x86 bitops: fix code style issues

Coding style cleanups:

- change __inline__ to inline;
- drop space in "* addr" parameters;
- drop space between func. name and '('

The "volatile" keywords are correct according to email from one
Linus Torvalds.

[Several other arches need some of this also.]

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Randy Dunlap 2007-10-25 14:27:24 -07:00 committed by Linus Torvalds
parent fb9431eb03
commit ade8c56cbd
1 changed files with 26 additions and 26 deletions

View File

@ -29,7 +29,7 @@
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void set_bit(int nr, volatile void * addr)
static inline void set_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btsl %1,%0"
@ -46,7 +46,7 @@ static __inline__ void set_bit(int nr, volatile void * addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
static inline void __set_bit(int nr, volatile void *addr)
{
__asm__ volatile(
"btsl %1,%0"
@ -64,7 +64,7 @@ static __inline__ void __set_bit(int nr, volatile void * addr)
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
static __inline__ void clear_bit(int nr, volatile void * addr)
static inline void clear_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btrl %1,%0"
@ -86,7 +86,7 @@ static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *ad
clear_bit(nr, addr);
}
static __inline__ void __clear_bit(int nr, volatile void * addr)
static inline void __clear_bit(int nr, volatile void *addr)
{
__asm__ __volatile__(
"btrl %1,%0"
@ -124,7 +124,7 @@ static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
static inline void __change_bit(int nr, volatile void *addr)
{
__asm__ __volatile__(
"btcl %1,%0"
@ -141,7 +141,7 @@ static __inline__ void __change_bit(int nr, volatile void * addr)
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void change_bit(int nr, volatile void * addr)
static inline void change_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btcl %1,%0"
@ -157,7 +157,7 @@ static __inline__ void change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
static inline int test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@ -175,7 +175,7 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
*
* This is the same as test_and_set_bit on x86.
*/
static __inline__ int test_and_set_bit_lock(int nr, volatile void *addr)
static inline int test_and_set_bit_lock(int nr, volatile void *addr)
{
return test_and_set_bit(nr, addr);
}
@ -189,7 +189,7 @@ static __inline__ int test_and_set_bit_lock(int nr, volatile void *addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
static inline int __test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@ -208,7 +208,7 @@ static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
static inline int test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@ -228,7 +228,7 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
static inline int __test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@ -240,7 +240,7 @@ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
}
/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
static inline int __test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@ -259,7 +259,7 @@ static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
static inline int test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@ -276,15 +276,15 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
* @nr: bit number to test
* @addr: Address to start counting from
*/
static int test_bit(int nr, const volatile void * addr);
static int test_bit(int nr, const volatile void *addr);
#endif
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
static inline int constant_test_bit(int nr, const volatile void *addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
static __inline__ int variable_test_bit(int nr, volatile const void * addr)
static inline int variable_test_bit(int nr, volatile const void *addr)
{
int oldbit;
@ -302,10 +302,10 @@ static __inline__ int variable_test_bit(int nr, volatile const void * addr)
#undef ADDR
extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
extern long find_first_bit(const unsigned long * addr, unsigned long size);
extern long find_next_bit(const unsigned long * addr, long size, long offset);
extern long find_first_zero_bit(const unsigned long *addr, unsigned long size);
extern long find_next_zero_bit(const unsigned long *addr, long size, long offset);
extern long find_first_bit(const unsigned long *addr, unsigned long size);
extern long find_next_bit(const unsigned long *addr, long size, long offset);
/* return index of first bet set in val or max when no bit is set */
static inline long __scanbit(unsigned long val, unsigned long max)
@ -366,7 +366,7 @@ static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long ffz(unsigned long word)
static inline unsigned long ffz(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
@ -380,7 +380,7 @@ static __inline__ unsigned long ffz(unsigned long word)
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static __inline__ unsigned long __ffs(unsigned long word)
static inline unsigned long __ffs(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
@ -394,7 +394,7 @@ static __inline__ unsigned long __ffs(unsigned long word)
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long __fls(unsigned long word)
static inline unsigned long __fls(unsigned long word)
{
__asm__("bsrq %1,%0"
:"=r" (word)
@ -414,7 +414,7 @@ static __inline__ unsigned long __fls(unsigned long word)
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static __inline__ int ffs(int x)
static inline int ffs(int x)
{
int r;
@ -430,7 +430,7 @@ static __inline__ int ffs(int x)
*
* This is defined the same way as fls.
*/
static __inline__ int fls64(__u64 x)
static inline int fls64(__u64 x)
{
if (x == 0)
return 0;
@ -443,7 +443,7 @@ static __inline__ int fls64(__u64 x)
*
* This is defined the same way as ffs.
*/
static __inline__ int fls(int x)
static inline int fls(int x)
{
int r;