;
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
pfn_t pfn)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
if (tlbe_is_writable(gtlbe))
kvm_set_pfn_dirty(pfn);
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
ref->flags = 0;
}
}
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel = 0;
int i;
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int stlbsel = 1;
int i;
kvmppc_e500_tlbil_all(vcpu_e500);
for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->tlb_refs[stlbsel][i];
kvmppc_e500_ref_release(ref);
}
clear_tlb_privs(vcpu_e500);
}
void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
clear_tlb_refs(vcpu_e500);
clear_tlb1_bitmap(vcpu_e500);
}
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
unsigned int eaddr, int as)
{
@ -408,234 +151,6 @@ static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
| (as ? MAS6_SAS : 0);
}
/* TID must be supplied by the caller */
static inline void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) |
e500_shadow_mas2_attrib(gtlbe->mas2, pr);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
#ifdef CONFIG_KVM_BOOKE_HV
stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
#endif
}
static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn = 0; /* silence GCC warning */
unsigned long hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end, tsize_pages;
tsize_pages = 1 << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_noslot_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
return -EINVAL;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
/* Drop old ref and setup new one. */
kvmppc_e500_ref_release(ref);
kvmppc_e500_ref_setup(ref, gtlbe, pfn);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
/* Drop refcount on page, so that mmu notifiers can clear it */
kvm_release_pfn_clean(pfn);
return 0;
}
/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
int stlbsel = 0;
int sesel = 0;
int r;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
if (r)
return r;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* XXX for both one-one and one-to-many , for now use TLB1 */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref;
unsigned int sesel;
int r;
int stlbsel = 1;
sesel = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
ref = &vcpu_e500->tlb_refs[1][sesel];
r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
ref);
if (r)
return r;
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel];
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
}
vcpu_e500->h2g_tlb1_rmap[sesel] = esel;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int size = vcpu_e500->gtlb_params[1].entries;
@ -1020,85 +535,6 @@ void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
/* Triggers after clear_tlb_refs or on initial mapping */
if (!(priv->ref.flags & E500_TLB_VALID)) {
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
} else {
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
}
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
esel);
break;
}
default:
BUG();
break;
}
}
/************* MMU Notifiers *************/
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
trace_kvm_unmap_hva(hva);
/*
* Flush all shadow tlb entries everywhere. This is slow, but
* we are 100% sure that we catch the to be unmapped page
*/
kvm_flush_remote_tlbs(kvm);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* kvm_unmap_hva flushes everything anyways */
kvm_unmap_hva(kvm, start);
return 0;
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
/* The page will get remapped properly on its next fault */
kvm_unmap_hva(kvm, hva);
}
/*****************************************/
static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
@ -1309,37 +745,8 @@ int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
if (e500_mmu_host_init(vcpu_e500))
goto err;
vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
@ -1358,18 +765,6 @@ int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
vcpu_e500->tlb_refs[0] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[0])
goto err;
vcpu_e500->tlb_refs[1] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[1])
goto err;
vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[0].entries,
GFP_KERNEL);
@ -1388,12 +783,6 @@ int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
if (!vcpu_e500->g2h_tlb1_map)
goto err;
vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
goto err;
/* Init TLB configuration register */
vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
@ -1412,15 +801,11 @@ int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
err:
free_gtlb(vcpu_e500);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
return -1;
}
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
free_gtlb(vcpu_e500);
kfree(vcpu_e500->h2g_tlb1_rmap);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
e500_mmu_host_uninit(vcpu_e500);
}

View File

@ -0,0 +1,672 @@
/*
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
* Alexander Graf, agraf@suse.de
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include "e500.h"
#include "trace.h"
#include "timing.h"
#include "e500_mmu_host.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
{
#ifdef CONFIG_SMP
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
#else
return mas2 & MAS2_ATTRIB_MASK;
#endif
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, stlbe->mas8);
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)));
}
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
#ifdef CONFIG_KVM_E500V2
/* XXX should be a hook in the gva2hpa translation */
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
preempt_enable();
}
#endif
void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
/* Don't bother with unmapped entries */
if (!(ref->flags & E500_TLB_VALID))
return;
if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
local_irq_restore(flags);
return;
}
/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
/* Mark the TLB as not backed by the host anymore */
ref->flags &= ~E500_TLB_VALID;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
pfn_t pfn)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
if (tlbe_is_writable(gtlbe))
kvm_set_pfn_dirty(pfn);
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
ref->flags = 0;
}
}
void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel = 0;
int i;
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int stlbsel = 1;
int i;
kvmppc_e500_tlbil_all(vcpu_e500);
for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->tlb_refs[stlbsel][i];
kvmppc_e500_ref_release(ref);
}
clear_tlb_privs(vcpu_e500);
}
void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
clear_tlb_refs(vcpu_e500);
clear_tlb1_bitmap(vcpu_e500);
}
/* TID must be supplied by the caller */
static void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) |
e500_shadow_mas2_attrib(gtlbe->mas2, pr);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
#ifdef CONFIG_KVM_BOOKE_HV
stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
#endif
}
static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn = 0; /* silence GCC warning */
unsigned long hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end, tsize_pages;
tsize_pages = 1 << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_noslot_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
return -EINVAL;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
/* Drop old ref and setup new one. */
kvmppc_e500_ref_release(ref);
kvmppc_e500_ref_setup(ref, gtlbe, pfn);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
/* Drop refcount on page, so that mmu notifiers can clear it */
kvm_release_pfn_clean(pfn);
return 0;
}
/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
int stlbsel = 0;
int sesel = 0;
int r;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
if (r)
return r;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* XXX for both one-one and one-to-many , for now use TLB1 */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref;
unsigned int sesel;
int r;
int stlbsel = 1;
sesel = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
ref = &vcpu_e500->tlb_refs[1][sesel];
r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
ref);
if (r)
return r;
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel];
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
}
vcpu_e500->h2g_tlb1_rmap[sesel] = esel;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
/* Triggers after clear_tlb_refs or on initial mapping */
if (!(priv->ref.flags & E500_TLB_VALID)) {
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
} else {
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
}
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
esel);
break;
}
default:
BUG();
break;
}
}
/************* MMU Notifiers *************/
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
trace_kvm_unmap_hva(hva);
/*
* Flush all shadow tlb entries everywhere. This is slow, but
* we are 100% sure that we catch the to be unmapped page
*/
kvm_flush_remote_tlbs(kvm);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* kvm_unmap_hva flushes everything anyways */
kvm_unmap_hva(kvm, start);
return 0;
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
/* The page will get remapped properly on its next fault */
kvm_unmap_hva(kvm, hva);
}
/*****************************************/
int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
vcpu_e500->tlb_refs[0] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[0])
goto err;
vcpu_e500->tlb_refs[1] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[1])
goto err;
vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
goto err;
return 0;
err:
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
return -EINVAL;
}
void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->h2g_tlb1_rmap);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
}

View File

@ -0,0 +1,20 @@
/*
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#ifndef KVM_E500_MMU_HOST_H
#define KVM_E500_MMU_HOST_H
void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int esel);
void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500);
void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500);
int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500);
void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500);
#endif /* KVM_E500_MMU_HOST_H */