Merge branch 'master' into upstream
This commit is contained in:
commit
b5ed7639c9
|
@ -19,6 +19,7 @@ Contents:
|
|||
- Control dependencies.
|
||||
- SMP barrier pairing.
|
||||
- Examples of memory barrier sequences.
|
||||
- Read memory barriers vs load speculation.
|
||||
|
||||
(*) Explicit kernel barriers.
|
||||
|
||||
|
@ -248,7 +249,7 @@ And there are a number of things that _must_ or _must_not_ be assumed:
|
|||
we may get either of:
|
||||
|
||||
STORE *A = X; Y = LOAD *A;
|
||||
STORE *A = Y;
|
||||
STORE *A = Y = X;
|
||||
|
||||
|
||||
=========================
|
||||
|
@ -344,9 +345,12 @@ Memory barriers come in four basic varieties:
|
|||
|
||||
(4) General memory barriers.
|
||||
|
||||
A general memory barrier is a combination of both a read memory barrier
|
||||
and a write memory barrier. It is a partial ordering over both loads and
|
||||
stores.
|
||||
A general memory barrier gives a guarantee that all the LOAD and STORE
|
||||
operations specified before the barrier will appear to happen before all
|
||||
the LOAD and STORE operations specified after the barrier with respect to
|
||||
the other components of the system.
|
||||
|
||||
A general memory barrier is a partial ordering over both loads and stores.
|
||||
|
||||
General memory barriers imply both read and write memory barriers, and so
|
||||
can substitute for either.
|
||||
|
@ -546,9 +550,9 @@ write barrier, though, again, a general barrier is viable:
|
|||
=============== ===============
|
||||
a = 1;
|
||||
<write barrier>
|
||||
b = 2; x = a;
|
||||
b = 2; x = b;
|
||||
<read barrier>
|
||||
y = b;
|
||||
y = a;
|
||||
|
||||
Or:
|
||||
|
||||
|
@ -563,6 +567,18 @@ Or:
|
|||
Basically, the read barrier always has to be there, even though it can be of
|
||||
the "weaker" type.
|
||||
|
||||
[!] Note that the stores before the write barrier would normally be expected to
|
||||
match the loads after the read barrier or data dependency barrier, and vice
|
||||
versa:
|
||||
|
||||
CPU 1 CPU 2
|
||||
=============== ===============
|
||||
a = 1; }---- --->{ v = c
|
||||
b = 2; } \ / { w = d
|
||||
<write barrier> \ <read barrier>
|
||||
c = 3; } / \ { x = a;
|
||||
d = 4; }---- --->{ y = b;
|
||||
|
||||
|
||||
EXAMPLES OF MEMORY BARRIER SEQUENCES
|
||||
------------------------------------
|
||||
|
@ -600,8 +616,8 @@ STORE B, STORE C } all occuring before the unordered set of { STORE D, STORE E
|
|||
| | +------+
|
||||
+-------+ : :
|
||||
|
|
||||
| Sequence in which stores committed to memory system
|
||||
| by CPU 1
|
||||
| Sequence in which stores are committed to the
|
||||
| memory system by CPU 1
|
||||
V
|
||||
|
||||
|
||||
|
@ -683,14 +699,12 @@ then the following will occur:
|
|||
| : : | |
|
||||
| : : | CPU 2 |
|
||||
| +-------+ | |
|
||||
\ | X->9 |------>| |
|
||||
\ +-------+ | |
|
||||
----->| B->2 | | |
|
||||
+-------+ | |
|
||||
Makes sure all effects ---> ddddddddddddddddd | |
|
||||
prior to the store of C +-------+ | |
|
||||
are perceptible to | B->2 |------>| |
|
||||
successive loads +-------+ | |
|
||||
| | X->9 |------>| |
|
||||
| +-------+ | |
|
||||
Makes sure all effects ---> \ ddddddddddddddddd | |
|
||||
prior to the store of C \ +-------+ | |
|
||||
are perceptible to ----->| B->2 |------>| |
|
||||
subsequent loads +-------+ | |
|
||||
: : +-------+
|
||||
|
||||
|
||||
|
@ -699,73 +713,239 @@ following sequence of events:
|
|||
|
||||
CPU 1 CPU 2
|
||||
======================= =======================
|
||||
{ A = 0, B = 9 }
|
||||
STORE A=1
|
||||
STORE B=2
|
||||
STORE C=3
|
||||
<write barrier>
|
||||
STORE D=4
|
||||
STORE E=5
|
||||
LOAD A
|
||||
STORE B=2
|
||||
LOAD B
|
||||
LOAD C
|
||||
LOAD D
|
||||
LOAD E
|
||||
LOAD A
|
||||
|
||||
Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
|
||||
some effectively random order, despite the write barrier issued by CPU 1:
|
||||
|
||||
+-------+ : :
|
||||
| | +------+
|
||||
| |------>| C=3 | }
|
||||
| | : +------+ }
|
||||
| | : | A=1 | }
|
||||
| | : +------+ }
|
||||
| CPU 1 | : | B=2 | }---
|
||||
| | +------+ } \
|
||||
| | wwwwwwwwwwwww} \
|
||||
| | +------+ } \ : : +-------+
|
||||
| | : | E=5 | } \ +-------+ | |
|
||||
| | : +------+ } \ { | C->3 |------>| |
|
||||
| |------>| D=4 | } \ { +-------+ : | |
|
||||
| | +------+ \ { | E->5 | : | |
|
||||
+-------+ : : \ { +-------+ : | |
|
||||
Transfer -->{ | A->1 | : | CPU 2 |
|
||||
from CPU 1 { +-------+ : | |
|
||||
to CPU 2 { | D->4 | : | |
|
||||
{ +-------+ : | |
|
||||
{ | B->2 |------>| |
|
||||
+-------+ | |
|
||||
: : +-------+
|
||||
+-------+ : : : :
|
||||
| | +------+ +-------+
|
||||
| |------>| A=1 |------ --->| A->0 |
|
||||
| | +------+ \ +-------+
|
||||
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
|
||||
| | +------+ | +-------+
|
||||
| |------>| B=2 |--- | : :
|
||||
| | +------+ \ | : : +-------+
|
||||
+-------+ : : \ | +-------+ | |
|
||||
---------->| B->2 |------>| |
|
||||
| +-------+ | CPU 2 |
|
||||
| | A->0 |------>| |
|
||||
| +-------+ | |
|
||||
| : : +-------+
|
||||
\ : :
|
||||
\ +-------+
|
||||
---->| A->1 |
|
||||
+-------+
|
||||
: :
|
||||
|
||||
|
||||
If, however, a read barrier were to be placed between the load of C and the
|
||||
load of D on CPU 2, then the partial ordering imposed by CPU 1 will be
|
||||
perceived correctly by CPU 2.
|
||||
If, however, a read barrier were to be placed between the load of E and the
|
||||
load of A on CPU 2:
|
||||
|
||||
+-------+ : :
|
||||
| | +------+
|
||||
| |------>| C=3 | }
|
||||
| | : +------+ }
|
||||
| | : | A=1 | }---
|
||||
| | : +------+ } \
|
||||
| CPU 1 | : | B=2 | } \
|
||||
| | +------+ \
|
||||
| | wwwwwwwwwwwwwwww \
|
||||
| | +------+ \ : : +-------+
|
||||
| | : | E=5 | } \ +-------+ | |
|
||||
| | : +------+ }--- \ { | C->3 |------>| |
|
||||
| |------>| D=4 | } \ \ { +-------+ : | |
|
||||
| | +------+ \ -->{ | B->2 | : | |
|
||||
+-------+ : : \ { +-------+ : | |
|
||||
\ { | A->1 | : | CPU 2 |
|
||||
\ +-------+ | |
|
||||
At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
|
||||
barrier causes all effects \ +-------+ | |
|
||||
prior to the storage of C \ { | E->5 | : | |
|
||||
to be perceptible to CPU 2 -->{ +-------+ : | |
|
||||
{ | D->4 |------>| |
|
||||
+-------+ | |
|
||||
: : +-------+
|
||||
CPU 1 CPU 2
|
||||
======================= =======================
|
||||
{ A = 0, B = 9 }
|
||||
STORE A=1
|
||||
<write barrier>
|
||||
STORE B=2
|
||||
LOAD B
|
||||
<read barrier>
|
||||
LOAD A
|
||||
|
||||
then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
|
||||
2:
|
||||
|
||||
+-------+ : : : :
|
||||
| | +------+ +-------+
|
||||
| |------>| A=1 |------ --->| A->0 |
|
||||
| | +------+ \ +-------+
|
||||
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
|
||||
| | +------+ | +-------+
|
||||
| |------>| B=2 |--- | : :
|
||||
| | +------+ \ | : : +-------+
|
||||
+-------+ : : \ | +-------+ | |
|
||||
---------->| B->2 |------>| |
|
||||
| +-------+ | CPU 2 |
|
||||
| : : | |
|
||||
| : : | |
|
||||
At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
|
||||
barrier causes all effects \ +-------+ | |
|
||||
prior to the storage of B ---->| A->1 |------>| |
|
||||
to be perceptible to CPU 2 +-------+ | |
|
||||
: : +-------+
|
||||
|
||||
|
||||
To illustrate this more completely, consider what could happen if the code
|
||||
contained a load of A either side of the read barrier:
|
||||
|
||||
CPU 1 CPU 2
|
||||
======================= =======================
|
||||
{ A = 0, B = 9 }
|
||||
STORE A=1
|
||||
<write barrier>
|
||||
STORE B=2
|
||||
LOAD B
|
||||
LOAD A [first load of A]
|
||||
<read barrier>
|
||||
LOAD A [second load of A]
|
||||
|
||||
Even though the two loads of A both occur after the load of B, they may both
|
||||
come up with different values:
|
||||
|
||||
+-------+ : : : :
|
||||
| | +------+ +-------+
|
||||
| |------>| A=1 |------ --->| A->0 |
|
||||
| | +------+ \ +-------+
|
||||
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
|
||||
| | +------+ | +-------+
|
||||
| |------>| B=2 |--- | : :
|
||||
| | +------+ \ | : : +-------+
|
||||
+-------+ : : \ | +-------+ | |
|
||||
---------->| B->2 |------>| |
|
||||
| +-------+ | CPU 2 |
|
||||
| : : | |
|
||||
| : : | |
|
||||
| +-------+ | |
|
||||
| | A->0 |------>| 1st |
|
||||
| +-------+ | |
|
||||
At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
|
||||
barrier causes all effects \ +-------+ | |
|
||||
prior to the storage of B ---->| A->1 |------>| 2nd |
|
||||
to be perceptible to CPU 2 +-------+ | |
|
||||
: : +-------+
|
||||
|
||||
|
||||
But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
|
||||
before the read barrier completes anyway:
|
||||
|
||||
+-------+ : : : :
|
||||
| | +------+ +-------+
|
||||
| |------>| A=1 |------ --->| A->0 |
|
||||
| | +------+ \ +-------+
|
||||
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
|
||||
| | +------+ | +-------+
|
||||
| |------>| B=2 |--- | : :
|
||||
| | +------+ \ | : : +-------+
|
||||
+-------+ : : \ | +-------+ | |
|
||||
---------->| B->2 |------>| |
|
||||
| +-------+ | CPU 2 |
|
||||
| : : | |
|
||||
\ : : | |
|
||||
\ +-------+ | |
|
||||
---->| A->1 |------>| 1st |
|
||||
+-------+ | |
|
||||
rrrrrrrrrrrrrrrrr | |
|
||||
+-------+ | |
|
||||
| A->1 |------>| 2nd |
|
||||
+-------+ | |
|
||||
: : +-------+
|
||||
|
||||
|
||||
The guarantee is that the second load will always come up with A == 1 if the
|
||||
load of B came up with B == 2. No such guarantee exists for the first load of
|
||||
A; that may come up with either A == 0 or A == 1.
|
||||
|
||||
|
||||
READ MEMORY BARRIERS VS LOAD SPECULATION
|
||||
----------------------------------------
|
||||
|
||||
Many CPUs speculate with loads: that is they see that they will need to load an
|
||||
item from memory, and they find a time where they're not using the bus for any
|
||||
other loads, and so do the load in advance - even though they haven't actually
|
||||
got to that point in the instruction execution flow yet. This permits the
|
||||
actual load instruction to potentially complete immediately because the CPU
|
||||
already has the value to hand.
|
||||
|
||||
It may turn out that the CPU didn't actually need the value - perhaps because a
|
||||
branch circumvented the load - in which case it can discard the value or just
|
||||
cache it for later use.
|
||||
|
||||
Consider:
|
||||
|
||||
CPU 1 CPU 2
|
||||
======================= =======================
|
||||
LOAD B
|
||||
DIVIDE } Divide instructions generally
|
||||
DIVIDE } take a long time to perform
|
||||
LOAD A
|
||||
|
||||
Which might appear as this:
|
||||
|
||||
: : +-------+
|
||||
+-------+ | |
|
||||
--->| B->2 |------>| |
|
||||
+-------+ | CPU 2 |
|
||||
: :DIVIDE | |
|
||||
+-------+ | |
|
||||
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
|
||||
division speculates on the +-------+ ~ | |
|
||||
LOAD of A : : ~ | |
|
||||
: :DIVIDE | |
|
||||
: : ~ | |
|
||||
Once the divisions are complete --> : : ~-->| |
|
||||
the CPU can then perform the : : | |
|
||||
LOAD with immediate effect : : +-------+
|
||||
|
||||
|
||||
Placing a read barrier or a data dependency barrier just before the second
|
||||
load:
|
||||
|
||||
CPU 1 CPU 2
|
||||
======================= =======================
|
||||
LOAD B
|
||||
DIVIDE
|
||||
DIVIDE
|
||||
<read barrier>
|
||||
LOAD A
|
||||
|
||||
will force any value speculatively obtained to be reconsidered to an extent
|
||||
dependent on the type of barrier used. If there was no change made to the
|
||||
speculated memory location, then the speculated value will just be used:
|
||||
|
||||
: : +-------+
|
||||
+-------+ | |
|
||||
--->| B->2 |------>| |
|
||||
+-------+ | CPU 2 |
|
||||
: :DIVIDE | |
|
||||
+-------+ | |
|
||||
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
|
||||
division speculates on the +-------+ ~ | |
|
||||
LOAD of A : : ~ | |
|
||||
: :DIVIDE | |
|
||||
: : ~ | |
|
||||
: : ~ | |
|
||||
rrrrrrrrrrrrrrrr~ | |
|
||||
: : ~ | |
|
||||
: : ~-->| |
|
||||
: : | |
|
||||
: : +-------+
|
||||
|
||||
|
||||
but if there was an update or an invalidation from another CPU pending, then
|
||||
the speculation will be cancelled and the value reloaded:
|
||||
|
||||
: : +-------+
|
||||
+-------+ | |
|
||||
--->| B->2 |------>| |
|
||||
+-------+ | CPU 2 |
|
||||
: :DIVIDE | |
|
||||
+-------+ | |
|
||||
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
|
||||
division speculates on the +-------+ ~ | |
|
||||
LOAD of A : : ~ | |
|
||||
: :DIVIDE | |
|
||||
: : ~ | |
|
||||
: : ~ | |
|
||||
rrrrrrrrrrrrrrrrr | |
|
||||
+-------+ | |
|
||||
The speculation is discarded ---> --->| A->1 |------>| |
|
||||
and an updated value is +-------+ | |
|
||||
retrieved : : +-------+
|
||||
|
||||
|
||||
========================
|
||||
|
@ -901,7 +1081,7 @@ IMPLICIT KERNEL MEMORY BARRIERS
|
|||
===============================
|
||||
|
||||
Some of the other functions in the linux kernel imply memory barriers, amongst
|
||||
which are locking, scheduling and memory allocation functions.
|
||||
which are locking and scheduling functions.
|
||||
|
||||
This specification is a _minimum_ guarantee; any particular architecture may
|
||||
provide more substantial guarantees, but these may not be relied upon outside
|
||||
|
@ -966,6 +1146,20 @@ equivalent to a full barrier, but a LOCK followed by an UNLOCK is not.
|
|||
barriers is that the effects instructions outside of a critical section may
|
||||
seep into the inside of the critical section.
|
||||
|
||||
A LOCK followed by an UNLOCK may not be assumed to be full memory barrier
|
||||
because it is possible for an access preceding the LOCK to happen after the
|
||||
LOCK, and an access following the UNLOCK to happen before the UNLOCK, and the
|
||||
two accesses can themselves then cross:
|
||||
|
||||
*A = a;
|
||||
LOCK
|
||||
UNLOCK
|
||||
*B = b;
|
||||
|
||||
may occur as:
|
||||
|
||||
LOCK, STORE *B, STORE *A, UNLOCK
|
||||
|
||||
Locks and semaphores may not provide any guarantee of ordering on UP compiled
|
||||
systems, and so cannot be counted on in such a situation to actually achieve
|
||||
anything at all - especially with respect to I/O accesses - unless combined
|
||||
|
@ -1016,8 +1210,6 @@ Other functions that imply barriers:
|
|||
|
||||
(*) schedule() and similar imply full memory barriers.
|
||||
|
||||
(*) Memory allocation and release functions imply full memory barriers.
|
||||
|
||||
|
||||
=================================
|
||||
INTER-CPU LOCKING BARRIER EFFECTS
|
||||
|
|
|
@ -453,7 +453,7 @@ config ALPHA_IRONGATE
|
|||
|
||||
config GENERIC_HWEIGHT
|
||||
bool
|
||||
default y if !ALPHA_EV6 && !ALPHA_EV67
|
||||
default y if !ALPHA_EV67
|
||||
|
||||
config ALPHA_AVANTI
|
||||
bool
|
||||
|
|
|
@ -111,21 +111,21 @@ static void __init ts72xx_map_io(void)
|
|||
}
|
||||
}
|
||||
|
||||
static unsigned char ts72xx_rtc_readb(unsigned long addr)
|
||||
static unsigned char ts72xx_rtc_readbyte(unsigned long addr)
|
||||
{
|
||||
__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
|
||||
return __raw_readb(TS72XX_RTC_DATA_VIRT_BASE);
|
||||
}
|
||||
|
||||
static void ts72xx_rtc_writeb(unsigned char value, unsigned long addr)
|
||||
static void ts72xx_rtc_writebyte(unsigned char value, unsigned long addr)
|
||||
{
|
||||
__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
|
||||
__raw_writeb(value, TS72XX_RTC_DATA_VIRT_BASE);
|
||||
}
|
||||
|
||||
static struct m48t86_ops ts72xx_rtc_ops = {
|
||||
.readb = ts72xx_rtc_readb,
|
||||
.writeb = ts72xx_rtc_writeb,
|
||||
.readbyte = ts72xx_rtc_readbyte,
|
||||
.writebyte = ts72xx_rtc_writebyte,
|
||||
};
|
||||
|
||||
static struct platform_device ts72xx_rtc_device = {
|
||||
|
|
|
@ -127,7 +127,7 @@ static void
|
|||
imx_gpio_ack_irq(unsigned int irq)
|
||||
{
|
||||
DEBUG_IRQ("%s: irq %d\n", __FUNCTION__, irq);
|
||||
ISR(IRQ_TO_REG(irq)) |= 1 << ((irq - IRQ_GPIOA(0)) % 32);
|
||||
ISR(IRQ_TO_REG(irq)) = 1 << ((irq - IRQ_GPIOA(0)) % 32);
|
||||
}
|
||||
|
||||
static void
|
||||
|
|
|
@ -232,8 +232,6 @@ static void __init intcp_init_irq(void)
|
|||
for (i = IRQ_PIC_START; i <= IRQ_PIC_END; i++) {
|
||||
if (i == 11)
|
||||
i = 22;
|
||||
if (i == IRQ_CP_CPPLDINT)
|
||||
i++;
|
||||
if (i == 29)
|
||||
break;
|
||||
set_irq_chip(i, &pic_chip);
|
||||
|
@ -259,8 +257,7 @@ static void __init intcp_init_irq(void)
|
|||
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
|
||||
}
|
||||
|
||||
set_irq_handler(IRQ_CP_CPPLDINT, sic_handle_irq);
|
||||
pic_unmask_irq(IRQ_CP_CPPLDINT);
|
||||
set_irq_chained_handler(IRQ_CP_CPPLDINT, sic_handle_irq);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -371,6 +371,7 @@ static int spitz_ohci_init(struct device *dev)
|
|||
static struct pxaohci_platform_data spitz_ohci_platform_data = {
|
||||
.port_mode = PMM_NPS_MODE,
|
||||
.init = spitz_ohci_init,
|
||||
.power_budget = 150,
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -59,6 +59,14 @@ neponset_irq_handler(unsigned int irq, struct irqdesc *desc, struct pt_regs *reg
|
|||
if (irr & (IRR_ETHERNET | IRR_USAR)) {
|
||||
desc->chip->mask(irq);
|
||||
|
||||
/*
|
||||
* Ack the interrupt now to prevent re-entering
|
||||
* this neponset handler. Again, this is safe
|
||||
* since we'll check the IRR register prior to
|
||||
* leaving.
|
||||
*/
|
||||
desc->chip->ack(irq);
|
||||
|
||||
if (irr & IRR_ETHERNET) {
|
||||
d = irq_desc + IRQ_NEPONSET_SMC9196;
|
||||
desc_handle_irq(IRQ_NEPONSET_SMC9196, d, regs);
|
||||
|
|
|
@ -112,10 +112,9 @@ void __init versatile_init_irq(void)
|
|||
{
|
||||
unsigned int i;
|
||||
|
||||
vic_init(VA_VIC_BASE, IRQ_VIC_START, ~(1 << 31));
|
||||
vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
|
||||
|
||||
set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
|
||||
enable_irq(IRQ_VICSOURCE31);
|
||||
set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
|
||||
|
||||
/* Do second interrupt controller */
|
||||
writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
|
||||
|
|
|
@ -5,17 +5,34 @@
|
|||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/acpi.h>
|
||||
|
||||
#include <asm/pci-direct.h>
|
||||
#include <asm/acpi.h>
|
||||
#include <asm/apic.h>
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
|
||||
static int nvidia_hpet_detected __initdata;
|
||||
|
||||
static int __init nvidia_hpet_check(unsigned long phys, unsigned long size)
|
||||
{
|
||||
nvidia_hpet_detected = 1;
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int __init check_bridge(int vendor, int device)
|
||||
{
|
||||
#ifdef CONFIG_ACPI
|
||||
/* According to Nvidia all timer overrides are bogus. Just ignore
|
||||
them all. */
|
||||
/* According to Nvidia all timer overrides are bogus unless HPET
|
||||
is enabled. */
|
||||
if (vendor == PCI_VENDOR_ID_NVIDIA) {
|
||||
acpi_skip_timer_override = 1;
|
||||
nvidia_hpet_detected = 0;
|
||||
acpi_table_parse(ACPI_HPET, nvidia_hpet_check);
|
||||
if (nvidia_hpet_detected == 0) {
|
||||
acpi_skip_timer_override = 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (vendor == PCI_VENDOR_ID_ATI && timer_over_8254 == 1) {
|
||||
|
|
|
@ -1547,15 +1547,18 @@ void __init setup_arch(char **cmdline_p)
|
|||
if (efi_enabled)
|
||||
efi_map_memmap();
|
||||
|
||||
#ifdef CONFIG_X86_IO_APIC
|
||||
check_acpi_pci(); /* Checks more than just ACPI actually */
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
/*
|
||||
* Parse the ACPI tables for possible boot-time SMP configuration.
|
||||
*/
|
||||
acpi_boot_table_init();
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_IO_APIC
|
||||
check_acpi_pci(); /* Checks more than just ACPI actually */
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
acpi_boot_init();
|
||||
|
||||
#if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
|
||||
|
|
|
@ -822,6 +822,7 @@ static void __init prom_send_capabilities(void)
|
|||
/* try calling the ibm,client-architecture-support method */
|
||||
if (call_prom_ret("call-method", 3, 2, &ret,
|
||||
ADDR("ibm,client-architecture-support"),
|
||||
root,
|
||||
ADDR(ibm_architecture_vec)) == 0) {
|
||||
/* the call exists... */
|
||||
if (ret)
|
||||
|
@ -1622,6 +1623,15 @@ static int __init prom_find_machine_type(void)
|
|||
if (strstr(p, RELOC("Power Macintosh")) ||
|
||||
strstr(p, RELOC("MacRISC")))
|
||||
return PLATFORM_POWERMAC;
|
||||
#ifdef CONFIG_PPC64
|
||||
/* We must make sure we don't detect the IBM Cell
|
||||
* blades as pSeries due to some firmware issues,
|
||||
* so we do it here.
|
||||
*/
|
||||
if (strstr(p, RELOC("IBM,CBEA")) ||
|
||||
strstr(p, RELOC("IBM,CPBW-1.0")))
|
||||
return PLATFORM_GENERIC;
|
||||
#endif /* CONFIG_PPC64 */
|
||||
i += sl + 1;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -803,10 +803,13 @@ static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int
|
|||
if (__get_user(cmcp, &ucp->uc_regs))
|
||||
return -EFAULT;
|
||||
mcp = (struct mcontext __user *)(u64)cmcp;
|
||||
/* no need to check access_ok(mcp), since mcp < 4GB */
|
||||
}
|
||||
#else
|
||||
if (__get_user(mcp, &ucp->uc_regs))
|
||||
return -EFAULT;
|
||||
if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
|
||||
return -EFAULT;
|
||||
#endif
|
||||
restore_sigmask(&set);
|
||||
if (restore_user_regs(regs, mcp, sig))
|
||||
|
@ -908,13 +911,14 @@ int sys_debug_setcontext(struct ucontext __user *ctx,
|
|||
{
|
||||
struct sig_dbg_op op;
|
||||
int i;
|
||||
unsigned char tmp;
|
||||
unsigned long new_msr = regs->msr;
|
||||
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
|
||||
unsigned long new_dbcr0 = current->thread.dbcr0;
|
||||
#endif
|
||||
|
||||
for (i=0; i<ndbg; i++) {
|
||||
if (__copy_from_user(&op, dbg, sizeof(op)))
|
||||
if (copy_from_user(&op, dbg + i, sizeof(op)))
|
||||
return -EFAULT;
|
||||
switch (op.dbg_type) {
|
||||
case SIG_DBG_SINGLE_STEPPING:
|
||||
|
@ -959,6 +963,11 @@ int sys_debug_setcontext(struct ucontext __user *ctx,
|
|||
current->thread.dbcr0 = new_dbcr0;
|
||||
#endif
|
||||
|
||||
if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
|
||||
|| __get_user(tmp, (u8 __user *) ctx)
|
||||
|| __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
|
||||
return -EFAULT;
|
||||
|
||||
/*
|
||||
* If we get a fault copying the context into the kernel's
|
||||
* image of the user's registers, we can't just return -EFAULT
|
||||
|
|
|
@ -182,6 +182,8 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
|
|||
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
|
||||
if (err)
|
||||
return err;
|
||||
if (v_regs && !access_ok(VERIFY_READ, v_regs, 34 * sizeof(vector128)))
|
||||
return -EFAULT;
|
||||
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
|
||||
if (v_regs != 0 && (msr & MSR_VEC) != 0)
|
||||
err |= __copy_from_user(current->thread.vr, v_regs,
|
||||
|
|
|
@ -125,14 +125,13 @@ static void __init cell_init_early(void)
|
|||
|
||||
static int __init cell_probe(void)
|
||||
{
|
||||
/* XXX This is temporary, the Cell maintainer will come up with
|
||||
* more appropriate detection logic
|
||||
*/
|
||||
unsigned long root = of_get_flat_dt_root();
|
||||
if (!of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
if (of_flat_dt_is_compatible(root, "IBM,CBEA") ||
|
||||
of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -389,6 +389,7 @@ static int __init pSeries_probe_hypertas(unsigned long node,
|
|||
|
||||
static int __init pSeries_probe(void)
|
||||
{
|
||||
unsigned long root = of_get_flat_dt_root();
|
||||
char *dtype = of_get_flat_dt_prop(of_get_flat_dt_root(),
|
||||
"device_type", NULL);
|
||||
if (dtype == NULL)
|
||||
|
@ -396,6 +397,13 @@ static int __init pSeries_probe(void)
|
|||
if (strcmp(dtype, "chrp"))
|
||||
return 0;
|
||||
|
||||
/* Cell blades firmware claims to be chrp while it's not. Until this
|
||||
* is fixed, we need to avoid those here.
|
||||
*/
|
||||
if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0") ||
|
||||
of_flat_dt_is_compatible(root, "IBM,CBEA"))
|
||||
return 0;
|
||||
|
||||
DBG("pSeries detected, looking for LPAR capability...\n");
|
||||
|
||||
/* Now try to figure out if we are running on LPAR */
|
||||
|
|
|
@ -69,6 +69,17 @@ void __init smp_store_cpu_info(int id)
|
|||
"clock-frequency", 0);
|
||||
cpu_data(id).prom_node = cpu_node;
|
||||
cpu_data(id).mid = cpu_get_hwmid(cpu_node);
|
||||
|
||||
/* this is required to tune the scheduler correctly */
|
||||
/* is it possible to have CPUs with different cache sizes? */
|
||||
if (id == boot_cpu_id) {
|
||||
int cache_line,cache_nlines;
|
||||
cache_line = 0x20;
|
||||
cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
|
||||
cache_nlines = 0x8000;
|
||||
cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
|
||||
max_cache_size = cache_line * cache_nlines;
|
||||
}
|
||||
if (cpu_data(id).mid < 0)
|
||||
panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
|
||||
}
|
||||
|
|
|
@ -599,18 +599,128 @@ struct pci_iommu_ops pci_sun4v_iommu_ops = {
|
|||
|
||||
/* SUN4V PCI configuration space accessors. */
|
||||
|
||||
static inline int pci_sun4v_out_of_range(struct pci_pbm_info *pbm, unsigned int bus, unsigned int device, unsigned int func)
|
||||
struct pdev_entry {
|
||||
struct pdev_entry *next;
|
||||
u32 devhandle;
|
||||
unsigned int bus;
|
||||
unsigned int device;
|
||||
unsigned int func;
|
||||
};
|
||||
|
||||
#define PDEV_HTAB_SIZE 16
|
||||
#define PDEV_HTAB_MASK (PDEV_HTAB_SIZE - 1)
|
||||
static struct pdev_entry *pdev_htab[PDEV_HTAB_SIZE];
|
||||
|
||||
static inline unsigned int pdev_hashfn(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
|
||||
{
|
||||
if (bus == pbm->pci_first_busno) {
|
||||
if (device == 0 && func == 0)
|
||||
return 0;
|
||||
return 1;
|
||||
unsigned int val;
|
||||
|
||||
val = (devhandle ^ (devhandle >> 4));
|
||||
val ^= bus;
|
||||
val ^= device;
|
||||
val ^= func;
|
||||
|
||||
return val & PDEV_HTAB_MASK;
|
||||
}
|
||||
|
||||
static int pdev_htab_add(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
|
||||
{
|
||||
struct pdev_entry *p = kmalloc(sizeof(*p), GFP_KERNEL);
|
||||
struct pdev_entry **slot;
|
||||
|
||||
if (!p)
|
||||
return -ENOMEM;
|
||||
|
||||
slot = &pdev_htab[pdev_hashfn(devhandle, bus, device, func)];
|
||||
p->next = *slot;
|
||||
*slot = p;
|
||||
|
||||
p->devhandle = devhandle;
|
||||
p->bus = bus;
|
||||
p->device = device;
|
||||
p->func = func;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursively descend into the OBP device tree, rooted at toplevel_node,
|
||||
* looking for a PCI device matching bus and devfn.
|
||||
*/
|
||||
static int obp_find(struct linux_prom_pci_registers *pregs, int toplevel_node, unsigned int bus, unsigned int devfn)
|
||||
{
|
||||
toplevel_node = prom_getchild(toplevel_node);
|
||||
|
||||
while (toplevel_node != 0) {
|
||||
int ret = obp_find(pregs, toplevel_node, bus, devfn);
|
||||
|
||||
if (ret != 0)
|
||||
return ret;
|
||||
|
||||
ret = prom_getproperty(toplevel_node, "reg", (char *) pregs,
|
||||
sizeof(*pregs) * PROMREG_MAX);
|
||||
if (ret == 0 || ret == -1)
|
||||
goto next_sibling;
|
||||
|
||||
if (((pregs[0].phys_hi >> 16) & 0xff) == bus &&
|
||||
((pregs[0].phys_hi >> 8) & 0xff) == devfn)
|
||||
break;
|
||||
|
||||
next_sibling:
|
||||
toplevel_node = prom_getsibling(toplevel_node);
|
||||
}
|
||||
|
||||
return toplevel_node;
|
||||
}
|
||||
|
||||
static int pdev_htab_populate(struct pci_pbm_info *pbm)
|
||||
{
|
||||
struct linux_prom_pci_registers pr[PROMREG_MAX];
|
||||
u32 devhandle = pbm->devhandle;
|
||||
unsigned int bus;
|
||||
|
||||
for (bus = pbm->pci_first_busno; bus <= pbm->pci_last_busno; bus++) {
|
||||
unsigned int devfn;
|
||||
|
||||
for (devfn = 0; devfn < 256; devfn++) {
|
||||
unsigned int device = PCI_SLOT(devfn);
|
||||
unsigned int func = PCI_FUNC(devfn);
|
||||
|
||||
if (obp_find(pr, pbm->prom_node, bus, devfn)) {
|
||||
int err = pdev_htab_add(devhandle, bus,
|
||||
device, func);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct pdev_entry *pdev_find(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
|
||||
{
|
||||
struct pdev_entry *p;
|
||||
|
||||
p = pdev_htab[pdev_hashfn(devhandle, bus, device, func)];
|
||||
while (p) {
|
||||
if (p->devhandle == devhandle &&
|
||||
p->bus == bus &&
|
||||
p->device == device &&
|
||||
p->func == func)
|
||||
break;
|
||||
|
||||
p = p->next;
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static inline int pci_sun4v_out_of_range(struct pci_pbm_info *pbm, unsigned int bus, unsigned int device, unsigned int func)
|
||||
{
|
||||
if (bus < pbm->pci_first_busno ||
|
||||
bus > pbm->pci_last_busno)
|
||||
return 1;
|
||||
return 0;
|
||||
return pdev_find(pbm->devhandle, bus, device, func) == NULL;
|
||||
}
|
||||
|
||||
static int pci_sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
|
||||
|
@ -1063,6 +1173,8 @@ static void pci_sun4v_pbm_init(struct pci_controller_info *p, int prom_node, u32
|
|||
|
||||
pci_sun4v_get_bus_range(pbm);
|
||||
pci_sun4v_iommu_init(pbm);
|
||||
|
||||
pdev_htab_populate(pbm);
|
||||
}
|
||||
|
||||
void sun4v_pci_init(int node, char *model_name)
|
||||
|
|
|
@ -1287,6 +1287,40 @@ int setup_profiling_timer(unsigned int multiplier)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static void __init smp_tune_scheduling(void)
|
||||
{
|
||||
int instance, node;
|
||||
unsigned int def, smallest = ~0U;
|
||||
|
||||
def = ((tlb_type == hypervisor) ?
|
||||
(3 * 1024 * 1024) :
|
||||
(4 * 1024 * 1024));
|
||||
|
||||
instance = 0;
|
||||
while (!cpu_find_by_instance(instance, &node, NULL)) {
|
||||
unsigned int val;
|
||||
|
||||
val = prom_getintdefault(node, "ecache-size", def);
|
||||
if (val < smallest)
|
||||
smallest = val;
|
||||
|
||||
instance++;
|
||||
}
|
||||
|
||||
/* Any value less than 256K is nonsense. */
|
||||
if (smallest < (256U * 1024U))
|
||||
smallest = 256 * 1024;
|
||||
|
||||
max_cache_size = smallest;
|
||||
|
||||
if (smallest < 1U * 1024U * 1024U)
|
||||
printk(KERN_INFO "Using max_cache_size of %uKB\n",
|
||||
smallest / 1024U);
|
||||
else
|
||||
printk(KERN_INFO "Using max_cache_size of %uMB\n",
|
||||
smallest / 1024U / 1024U);
|
||||
}
|
||||
|
||||
/* Constrain the number of cpus to max_cpus. */
|
||||
void __init smp_prepare_cpus(unsigned int max_cpus)
|
||||
{
|
||||
|
@ -1322,6 +1356,7 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
|
|||
}
|
||||
|
||||
smp_store_cpu_info(boot_cpu_id);
|
||||
smp_tune_scheduling();
|
||||
}
|
||||
|
||||
/* Set this up early so that things like the scheduler can init
|
||||
|
|
|
@ -297,7 +297,6 @@ EXPORT_SYMBOL(svr4_getcontext);
|
|||
EXPORT_SYMBOL(svr4_setcontext);
|
||||
EXPORT_SYMBOL(compat_sys_ioctl);
|
||||
EXPORT_SYMBOL(sparc32_open);
|
||||
EXPORT_SYMBOL(sys_close);
|
||||
#endif
|
||||
|
||||
/* Special internal versions of library functions. */
|
||||
|
|
|
@ -1797,7 +1797,9 @@ static const char *sun4v_err_type_to_str(u32 type)
|
|||
};
|
||||
}
|
||||
|
||||
static void sun4v_log_error(struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt)
|
||||
extern void __show_regs(struct pt_regs * regs);
|
||||
|
||||
static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt)
|
||||
{
|
||||
int cnt;
|
||||
|
||||
|
@ -1830,6 +1832,8 @@ static void sun4v_log_error(struct sun4v_error_entry *ent, int cpu, const char *
|
|||
pfx,
|
||||
ent->err_raddr, ent->err_size, ent->err_cpu);
|
||||
|
||||
__show_regs(regs);
|
||||
|
||||
if ((cnt = atomic_read(ocnt)) != 0) {
|
||||
atomic_set(ocnt, 0);
|
||||
wmb();
|
||||
|
@ -1862,7 +1866,7 @@ void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
|
|||
|
||||
put_cpu();
|
||||
|
||||
sun4v_log_error(&local_copy, cpu,
|
||||
sun4v_log_error(regs, &local_copy, cpu,
|
||||
KERN_ERR "RESUMABLE ERROR",
|
||||
&sun4v_resum_oflow_cnt);
|
||||
}
|
||||
|
@ -1910,7 +1914,7 @@ void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
|
|||
}
|
||||
#endif
|
||||
|
||||
sun4v_log_error(&local_copy, cpu,
|
||||
sun4v_log_error(regs, &local_copy, cpu,
|
||||
KERN_EMERG "NON-RESUMABLE ERROR",
|
||||
&sun4v_nonresum_oflow_cnt);
|
||||
|
||||
|
@ -2200,7 +2204,6 @@ static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
|
|||
void die_if_kernel(char *str, struct pt_regs *regs)
|
||||
{
|
||||
static int die_counter;
|
||||
extern void __show_regs(struct pt_regs * regs);
|
||||
extern void smp_report_regs(void);
|
||||
int count = 0;
|
||||
|
||||
|
|
|
@ -271,6 +271,18 @@ __setup("enable_8254_timer", setup_enable_8254_timer);
|
|||
#include <linux/pci_ids.h>
|
||||
#include <linux/pci.h>
|
||||
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
|
||||
static int nvidia_hpet_detected __initdata;
|
||||
|
||||
static int __init nvidia_hpet_check(unsigned long phys, unsigned long size)
|
||||
{
|
||||
nvidia_hpet_detected = 1;
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Temporary Hack. Nvidia and VIA boards currently only work with IO-APIC
|
||||
off. Check for an Nvidia or VIA PCI bridge and turn it off.
|
||||
Use pci direct infrastructure because this runs before the PCI subsystem.
|
||||
|
@ -317,11 +329,19 @@ void __init check_ioapic(void)
|
|||
return;
|
||||
case PCI_VENDOR_ID_NVIDIA:
|
||||
#ifdef CONFIG_ACPI
|
||||
/* All timer overrides on Nvidia
|
||||
seem to be wrong. Skip them. */
|
||||
acpi_skip_timer_override = 1;
|
||||
printk(KERN_INFO
|
||||
"Nvidia board detected. Ignoring ACPI timer override.\n");
|
||||
/*
|
||||
* All timer overrides on Nvidia are
|
||||
* wrong unless HPET is enabled.
|
||||
*/
|
||||
nvidia_hpet_detected = 0;
|
||||
acpi_table_parse(ACPI_HPET,
|
||||
nvidia_hpet_check);
|
||||
if (nvidia_hpet_detected == 0) {
|
||||
acpi_skip_timer_override = 1;
|
||||
printk(KERN_INFO "Nvidia board "
|
||||
"detected. Ignoring ACPI "
|
||||
"timer override.\n");
|
||||
}
|
||||
#endif
|
||||
/* RED-PEN skip them on mptables too? */
|
||||
return;
|
||||
|
|
|
@ -1648,17 +1648,17 @@ static void as_exit_queue(elevator_t *e)
|
|||
* initialize elevator private data (as_data), and alloc a arq for
|
||||
* each request on the free lists
|
||||
*/
|
||||
static int as_init_queue(request_queue_t *q, elevator_t *e)
|
||||
static void *as_init_queue(request_queue_t *q, elevator_t *e)
|
||||
{
|
||||
struct as_data *ad;
|
||||
int i;
|
||||
|
||||
if (!arq_pool)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
|
||||
ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
|
||||
if (!ad)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
memset(ad, 0, sizeof(*ad));
|
||||
|
||||
ad->q = q; /* Identify what queue the data belongs to */
|
||||
|
@ -1667,7 +1667,7 @@ static int as_init_queue(request_queue_t *q, elevator_t *e)
|
|||
GFP_KERNEL, q->node);
|
||||
if (!ad->hash) {
|
||||
kfree(ad);
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
|
||||
|
@ -1675,7 +1675,7 @@ static int as_init_queue(request_queue_t *q, elevator_t *e)
|
|||
if (!ad->arq_pool) {
|
||||
kfree(ad->hash);
|
||||
kfree(ad);
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* anticipatory scheduling helpers */
|
||||
|
@ -1696,14 +1696,13 @@ static int as_init_queue(request_queue_t *q, elevator_t *e)
|
|||
ad->antic_expire = default_antic_expire;
|
||||
ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
|
||||
ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
|
||||
e->elevator_data = ad;
|
||||
|
||||
ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
|
||||
ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
|
||||
if (ad->write_batch_count < 2)
|
||||
ad->write_batch_count = 2;
|
||||
|
||||
return 0;
|
||||
return ad;
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -2251,14 +2251,14 @@ static void cfq_exit_queue(elevator_t *e)
|
|||
kfree(cfqd);
|
||||
}
|
||||
|
||||
static int cfq_init_queue(request_queue_t *q, elevator_t *e)
|
||||
static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
|
||||
{
|
||||
struct cfq_data *cfqd;
|
||||
int i;
|
||||
|
||||
cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
|
||||
if (!cfqd)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
|
||||
memset(cfqd, 0, sizeof(*cfqd));
|
||||
|
||||
|
@ -2288,8 +2288,6 @@ static int cfq_init_queue(request_queue_t *q, elevator_t *e)
|
|||
for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
|
||||
INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
|
||||
|
||||
e->elevator_data = cfqd;
|
||||
|
||||
cfqd->queue = q;
|
||||
|
||||
cfqd->max_queued = q->nr_requests / 4;
|
||||
|
@ -2316,14 +2314,14 @@ static int cfq_init_queue(request_queue_t *q, elevator_t *e)
|
|||
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
|
||||
cfqd->cfq_slice_idle = cfq_slice_idle;
|
||||
|
||||
return 0;
|
||||
return cfqd;
|
||||
out_crqpool:
|
||||
kfree(cfqd->cfq_hash);
|
||||
out_cfqhash:
|
||||
kfree(cfqd->crq_hash);
|
||||
out_crqhash:
|
||||
kfree(cfqd);
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void cfq_slab_kill(void)
|
||||
|
|
|
@ -613,24 +613,24 @@ static void deadline_exit_queue(elevator_t *e)
|
|||
* initialize elevator private data (deadline_data), and alloc a drq for
|
||||
* each request on the free lists
|
||||
*/
|
||||
static int deadline_init_queue(request_queue_t *q, elevator_t *e)
|
||||
static void *deadline_init_queue(request_queue_t *q, elevator_t *e)
|
||||
{
|
||||
struct deadline_data *dd;
|
||||
int i;
|
||||
|
||||
if (!drq_pool)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
|
||||
dd = kmalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
|
||||
if (!dd)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
memset(dd, 0, sizeof(*dd));
|
||||
|
||||
dd->hash = kmalloc_node(sizeof(struct list_head)*DL_HASH_ENTRIES,
|
||||
GFP_KERNEL, q->node);
|
||||
if (!dd->hash) {
|
||||
kfree(dd);
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
dd->drq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
|
||||
|
@ -638,7 +638,7 @@ static int deadline_init_queue(request_queue_t *q, elevator_t *e)
|
|||
if (!dd->drq_pool) {
|
||||
kfree(dd->hash);
|
||||
kfree(dd);
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (i = 0; i < DL_HASH_ENTRIES; i++)
|
||||
|
@ -653,8 +653,7 @@ static int deadline_init_queue(request_queue_t *q, elevator_t *e)
|
|||
dd->writes_starved = writes_starved;
|
||||
dd->front_merges = 1;
|
||||
dd->fifo_batch = fifo_batch;
|
||||
e->elevator_data = dd;
|
||||
return 0;
|
||||
return dd;
|
||||
}
|
||||
|
||||
static void deadline_put_request(request_queue_t *q, struct request *rq)
|
||||
|
|
|
@ -121,16 +121,16 @@ static struct elevator_type *elevator_get(const char *name)
|
|||
return e;
|
||||
}
|
||||
|
||||
static int elevator_attach(request_queue_t *q, struct elevator_queue *eq)
|
||||
static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
|
||||
{
|
||||
int ret = 0;
|
||||
return eq->ops->elevator_init_fn(q, eq);
|
||||
}
|
||||
|
||||
static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
|
||||
void *data)
|
||||
{
|
||||
q->elevator = eq;
|
||||
|
||||
if (eq->ops->elevator_init_fn)
|
||||
ret = eq->ops->elevator_init_fn(q, eq);
|
||||
|
||||
return ret;
|
||||
eq->elevator_data = data;
|
||||
}
|
||||
|
||||
static char chosen_elevator[16];
|
||||
|
@ -181,6 +181,7 @@ int elevator_init(request_queue_t *q, char *name)
|
|||
struct elevator_type *e = NULL;
|
||||
struct elevator_queue *eq;
|
||||
int ret = 0;
|
||||
void *data;
|
||||
|
||||
INIT_LIST_HEAD(&q->queue_head);
|
||||
q->last_merge = NULL;
|
||||
|
@ -202,10 +203,13 @@ int elevator_init(request_queue_t *q, char *name)
|
|||
if (!eq)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = elevator_attach(q, eq);
|
||||
if (ret)
|
||||
data = elevator_init_queue(q, eq);
|
||||
if (!data) {
|
||||
kobject_put(&eq->kobj);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
elevator_attach(q, eq, data);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -722,13 +726,16 @@ int elv_register_queue(struct request_queue *q)
|
|||
return error;
|
||||
}
|
||||
|
||||
static void __elv_unregister_queue(elevator_t *e)
|
||||
{
|
||||
kobject_uevent(&e->kobj, KOBJ_REMOVE);
|
||||
kobject_del(&e->kobj);
|
||||
}
|
||||
|
||||
void elv_unregister_queue(struct request_queue *q)
|
||||
{
|
||||
if (q) {
|
||||
elevator_t *e = q->elevator;
|
||||
kobject_uevent(&e->kobj, KOBJ_REMOVE);
|
||||
kobject_del(&e->kobj);
|
||||
}
|
||||
if (q)
|
||||
__elv_unregister_queue(q->elevator);
|
||||
}
|
||||
|
||||
int elv_register(struct elevator_type *e)
|
||||
|
@ -780,6 +787,7 @@ EXPORT_SYMBOL_GPL(elv_unregister);
|
|||
static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
|
||||
{
|
||||
elevator_t *old_elevator, *e;
|
||||
void *data;
|
||||
|
||||
/*
|
||||
* Allocate new elevator
|
||||
|
@ -788,6 +796,12 @@ static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
|
|||
if (!e)
|
||||
return 0;
|
||||
|
||||
data = elevator_init_queue(q, e);
|
||||
if (!data) {
|
||||
kobject_put(&e->kobj);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Turn on BYPASS and drain all requests w/ elevator private data
|
||||
*/
|
||||
|
@ -806,19 +820,19 @@ static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
|
|||
elv_drain_elevator(q);
|
||||
}
|
||||
|
||||
spin_unlock_irq(q->queue_lock);
|
||||
|
||||
/*
|
||||
* unregister old elevator data
|
||||
* Remember old elevator.
|
||||
*/
|
||||
elv_unregister_queue(q);
|
||||
old_elevator = q->elevator;
|
||||
|
||||
/*
|
||||
* attach and start new elevator
|
||||
*/
|
||||
if (elevator_attach(q, e))
|
||||
goto fail;
|
||||
elevator_attach(q, e, data);
|
||||
|
||||
spin_unlock_irq(q->queue_lock);
|
||||
|
||||
__elv_unregister_queue(old_elevator);
|
||||
|
||||
if (elv_register_queue(q))
|
||||
goto fail_register;
|
||||
|
@ -837,7 +851,6 @@ fail_register:
|
|||
*/
|
||||
elevator_exit(e);
|
||||
e = NULL;
|
||||
fail:
|
||||
q->elevator = old_elevator;
|
||||
elv_register_queue(q);
|
||||
clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
|
||||
|
|
|
@ -65,16 +65,15 @@ noop_latter_request(request_queue_t *q, struct request *rq)
|
|||
return list_entry(rq->queuelist.next, struct request, queuelist);
|
||||
}
|
||||
|
||||
static int noop_init_queue(request_queue_t *q, elevator_t *e)
|
||||
static void *noop_init_queue(request_queue_t *q, elevator_t *e)
|
||||
{
|
||||
struct noop_data *nd;
|
||||
|
||||
nd = kmalloc(sizeof(*nd), GFP_KERNEL);
|
||||
if (!nd)
|
||||
return -ENOMEM;
|
||||
return NULL;
|
||||
INIT_LIST_HEAD(&nd->queue);
|
||||
e->elevator_data = nd;
|
||||
return 0;
|
||||
return nd;
|
||||
}
|
||||
|
||||
static void noop_exit_queue(elevator_t *e)
|
||||
|
|
|
@ -577,6 +577,8 @@ acpi_processor_register_performance(struct acpi_processor_performance
|
|||
return_VALUE(-EBUSY);
|
||||
}
|
||||
|
||||
WARN_ON(!performance);
|
||||
|
||||
pr->performance = performance;
|
||||
|
||||
if (acpi_processor_get_performance_info(pr)) {
|
||||
|
@ -609,7 +611,8 @@ acpi_processor_unregister_performance(struct acpi_processor_performance
|
|||
return_VOID;
|
||||
}
|
||||
|
||||
kfree(pr->performance->states);
|
||||
if (pr->performance)
|
||||
kfree(pr->performance->states);
|
||||
pr->performance = NULL;
|
||||
|
||||
acpi_cpufreq_remove_file(pr);
|
||||
|
|
|
@ -41,9 +41,9 @@ obj-$(CONFIG_N_HDLC) += n_hdlc.o
|
|||
obj-$(CONFIG_AMIGA_BUILTIN_SERIAL) += amiserial.o
|
||||
obj-$(CONFIG_SX) += sx.o generic_serial.o
|
||||
obj-$(CONFIG_RIO) += rio/ generic_serial.o
|
||||
obj-$(CONFIG_HVC_DRIVER) += hvc_console.o
|
||||
obj-$(CONFIG_HVC_CONSOLE) += hvc_vio.o hvsi.o
|
||||
obj-$(CONFIG_HVC_RTAS) += hvc_rtas.o
|
||||
obj-$(CONFIG_HVC_DRIVER) += hvc_console.o
|
||||
obj-$(CONFIG_RAW_DRIVER) += raw.o
|
||||
obj-$(CONFIG_SGI_SNSC) += snsc.o snsc_event.o
|
||||
obj-$(CONFIG_MMTIMER) += mmtimer.o
|
||||
|
|
|
@ -1384,8 +1384,10 @@ do_it_again:
|
|||
* longer than TTY_THRESHOLD_UNTHROTTLE in canonical mode,
|
||||
* we won't get any more characters.
|
||||
*/
|
||||
if (n_tty_chars_in_buffer(tty) <= TTY_THRESHOLD_UNTHROTTLE)
|
||||
if (n_tty_chars_in_buffer(tty) <= TTY_THRESHOLD_UNTHROTTLE) {
|
||||
n_tty_set_room(tty);
|
||||
check_unthrottle(tty);
|
||||
}
|
||||
|
||||
if (b - buf >= minimum)
|
||||
break;
|
||||
|
|
|
@ -831,6 +831,7 @@ mptspi_ioc_reset(MPT_ADAPTER *ioc, int reset_phase)
|
|||
return rc;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM
|
||||
/*
|
||||
* spi module resume handler
|
||||
*/
|
||||
|
@ -846,6 +847,7 @@ mptspi_resume(struct pci_dev *pdev)
|
|||
|
||||
return rc;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/
|
||||
/*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/
|
||||
|
|
|
@ -55,6 +55,7 @@ struct i2o_exec_wait {
|
|||
u32 m; /* message id */
|
||||
struct i2o_message *msg; /* pointer to the reply message */
|
||||
struct list_head list; /* node in global wait list */
|
||||
spinlock_t lock; /* lock before modifying */
|
||||
};
|
||||
|
||||
/* Work struct needed to handle LCT NOTIFY replies */
|
||||
|
@ -87,6 +88,7 @@ static struct i2o_exec_wait *i2o_exec_wait_alloc(void)
|
|||
return NULL;
|
||||
|
||||
INIT_LIST_HEAD(&wait->list);
|
||||
spin_lock_init(&wait->lock);
|
||||
|
||||
return wait;
|
||||
};
|
||||
|
@ -125,6 +127,7 @@ int i2o_msg_post_wait_mem(struct i2o_controller *c, struct i2o_message *msg,
|
|||
DECLARE_WAIT_QUEUE_HEAD(wq);
|
||||
struct i2o_exec_wait *wait;
|
||||
static u32 tcntxt = 0x80000000;
|
||||
long flags;
|
||||
int rc = 0;
|
||||
|
||||
wait = i2o_exec_wait_alloc();
|
||||
|
@ -146,33 +149,28 @@ int i2o_msg_post_wait_mem(struct i2o_controller *c, struct i2o_message *msg,
|
|||
wait->tcntxt = tcntxt++;
|
||||
msg->u.s.tcntxt = cpu_to_le32(wait->tcntxt);
|
||||
|
||||
wait->wq = &wq;
|
||||
/*
|
||||
* we add elements to the head, because if a entry in the list will
|
||||
* never be removed, we have to iterate over it every time
|
||||
*/
|
||||
list_add(&wait->list, &i2o_exec_wait_list);
|
||||
|
||||
/*
|
||||
* Post the message to the controller. At some point later it will
|
||||
* return. If we time out before it returns then complete will be zero.
|
||||
*/
|
||||
i2o_msg_post(c, msg);
|
||||
|
||||
if (!wait->complete) {
|
||||
wait->wq = &wq;
|
||||
/*
|
||||
* we add elements add the head, because if a entry in the list
|
||||
* will never be removed, we have to iterate over it every time
|
||||
*/
|
||||
list_add(&wait->list, &i2o_exec_wait_list);
|
||||
wait_event_interruptible_timeout(wq, wait->complete, timeout * HZ);
|
||||
|
||||
wait_event_interruptible_timeout(wq, wait->complete,
|
||||
timeout * HZ);
|
||||
spin_lock_irqsave(&wait->lock, flags);
|
||||
|
||||
wait->wq = NULL;
|
||||
}
|
||||
wait->wq = NULL;
|
||||
|
||||
barrier();
|
||||
|
||||
if (wait->complete) {
|
||||
if (wait->complete)
|
||||
rc = le32_to_cpu(wait->msg->body[0]) >> 24;
|
||||
i2o_flush_reply(c, wait->m);
|
||||
i2o_exec_wait_free(wait);
|
||||
} else {
|
||||
else {
|
||||
/*
|
||||
* We cannot remove it now. This is important. When it does
|
||||
* terminate (which it must do if the controller has not
|
||||
|
@ -186,6 +184,13 @@ int i2o_msg_post_wait_mem(struct i2o_controller *c, struct i2o_message *msg,
|
|||
rc = -ETIMEDOUT;
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&wait->lock, flags);
|
||||
|
||||
if (rc != -ETIMEDOUT) {
|
||||
i2o_flush_reply(c, wait->m);
|
||||
i2o_exec_wait_free(wait);
|
||||
}
|
||||
|
||||
return rc;
|
||||
};
|
||||
|
||||
|
@ -213,7 +218,6 @@ static int i2o_msg_post_wait_complete(struct i2o_controller *c, u32 m,
|
|||
{
|
||||
struct i2o_exec_wait *wait, *tmp;
|
||||
unsigned long flags;
|
||||
static spinlock_t lock = SPIN_LOCK_UNLOCKED;
|
||||
int rc = 1;
|
||||
|
||||
/*
|
||||
|
@ -223,23 +227,24 @@ static int i2o_msg_post_wait_complete(struct i2o_controller *c, u32 m,
|
|||
* already expired. Not much we can do about that except log it for
|
||||
* debug purposes, increase timeout, and recompile.
|
||||
*/
|
||||
spin_lock_irqsave(&lock, flags);
|
||||
list_for_each_entry_safe(wait, tmp, &i2o_exec_wait_list, list) {
|
||||
if (wait->tcntxt == context) {
|
||||
list_del(&wait->list);
|
||||
spin_lock_irqsave(&wait->lock, flags);
|
||||
|
||||
spin_unlock_irqrestore(&lock, flags);
|
||||
list_del(&wait->list);
|
||||
|
||||
wait->m = m;
|
||||
wait->msg = msg;
|
||||
wait->complete = 1;
|
||||
|
||||
barrier();
|
||||
|
||||
if (wait->wq) {
|
||||
wake_up_interruptible(wait->wq);
|
||||
if (wait->wq)
|
||||
rc = 0;
|
||||
} else {
|
||||
else
|
||||
rc = -1;
|
||||
|
||||
spin_unlock_irqrestore(&wait->lock, flags);
|
||||
|
||||
if (rc) {
|
||||
struct device *dev;
|
||||
|
||||
dev = &c->pdev->dev;
|
||||
|
@ -248,15 +253,13 @@ static int i2o_msg_post_wait_complete(struct i2o_controller *c, u32 m,
|
|||
c->name);
|
||||
i2o_dma_free(dev, &wait->dma);
|
||||
i2o_exec_wait_free(wait);
|
||||
rc = -1;
|
||||
}
|
||||
} else
|
||||
wake_up_interruptible(wait->wq);
|
||||
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&lock, flags);
|
||||
|
||||
osm_warn("%s: Bogus reply in POST WAIT (tr-context: %08x)!\n", c->name,
|
||||
context);
|
||||
|
||||
|
@ -322,14 +325,9 @@ static DEVICE_ATTR(product_id, S_IRUGO, i2o_exec_show_product_id, NULL);
|
|||
static int i2o_exec_probe(struct device *dev)
|
||||
{
|
||||
struct i2o_device *i2o_dev = to_i2o_device(dev);
|
||||
struct i2o_controller *c = i2o_dev->iop;
|
||||
|
||||
i2o_event_register(i2o_dev, &i2o_exec_driver, 0, 0xffffffff);
|
||||
|
||||
c->exec = i2o_dev;
|
||||
|
||||
i2o_exec_lct_notify(c, c->lct->change_ind + 1);
|
||||
|
||||
device_create_file(dev, &dev_attr_vendor_id);
|
||||
device_create_file(dev, &dev_attr_product_id);
|
||||
|
||||
|
@ -523,6 +521,8 @@ static int i2o_exec_lct_notify(struct i2o_controller *c, u32 change_ind)
|
|||
struct device *dev;
|
||||
struct i2o_message *msg;
|
||||
|
||||
down(&c->lct_lock);
|
||||
|
||||
dev = &c->pdev->dev;
|
||||
|
||||
if (i2o_dma_realloc
|
||||
|
@ -545,6 +545,8 @@ static int i2o_exec_lct_notify(struct i2o_controller *c, u32 change_ind)
|
|||
|
||||
i2o_msg_post(c, msg);
|
||||
|
||||
up(&c->lct_lock);
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -804,8 +804,6 @@ void i2o_iop_remove(struct i2o_controller *c)
|
|||
|
||||
/* Ask the IOP to switch to RESET state */
|
||||
i2o_iop_reset(c);
|
||||
|
||||
put_device(&c->device);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1059,7 +1057,7 @@ struct i2o_controller *i2o_iop_alloc(void)
|
|||
|
||||
snprintf(poolname, sizeof(poolname), "i2o_%s_msg_inpool", c->name);
|
||||
if (i2o_pool_alloc
|
||||
(&c->in_msg, poolname, I2O_INBOUND_MSG_FRAME_SIZE * 4,
|
||||
(&c->in_msg, poolname, I2O_INBOUND_MSG_FRAME_SIZE * 4 + sizeof(u32),
|
||||
I2O_MSG_INPOOL_MIN)) {
|
||||
kfree(c);
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
|
|
@ -187,12 +187,11 @@ static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
|
|||
return v;
|
||||
}
|
||||
|
||||
static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
|
||||
static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
|
||||
{
|
||||
u16 power_control;
|
||||
u32 reg1;
|
||||
int vaux;
|
||||
int ret = 0;
|
||||
|
||||
pr_debug("sky2_set_power_state %d\n", state);
|
||||
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
||||
|
@ -275,12 +274,10 @@ static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
|
|||
break;
|
||||
default:
|
||||
printk(KERN_ERR PFX "Unknown power state %d\n", state);
|
||||
ret = -1;
|
||||
}
|
||||
|
||||
sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
|
||||
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
|
||||
|
@ -2164,6 +2161,13 @@ static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
|
|||
/* If idle then force a fake soft NAPI poll once a second
|
||||
* to work around cases where sharing an edge triggered interrupt.
|
||||
*/
|
||||
static inline void sky2_idle_start(struct sky2_hw *hw)
|
||||
{
|
||||
if (idle_timeout > 0)
|
||||
mod_timer(&hw->idle_timer,
|
||||
jiffies + msecs_to_jiffies(idle_timeout));
|
||||
}
|
||||
|
||||
static void sky2_idle(unsigned long arg)
|
||||
{
|
||||
struct sky2_hw *hw = (struct sky2_hw *) arg;
|
||||
|
@ -2183,6 +2187,9 @@ static int sky2_poll(struct net_device *dev0, int *budget)
|
|||
int work_done = 0;
|
||||
u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
|
||||
|
||||
if (!~status)
|
||||
goto out;
|
||||
|
||||
if (status & Y2_IS_HW_ERR)
|
||||
sky2_hw_intr(hw);
|
||||
|
||||
|
@ -2219,7 +2226,7 @@ static int sky2_poll(struct net_device *dev0, int *budget)
|
|||
|
||||
if (sky2_more_work(hw))
|
||||
return 1;
|
||||
|
||||
out:
|
||||
netif_rx_complete(dev0);
|
||||
|
||||
sky2_read32(hw, B0_Y2_SP_LISR);
|
||||
|
@ -3350,9 +3357,7 @@ static int __devinit sky2_probe(struct pci_dev *pdev,
|
|||
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
|
||||
|
||||
setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
|
||||
if (idle_timeout > 0)
|
||||
mod_timer(&hw->idle_timer,
|
||||
jiffies + msecs_to_jiffies(idle_timeout));
|
||||
sky2_idle_start(hw);
|
||||
|
||||
pci_set_drvdata(pdev, hw);
|
||||
|
||||
|
@ -3425,8 +3430,14 @@ static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
|
|||
{
|
||||
struct sky2_hw *hw = pci_get_drvdata(pdev);
|
||||
int i;
|
||||
pci_power_t pstate = pci_choose_state(pdev, state);
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
|
||||
return -EINVAL;
|
||||
|
||||
del_timer_sync(&hw->idle_timer);
|
||||
|
||||
for (i = 0; i < hw->ports; i++) {
|
||||
struct net_device *dev = hw->dev[i];
|
||||
|
||||
if (dev) {
|
||||
|
@ -3438,7 +3449,10 @@ static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
|
|||
}
|
||||
}
|
||||
|
||||
return sky2_set_power_state(hw, pci_choose_state(pdev, state));
|
||||
sky2_write32(hw, B0_IMSK, 0);
|
||||
pci_save_state(pdev);
|
||||
sky2_set_power_state(hw, pstate);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sky2_resume(struct pci_dev *pdev)
|
||||
|
@ -3448,15 +3462,15 @@ static int sky2_resume(struct pci_dev *pdev)
|
|||
|
||||
pci_restore_state(pdev);
|
||||
pci_enable_wake(pdev, PCI_D0, 0);
|
||||
err = sky2_set_power_state(hw, PCI_D0);
|
||||
if (err)
|
||||
goto out;
|
||||
sky2_set_power_state(hw, PCI_D0);
|
||||
|
||||
err = sky2_reset(hw);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
|
||||
|
||||
for (i = 0; i < hw->ports; i++) {
|
||||
struct net_device *dev = hw->dev[i];
|
||||
if (dev && netif_running(dev)) {
|
||||
netif_device_attach(dev);
|
||||
|
@ -3465,10 +3479,12 @@ static int sky2_resume(struct pci_dev *pdev)
|
|||
printk(KERN_ERR PFX "%s: could not up: %d\n",
|
||||
dev->name, err);
|
||||
dev_close(dev);
|
||||
break;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sky2_idle_start(hw);
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
|
|
|
@ -69,8 +69,8 @@
|
|||
|
||||
#define DRV_MODULE_NAME "tg3"
|
||||
#define PFX DRV_MODULE_NAME ": "
|
||||
#define DRV_MODULE_VERSION "3.58"
|
||||
#define DRV_MODULE_RELDATE "May 22, 2006"
|
||||
#define DRV_MODULE_VERSION "3.59"
|
||||
#define DRV_MODULE_RELDATE "June 8, 2006"
|
||||
|
||||
#define TG3_DEF_MAC_MODE 0
|
||||
#define TG3_DEF_RX_MODE 0
|
||||
|
@ -4485,9 +4485,8 @@ static void tg3_disable_nvram_access(struct tg3 *tp)
|
|||
/* tp->lock is held. */
|
||||
static void tg3_write_sig_pre_reset(struct tg3 *tp, int kind)
|
||||
{
|
||||
if (!(tp->tg3_flags2 & TG3_FLG2_SUN_570X))
|
||||
tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX,
|
||||
NIC_SRAM_FIRMWARE_MBOX_MAGIC1);
|
||||
tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX,
|
||||
NIC_SRAM_FIRMWARE_MBOX_MAGIC1);
|
||||
|
||||
if (tp->tg3_flags2 & TG3_FLG2_ASF_NEW_HANDSHAKE) {
|
||||
switch (kind) {
|
||||
|
@ -4568,13 +4567,12 @@ static int tg3_chip_reset(struct tg3 *tp)
|
|||
void (*write_op)(struct tg3 *, u32, u32);
|
||||
int i;
|
||||
|
||||
if (!(tp->tg3_flags2 & TG3_FLG2_SUN_570X)) {
|
||||
tg3_nvram_lock(tp);
|
||||
/* No matching tg3_nvram_unlock() after this because
|
||||
* chip reset below will undo the nvram lock.
|
||||
*/
|
||||
tp->nvram_lock_cnt = 0;
|
||||
}
|
||||
tg3_nvram_lock(tp);
|
||||
|
||||
/* No matching tg3_nvram_unlock() after this because
|
||||
* chip reset below will undo the nvram lock.
|
||||
*/
|
||||
tp->nvram_lock_cnt = 0;
|
||||
|
||||
if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5752 ||
|
||||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5755 ||
|
||||
|
@ -4727,20 +4725,25 @@ static int tg3_chip_reset(struct tg3 *tp)
|
|||
tw32_f(MAC_MODE, 0);
|
||||
udelay(40);
|
||||
|
||||
if (!(tp->tg3_flags2 & TG3_FLG2_SUN_570X)) {
|
||||
/* Wait for firmware initialization to complete. */
|
||||
for (i = 0; i < 100000; i++) {
|
||||
tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val);
|
||||
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
|
||||
break;
|
||||
udelay(10);
|
||||
}
|
||||
if (i >= 100000) {
|
||||
printk(KERN_ERR PFX "tg3_reset_hw timed out for %s, "
|
||||
"firmware will not restart magic=%08x\n",
|
||||
tp->dev->name, val);
|
||||
return -ENODEV;
|
||||
}
|
||||
/* Wait for firmware initialization to complete. */
|
||||
for (i = 0; i < 100000; i++) {
|
||||
tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val);
|
||||
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
|
||||
break;
|
||||
udelay(10);
|
||||
}
|
||||
|
||||
/* Chip might not be fitted with firmare. Some Sun onboard
|
||||
* parts are configured like that. So don't signal the timeout
|
||||
* of the above loop as an error, but do report the lack of
|
||||
* running firmware once.
|
||||
*/
|
||||
if (i >= 100000 &&
|
||||
!(tp->tg3_flags2 & TG3_FLG2_NO_FWARE_REPORTED)) {
|
||||
tp->tg3_flags2 |= TG3_FLG2_NO_FWARE_REPORTED;
|
||||
|
||||
printk(KERN_INFO PFX "%s: No firmware running.\n",
|
||||
tp->dev->name);
|
||||
}
|
||||
|
||||
if ((tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) &&
|
||||
|
@ -9075,9 +9078,6 @@ static void __devinit tg3_nvram_init(struct tg3 *tp)
|
|||
{
|
||||
int j;
|
||||
|
||||
if (tp->tg3_flags2 & TG3_FLG2_SUN_570X)
|
||||
return;
|
||||
|
||||
tw32_f(GRC_EEPROM_ADDR,
|
||||
(EEPROM_ADDR_FSM_RESET |
|
||||
(EEPROM_DEFAULT_CLOCK_PERIOD <<
|
||||
|
@ -9210,11 +9210,6 @@ static int tg3_nvram_read(struct tg3 *tp, u32 offset, u32 *val)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (tp->tg3_flags2 & TG3_FLG2_SUN_570X) {
|
||||
printk(KERN_ERR PFX "Attempt to do nvram_read on Sun 570X\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!(tp->tg3_flags & TG3_FLAG_NVRAM))
|
||||
return tg3_nvram_read_using_eeprom(tp, offset, val);
|
||||
|
||||
|
@ -9447,11 +9442,6 @@ static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (tp->tg3_flags2 & TG3_FLG2_SUN_570X) {
|
||||
printk(KERN_ERR PFX "Attempt to do nvram_write on Sun 570X\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (tp->tg3_flags & TG3_FLAG_EEPROM_WRITE_PROT) {
|
||||
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
|
||||
~GRC_LCLCTRL_GPIO_OUTPUT1);
|
||||
|
@ -9578,15 +9568,19 @@ static void __devinit tg3_get_eeprom_hw_cfg(struct tg3 *tp)
|
|||
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
|
||||
tp->misc_host_ctrl);
|
||||
|
||||
/* The memory arbiter has to be enabled in order for SRAM accesses
|
||||
* to succeed. Normally on powerup the tg3 chip firmware will make
|
||||
* sure it is enabled, but other entities such as system netboot
|
||||
* code might disable it.
|
||||
*/
|
||||
val = tr32(MEMARB_MODE);
|
||||
tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
|
||||
|
||||
tp->phy_id = PHY_ID_INVALID;
|
||||
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
|
||||
|
||||
/* Do not even try poking around in here on Sun parts. */
|
||||
if (tp->tg3_flags2 & TG3_FLG2_SUN_570X) {
|
||||
/* All SUN chips are built-in LOMs. */
|
||||
tp->tg3_flags |= TG3_FLAG_EEPROM_WRITE_PROT;
|
||||
return;
|
||||
}
|
||||
/* Assume an onboard device by default. */
|
||||
tp->tg3_flags |= TG3_FLAG_EEPROM_WRITE_PROT;
|
||||
|
||||
tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
|
||||
if (val == NIC_SRAM_DATA_SIG_MAGIC) {
|
||||
|
@ -9686,6 +9680,8 @@ static void __devinit tg3_get_eeprom_hw_cfg(struct tg3 *tp)
|
|||
|
||||
if (nic_cfg & NIC_SRAM_DATA_CFG_EEPROM_WP)
|
||||
tp->tg3_flags |= TG3_FLAG_EEPROM_WRITE_PROT;
|
||||
else
|
||||
tp->tg3_flags &= ~TG3_FLAG_EEPROM_WRITE_PROT;
|
||||
|
||||
if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
|
||||
tp->tg3_flags |= TG3_FLAG_ENABLE_ASF;
|
||||
|
@ -9834,16 +9830,8 @@ static void __devinit tg3_read_partno(struct tg3 *tp)
|
|||
int i;
|
||||
u32 magic;
|
||||
|
||||
if (tp->tg3_flags2 & TG3_FLG2_SUN_570X) {
|
||||
/* Sun decided not to put the necessary bits in the
|
||||
* NVRAM of their onboard tg3 parts :(
|
||||
*/
|
||||
strcpy(tp->board_part_number, "Sun 570X");
|
||||
return;
|
||||
}
|
||||
|
||||
if (tg3_nvram_read_swab(tp, 0x0, &magic))
|
||||
return;
|
||||
goto out_not_found;
|
||||
|
||||
if (magic == TG3_EEPROM_MAGIC) {
|
||||
for (i = 0; i < 256; i += 4) {
|
||||
|
@ -9874,6 +9862,9 @@ static void __devinit tg3_read_partno(struct tg3 *tp)
|
|||
break;
|
||||
msleep(1);
|
||||
}
|
||||
if (!(tmp16 & 0x8000))
|
||||
goto out_not_found;
|
||||
|
||||
pci_read_config_dword(tp->pdev, vpd_cap + PCI_VPD_DATA,
|
||||
&tmp);
|
||||
tmp = cpu_to_le32(tmp);
|
||||
|
@ -9965,37 +9956,6 @@ static void __devinit tg3_read_fw_ver(struct tg3 *tp)
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SPARC64
|
||||
static int __devinit tg3_is_sun_570X(struct tg3 *tp)
|
||||
{
|
||||
struct pci_dev *pdev = tp->pdev;
|
||||
struct pcidev_cookie *pcp = pdev->sysdata;
|
||||
|
||||
if (pcp != NULL) {
|
||||
int node = pcp->prom_node;
|
||||
u32 venid;
|
||||
int err;
|
||||
|
||||
err = prom_getproperty(node, "subsystem-vendor-id",
|
||||
(char *) &venid, sizeof(venid));
|
||||
if (err == 0 || err == -1)
|
||||
return 0;
|
||||
if (venid == PCI_VENDOR_ID_SUN)
|
||||
return 1;
|
||||
|
||||
/* TG3 chips onboard the SunBlade-2500 don't have the
|
||||
* subsystem-vendor-id set to PCI_VENDOR_ID_SUN but they
|
||||
* are distinguishable from non-Sun variants by being
|
||||
* named "network" by the firmware. Non-Sun cards will
|
||||
* show up as being named "ethernet".
|
||||
*/
|
||||
if (!strcmp(pcp->prom_name, "network"))
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int __devinit tg3_get_invariants(struct tg3 *tp)
|
||||
{
|
||||
static struct pci_device_id write_reorder_chipsets[] = {
|
||||
|
@ -10012,11 +9972,6 @@ static int __devinit tg3_get_invariants(struct tg3 *tp)
|
|||
u16 pci_cmd;
|
||||
int err;
|
||||
|
||||
#ifdef CONFIG_SPARC64
|
||||
if (tg3_is_sun_570X(tp))
|
||||
tp->tg3_flags2 |= TG3_FLG2_SUN_570X;
|
||||
#endif
|
||||
|
||||
/* Force memory write invalidate off. If we leave it on,
|
||||
* then on 5700_BX chips we have to enable a workaround.
|
||||
* The workaround is to set the TG3PCI_DMA_RW_CTRL boundary
|
||||
|
@ -10312,8 +10267,7 @@ static int __devinit tg3_get_invariants(struct tg3 *tp)
|
|||
if (tp->write32 == tg3_write_indirect_reg32 ||
|
||||
((tp->tg3_flags & TG3_FLAG_PCIX_MODE) &&
|
||||
(GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5700 ||
|
||||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)) ||
|
||||
(tp->tg3_flags2 & TG3_FLG2_SUN_570X))
|
||||
GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5701)))
|
||||
tp->tg3_flags |= TG3_FLAG_SRAM_USE_CONFIG;
|
||||
|
||||
/* Get eeprom hw config before calling tg3_set_power_state().
|
||||
|
@ -10594,8 +10548,7 @@ static int __devinit tg3_get_device_address(struct tg3 *tp)
|
|||
#endif
|
||||
|
||||
mac_offset = 0x7c;
|
||||
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704 &&
|
||||
!(tp->tg3_flags & TG3_FLG2_SUN_570X)) ||
|
||||
if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5704) ||
|
||||
(tp->tg3_flags2 & TG3_FLG2_5780_CLASS)) {
|
||||
if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
|
||||
mac_offset = 0xcc;
|
||||
|
@ -10622,8 +10575,7 @@ static int __devinit tg3_get_device_address(struct tg3 *tp)
|
|||
}
|
||||
if (!addr_ok) {
|
||||
/* Next, try NVRAM. */
|
||||
if (!(tp->tg3_flags & TG3_FLG2_SUN_570X) &&
|
||||
!tg3_nvram_read(tp, mac_offset + 0, &hi) &&
|
||||
if (!tg3_nvram_read(tp, mac_offset + 0, &hi) &&
|
||||
!tg3_nvram_read(tp, mac_offset + 4, &lo)) {
|
||||
dev->dev_addr[0] = ((hi >> 16) & 0xff);
|
||||
dev->dev_addr[1] = ((hi >> 24) & 0xff);
|
||||
|
|
|
@ -2184,7 +2184,7 @@ struct tg3 {
|
|||
#define TG3_FLAG_INIT_COMPLETE 0x80000000
|
||||
u32 tg3_flags2;
|
||||
#define TG3_FLG2_RESTART_TIMER 0x00000001
|
||||
#define TG3_FLG2_SUN_570X 0x00000002
|
||||
/* 0x00000002 available */
|
||||
#define TG3_FLG2_NO_ETH_WIRE_SPEED 0x00000004
|
||||
#define TG3_FLG2_IS_5788 0x00000008
|
||||
#define TG3_FLG2_MAX_RXPEND_64 0x00000010
|
||||
|
@ -2216,6 +2216,7 @@ struct tg3 {
|
|||
#define TG3_FLG2_HW_TSO (TG3_FLG2_HW_TSO_1 | TG3_FLG2_HW_TSO_2)
|
||||
#define TG3_FLG2_1SHOT_MSI 0x10000000
|
||||
#define TG3_FLG2_PHY_JITTER_BUG 0x20000000
|
||||
#define TG3_FLG2_NO_FWARE_REPORTED 0x40000000
|
||||
|
||||
u32 split_mode_max_reqs;
|
||||
#define SPLIT_MODE_5704_MAX_REQ 3
|
||||
|
|
|
@ -285,9 +285,9 @@ static int pci_device_suspend(struct device * dev, pm_message_t state)
|
|||
* Default resume method for devices that have no driver provided resume,
|
||||
* or not even a driver at all.
|
||||
*/
|
||||
static void pci_default_resume(struct pci_dev *pci_dev)
|
||||
static int pci_default_resume(struct pci_dev *pci_dev)
|
||||
{
|
||||
int retval;
|
||||
int retval = 0;
|
||||
|
||||
/* restore the PCI config space */
|
||||
pci_restore_state(pci_dev);
|
||||
|
@ -297,18 +297,21 @@ static void pci_default_resume(struct pci_dev *pci_dev)
|
|||
/* if the device was busmaster before the suspend, make it busmaster again */
|
||||
if (pci_dev->is_busmaster)
|
||||
pci_set_master(pci_dev);
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
static int pci_device_resume(struct device * dev)
|
||||
{
|
||||
int error;
|
||||
struct pci_dev * pci_dev = to_pci_dev(dev);
|
||||
struct pci_driver * drv = pci_dev->driver;
|
||||
|
||||
if (drv && drv->resume)
|
||||
drv->resume(pci_dev);
|
||||
error = drv->resume(pci_dev);
|
||||
else
|
||||
pci_default_resume(pci_dev);
|
||||
return 0;
|
||||
error = pci_default_resume(pci_dev);
|
||||
return error;
|
||||
}
|
||||
|
||||
static void pci_device_shutdown(struct device *dev)
|
||||
|
|
|
@ -460,9 +460,23 @@ int
|
|||
pci_restore_state(struct pci_dev *dev)
|
||||
{
|
||||
int i;
|
||||
int val;
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
pci_write_config_dword(dev,i * 4, dev->saved_config_space[i]);
|
||||
/*
|
||||
* The Base Address register should be programmed before the command
|
||||
* register(s)
|
||||
*/
|
||||
for (i = 15; i >= 0; i--) {
|
||||
pci_read_config_dword(dev, i * 4, &val);
|
||||
if (val != dev->saved_config_space[i]) {
|
||||
printk(KERN_DEBUG "PM: Writing back config space on "
|
||||
"device %s at offset %x (was %x, writing %x)\n",
|
||||
pci_name(dev), i,
|
||||
val, (int)dev->saved_config_space[i]);
|
||||
pci_write_config_dword(dev,i * 4,
|
||||
dev->saved_config_space[i]);
|
||||
}
|
||||
}
|
||||
pci_restore_msi_state(dev);
|
||||
pci_restore_msix_state(dev);
|
||||
return 0;
|
||||
|
|
|
@ -2035,6 +2035,7 @@ static void mv_phy_reset(struct ata_port *ap)
|
|||
static void mv_eng_timeout(struct ata_port *ap)
|
||||
{
|
||||
struct ata_queued_cmd *qc;
|
||||
unsigned long flags;
|
||||
|
||||
printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
|
||||
DPRINTK("All regs @ start of eng_timeout\n");
|
||||
|
@ -2046,8 +2047,10 @@ static void mv_eng_timeout(struct ata_port *ap)
|
|||
ap->host_set->mmio_base, ap, qc, qc->scsicmd,
|
||||
&qc->scsicmd->cmnd);
|
||||
|
||||
spin_lock_irqsave(&ap->host_set->lock, flags);
|
||||
mv_err_intr(ap, 0);
|
||||
mv_stop_and_reset(ap);
|
||||
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
||||
|
||||
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
|
||||
if (qc->flags & ATA_QCFLAG_ACTIVE) {
|
||||
|
|
|
@ -185,6 +185,9 @@ int usb_hcd_pxa27x_probe (const struct hc_driver *driver, struct platform_device
|
|||
/* Select Power Management Mode */
|
||||
pxa27x_ohci_select_pmm(inf->port_mode);
|
||||
|
||||
if (inf->power_budget)
|
||||
hcd->power_budget = inf->power_budget;
|
||||
|
||||
ohci_hcd_init(hcd_to_ohci(hcd));
|
||||
|
||||
retval = usb_add_hcd(hcd, pdev->resource[1].start, SA_INTERRUPT);
|
||||
|
|
|
@ -1745,7 +1745,7 @@ static int fbcon_scroll(struct vc_data *vc, int t, int b, int dir,
|
|||
fbcon_redraw_move(vc, p, 0, t, count);
|
||||
ypan_up_redraw(vc, t, count);
|
||||
if (vc->vc_rows - b > 0)
|
||||
fbcon_redraw_move(vc, p, b - count,
|
||||
fbcon_redraw_move(vc, p, b,
|
||||
vc->vc_rows - b, b);
|
||||
} else
|
||||
fbcon_redraw_move(vc, p, t + count, b - t - count, t);
|
||||
|
|
|
@ -67,12 +67,13 @@ static struct inode *debugfs_get_inode(struct super_block *sb, int mode, dev_t d
|
|||
static int debugfs_mknod(struct inode *dir, struct dentry *dentry,
|
||||
int mode, dev_t dev)
|
||||
{
|
||||
struct inode *inode = debugfs_get_inode(dir->i_sb, mode, dev);
|
||||
struct inode *inode;
|
||||
int error = -EPERM;
|
||||
|
||||
if (dentry->d_inode)
|
||||
return -EEXIST;
|
||||
|
||||
inode = debugfs_get_inode(dir->i_sb, mode, dev);
|
||||
if (inode) {
|
||||
d_instantiate(dentry, inode);
|
||||
dget(dentry);
|
||||
|
|
|
@ -11,6 +11,8 @@ struct pxaohci_platform_data {
|
|||
#define PMM_NPS_MODE 1
|
||||
#define PMM_GLOBAL_MODE 2
|
||||
#define PMM_PERPORT_MODE 3
|
||||
|
||||
int power_budget;
|
||||
};
|
||||
|
||||
extern void pxa_set_ohci_info(struct pxaohci_platform_data *info);
|
||||
|
|
|
@ -11,23 +11,24 @@
|
|||
#define __futex_atomic_fixup \
|
||||
".section __ex_table,\"a\"\n" \
|
||||
" .align 4\n" \
|
||||
" .long 0b,2b,1b,2b\n" \
|
||||
" .long 0b,4b,2b,4b,3b,4b\n" \
|
||||
".previous"
|
||||
#else /* __s390x__ */
|
||||
#define __futex_atomic_fixup \
|
||||
".section __ex_table,\"a\"\n" \
|
||||
" .align 8\n" \
|
||||
" .quad 0b,2b,1b,2b\n" \
|
||||
" .quad 0b,4b,2b,4b,3b,4b\n" \
|
||||
".previous"
|
||||
#endif /* __s390x__ */
|
||||
|
||||
#define __futex_atomic_op(insn, ret, oldval, newval, uaddr, oparg) \
|
||||
asm volatile(" l %1,0(%6)\n" \
|
||||
"0: " insn \
|
||||
" cs %1,%2,0(%6)\n" \
|
||||
"1: jl 0b\n" \
|
||||
asm volatile(" sacf 256\n" \
|
||||
"0: l %1,0(%6)\n" \
|
||||
"1: " insn \
|
||||
"2: cs %1,%2,0(%6)\n" \
|
||||
"3: jl 1b\n" \
|
||||
" lhi %0,0\n" \
|
||||
"2:\n" \
|
||||
"4: sacf 0\n" \
|
||||
__futex_atomic_fixup \
|
||||
: "=d" (ret), "=&d" (oldval), "=&d" (newval), \
|
||||
"=m" (*uaddr) \
|
||||
|
|
|
@ -21,7 +21,7 @@ typedef void (elevator_put_req_fn) (request_queue_t *, struct request *);
|
|||
typedef void (elevator_activate_req_fn) (request_queue_t *, struct request *);
|
||||
typedef void (elevator_deactivate_req_fn) (request_queue_t *, struct request *);
|
||||
|
||||
typedef int (elevator_init_fn) (request_queue_t *, elevator_t *);
|
||||
typedef void *(elevator_init_fn) (request_queue_t *, elevator_t *);
|
||||
typedef void (elevator_exit_fn) (elevator_t *);
|
||||
|
||||
struct elevator_ops
|
||||
|
|
|
@ -1114,8 +1114,11 @@ static inline struct i2o_message *i2o_msg_get(struct i2o_controller *c)
|
|||
|
||||
mmsg->mfa = readl(c->in_port);
|
||||
if (unlikely(mmsg->mfa >= c->in_queue.len)) {
|
||||
u32 mfa = mmsg->mfa;
|
||||
|
||||
mempool_free(mmsg, c->in_msg.mempool);
|
||||
if(mmsg->mfa == I2O_QUEUE_EMPTY)
|
||||
|
||||
if (mfa == I2O_QUEUE_EMPTY)
|
||||
return ERR_PTR(-EBUSY);
|
||||
return ERR_PTR(-EFAULT);
|
||||
}
|
||||
|
|
|
@ -36,6 +36,7 @@
|
|||
#include <linux/nodemask.h>
|
||||
|
||||
struct vm_area_struct;
|
||||
struct mm_struct;
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
|
||||
|
|
|
@ -50,7 +50,7 @@
|
|||
extern acpi_status pci_osc_control_set(acpi_handle handle, u32 flags);
|
||||
extern acpi_status pci_osc_support_set(u32 flags);
|
||||
#else
|
||||
#if !defined(acpi_status)
|
||||
#if !defined(AE_ERROR)
|
||||
typedef u32 acpi_status;
|
||||
#define AE_ERROR (acpi_status) (0x0001)
|
||||
#endif
|
||||
|
|
|
@ -1780,6 +1780,7 @@ static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
|
|||
if (!simple_empty(dentry))
|
||||
return -ENOTEMPTY;
|
||||
|
||||
dentry->d_inode->i_nlink--;
|
||||
dir->i_nlink--;
|
||||
return shmem_unlink(dir, dentry);
|
||||
}
|
||||
|
@ -2102,6 +2103,7 @@ static int shmem_fill_super(struct super_block *sb,
|
|||
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
|
||||
sb->s_magic = TMPFS_MAGIC;
|
||||
sb->s_op = &shmem_ops;
|
||||
sb->s_time_gran = 1;
|
||||
|
||||
inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
|
||||
if (!inode)
|
||||
|
|
|
@ -1061,7 +1061,7 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
|
|||
loop_again:
|
||||
total_scanned = 0;
|
||||
nr_reclaimed = 0;
|
||||
sc.may_writepage = !laptop_mode,
|
||||
sc.may_writepage = !laptop_mode;
|
||||
sc.nr_mapped = read_page_state(nr_mapped);
|
||||
|
||||
inc_page_state(pageoutrun);
|
||||
|
|
|
@ -452,6 +452,7 @@ found:
|
|||
(unsigned long long)
|
||||
avr->dccpavr_ack_ackno);
|
||||
dccp_ackvec_throw_record(av, avr);
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* If it wasn't received, continue scanning... we might
|
||||
|
|
|
@ -116,6 +116,7 @@ sr_failed:
|
|||
|
||||
too_many_hops:
|
||||
/* Tell the sender its packet died... */
|
||||
IP_INC_STATS_BH(IPSTATS_MIB_INHDRERRORS);
|
||||
icmp_send(skb, ICMP_TIME_EXCEEDED, ICMP_EXC_TTL, 0);
|
||||
drop:
|
||||
kfree_skb(skb);
|
||||
|
|
|
@ -1649,7 +1649,7 @@ static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
|
|||
* Hence, we can detect timed out packets during fast
|
||||
* retransmit without falling to slow start.
|
||||
*/
|
||||
if (tcp_head_timedout(sk, tp)) {
|
||||
if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
|
||||
struct sk_buff *skb;
|
||||
|
||||
skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
|
||||
|
@ -1662,8 +1662,6 @@ static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
|
|||
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
|
||||
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
||||
tp->lost_out += tcp_skb_pcount(skb);
|
||||
if (IsReno(tp))
|
||||
tcp_remove_reno_sacks(sk, tp, tcp_skb_pcount(skb) + 1);
|
||||
|
||||
/* clear xmit_retrans hint */
|
||||
if (tp->retransmit_skb_hint &&
|
||||
|
|
Loading…
Reference in New Issue