e1000e: reformat comment blocks, cosmetic changes only
Adjusting the comment blocks here to be code-style compliant. no code changes. Changed some copyright dates to 2008. Indentation fixes. Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
This commit is contained in:
parent
652f093fdf
commit
ad68076e07
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -29,6 +29,9 @@
|
|||
/*
|
||||
* 82571EB Gigabit Ethernet Controller
|
||||
* 82571EB Gigabit Ethernet Controller (Fiber)
|
||||
* 82571EB Dual Port Gigabit Mezzanine Adapter
|
||||
* 82571EB Quad Port Gigabit Mezzanine Adapter
|
||||
* 82571PT Gigabit PT Quad Port Server ExpressModule
|
||||
* 82572EI Gigabit Ethernet Controller (Copper)
|
||||
* 82572EI Gigabit Ethernet Controller (Fiber)
|
||||
* 82572EI Gigabit Ethernet Controller
|
||||
|
@ -150,7 +153,8 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
|
|||
if (((eecd >> 15) & 0x3) == 0x3) {
|
||||
nvm->type = e1000_nvm_flash_hw;
|
||||
nvm->word_size = 2048;
|
||||
/* Autonomous Flash update bit must be cleared due
|
||||
/*
|
||||
* Autonomous Flash update bit must be cleared due
|
||||
* to Flash update issue.
|
||||
*/
|
||||
eecd &= ~E1000_EECD_AUPDEN;
|
||||
|
@ -159,10 +163,11 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
|
|||
}
|
||||
/* Fall Through */
|
||||
default:
|
||||
nvm->type = e1000_nvm_eeprom_spi;
|
||||
nvm->type = e1000_nvm_eeprom_spi;
|
||||
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
||||
E1000_EECD_SIZE_EX_SHIFT);
|
||||
/* Added to a constant, "size" becomes the left-shift value
|
||||
/*
|
||||
* Added to a constant, "size" becomes the left-shift value
|
||||
* for setting word_size.
|
||||
*/
|
||||
size += NVM_WORD_SIZE_BASE_SHIFT;
|
||||
|
@ -208,8 +213,7 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
|
|||
/* Set rar entry count */
|
||||
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
||||
/* Set if manageability features are enabled. */
|
||||
mac->arc_subsystem_valid =
|
||||
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
||||
mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
||||
|
||||
/* check for link */
|
||||
switch (hw->media_type) {
|
||||
|
@ -219,14 +223,18 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
|
|||
func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
|
||||
break;
|
||||
case e1000_media_type_fiber:
|
||||
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
|
||||
func->setup_physical_interface =
|
||||
e1000_setup_fiber_serdes_link_82571;
|
||||
func->check_for_link = e1000e_check_for_fiber_link;
|
||||
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
|
||||
func->get_link_up_info =
|
||||
e1000e_get_speed_and_duplex_fiber_serdes;
|
||||
break;
|
||||
case e1000_media_type_internal_serdes:
|
||||
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
|
||||
func->setup_physical_interface =
|
||||
e1000_setup_fiber_serdes_link_82571;
|
||||
func->check_for_link = e1000e_check_for_serdes_link;
|
||||
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
|
||||
func->get_link_up_info =
|
||||
e1000e_get_speed_and_duplex_fiber_serdes;
|
||||
break;
|
||||
default:
|
||||
return -E1000_ERR_CONFIG;
|
||||
|
@ -322,10 +330,12 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
|
|||
switch (hw->mac.type) {
|
||||
case e1000_82571:
|
||||
case e1000_82572:
|
||||
/* The 82571 firmware may still be configuring the PHY.
|
||||
/*
|
||||
* The 82571 firmware may still be configuring the PHY.
|
||||
* In this case, we cannot access the PHY until the
|
||||
* configuration is done. So we explicitly set the
|
||||
* PHY ID. */
|
||||
* PHY ID.
|
||||
*/
|
||||
phy->id = IGP01E1000_I_PHY_ID;
|
||||
break;
|
||||
case e1000_82573:
|
||||
|
@ -479,8 +489,10 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* If our nvm is an EEPROM, then we're done
|
||||
* otherwise, commit the checksum to the flash NVM. */
|
||||
/*
|
||||
* If our nvm is an EEPROM, then we're done
|
||||
* otherwise, commit the checksum to the flash NVM.
|
||||
*/
|
||||
if (hw->nvm.type != e1000_nvm_flash_hw)
|
||||
return ret_val;
|
||||
|
||||
|
@ -496,7 +508,8 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
|
|||
|
||||
/* Reset the firmware if using STM opcode. */
|
||||
if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
|
||||
/* The enabling of and the actual reset must be done
|
||||
/*
|
||||
* The enabling of and the actual reset must be done
|
||||
* in two write cycles.
|
||||
*/
|
||||
ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
|
||||
|
@ -557,8 +570,10 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
|
|||
u32 eewr = 0;
|
||||
s32 ret_val = 0;
|
||||
|
||||
/* A check for invalid values: offset too large, too many words,
|
||||
* and not enough words. */
|
||||
/*
|
||||
* A check for invalid values: offset too large, too many words,
|
||||
* and not enough words.
|
||||
*/
|
||||
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
||||
(words == 0)) {
|
||||
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||||
|
@ -645,30 +660,32 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
|
|||
} else {
|
||||
data &= ~IGP02E1000_PM_D0_LPLU;
|
||||
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
|
||||
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
/*
|
||||
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
* during Dx states where the power conservation is most
|
||||
* important. During driver activity we should enable
|
||||
* SmartSpeed, so performance is maintained. */
|
||||
* SmartSpeed, so performance is maintained.
|
||||
*/
|
||||
if (phy->smart_speed == e1000_smart_speed_on) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -693,7 +710,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 i = 0;
|
||||
|
||||
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
/*
|
||||
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
* on the last TLP read/write transaction when MAC is reset.
|
||||
*/
|
||||
ret_val = e1000e_disable_pcie_master(hw);
|
||||
|
@ -709,8 +727,10 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
|
|||
|
||||
msleep(10);
|
||||
|
||||
/* Must acquire the MDIO ownership before MAC reset.
|
||||
* Ownership defaults to firmware after a reset. */
|
||||
/*
|
||||
* Must acquire the MDIO ownership before MAC reset.
|
||||
* Ownership defaults to firmware after a reset.
|
||||
*/
|
||||
if (hw->mac.type == e1000_82573) {
|
||||
extcnf_ctrl = er32(EXTCNF_CTRL);
|
||||
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
|
||||
|
@ -747,7 +767,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
|
|||
/* We don't want to continue accessing MAC registers. */
|
||||
return ret_val;
|
||||
|
||||
/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
|
||||
/*
|
||||
* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
|
||||
* Need to wait for Phy configuration completion before accessing
|
||||
* NVM and Phy.
|
||||
*/
|
||||
|
@ -793,7 +814,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
|
|||
e1000e_clear_vfta(hw);
|
||||
|
||||
/* Setup the receive address. */
|
||||
/* If, however, a locally administered address was assigned to the
|
||||
/*
|
||||
* If, however, a locally administered address was assigned to the
|
||||
* 82571, we must reserve a RAR for it to work around an issue where
|
||||
* resetting one port will reload the MAC on the other port.
|
||||
*/
|
||||
|
@ -830,7 +852,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
|
|||
ew32(GCR, reg_data);
|
||||
}
|
||||
|
||||
/* Clear all of the statistics registers (clear on read). It is
|
||||
/*
|
||||
* Clear all of the statistics registers (clear on read). It is
|
||||
* important that we do this after we have tried to establish link
|
||||
* because the symbol error count will increment wildly if there
|
||||
* is no link.
|
||||
|
@ -922,7 +945,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
|
|||
|
||||
if (hw->mac.type == e1000_82573) {
|
||||
if (hw->mng_cookie.vlan_id != 0) {
|
||||
/* The VFTA is a 4096b bit-field, each identifying
|
||||
/*
|
||||
* The VFTA is a 4096b bit-field, each identifying
|
||||
* a single VLAN ID. The following operations
|
||||
* determine which 32b entry (i.e. offset) into the
|
||||
* array we want to set the VLAN ID (i.e. bit) of
|
||||
|
@ -936,7 +960,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
|
|||
}
|
||||
}
|
||||
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
||||
/* If the offset we want to clear is the same offset of the
|
||||
/*
|
||||
* If the offset we want to clear is the same offset of the
|
||||
* manageability VLAN ID, then clear all bits except that of
|
||||
* the manageability unit.
|
||||
*/
|
||||
|
@ -984,7 +1009,8 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
|
|||
**/
|
||||
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
|
||||
{
|
||||
/* 82573 does not have a word in the NVM to determine
|
||||
/*
|
||||
* 82573 does not have a word in the NVM to determine
|
||||
* the default flow control setting, so we explicitly
|
||||
* set it to full.
|
||||
*/
|
||||
|
@ -1050,14 +1076,14 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
|
|||
switch (hw->mac.type) {
|
||||
case e1000_82571:
|
||||
case e1000_82572:
|
||||
/* If SerDes loopback mode is entered, there is no form
|
||||
/*
|
||||
* If SerDes loopback mode is entered, there is no form
|
||||
* of reset to take the adapter out of that mode. So we
|
||||
* have to explicitly take the adapter out of loopback
|
||||
* mode. This prevents drivers from twiddling their thumbs
|
||||
* if another tool failed to take it out of loopback mode.
|
||||
*/
|
||||
ew32(SCTL,
|
||||
E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
||||
ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
@ -1124,7 +1150,8 @@ void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
|
|||
|
||||
/* If workaround is activated... */
|
||||
if (state)
|
||||
/* Hold a copy of the LAA in RAR[14] This is done so that
|
||||
/*
|
||||
* Hold a copy of the LAA in RAR[14] This is done so that
|
||||
* between the time RAR[0] gets clobbered and the time it
|
||||
* gets fixed, the actual LAA is in one of the RARs and no
|
||||
* incoming packets directed to this port are dropped.
|
||||
|
@ -1152,7 +1179,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
|
|||
if (nvm->type != e1000_nvm_flash_hw)
|
||||
return 0;
|
||||
|
||||
/* Check bit 4 of word 10h. If it is 0, firmware is done updating
|
||||
/*
|
||||
* Check bit 4 of word 10h. If it is 0, firmware is done updating
|
||||
* 10h-12h. Checksum may need to be fixed.
|
||||
*/
|
||||
ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
|
||||
|
@ -1160,7 +1188,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
|
||||
if (!(data & 0x10)) {
|
||||
/* Read 0x23 and check bit 15. This bit is a 1
|
||||
/*
|
||||
* Read 0x23 and check bit 15. This bit is a 1
|
||||
* when the checksum has already been fixed. If
|
||||
* the checksum is still wrong and this bit is a
|
||||
* 1, we need to return bad checksum. Otherwise,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
################################################################################
|
||||
#
|
||||
# Intel PRO/1000 Linux driver
|
||||
# Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
# Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
#
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms and conditions of the GNU General Public License,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -120,10 +120,10 @@
|
|||
#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
|
||||
#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
|
||||
#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
|
||||
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
|
||||
* filtering */
|
||||
#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
|
||||
* memory */
|
||||
/* Enable MAC address filtering */
|
||||
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
|
||||
/* Enable MNG packets to host memory */
|
||||
#define E1000_MANC_EN_MNG2HOST 0x00200000
|
||||
|
||||
/* Receive Control */
|
||||
#define E1000_RCTL_EN 0x00000002 /* enable */
|
||||
|
@ -135,25 +135,26 @@
|
|||
#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
|
||||
#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
|
||||
#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
|
||||
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
|
||||
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */
|
||||
#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
|
||||
#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
|
||||
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
|
||||
#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
|
||||
#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
|
||||
#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
|
||||
#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
|
||||
#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
|
||||
#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
|
||||
#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
|
||||
#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
|
||||
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
|
||||
#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
|
||||
#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
|
||||
#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
|
||||
#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
|
||||
#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
|
||||
#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
|
||||
#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
|
||||
#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
|
||||
#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
|
||||
#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
|
||||
#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
|
||||
|
||||
/* Use byte values for the following shift parameters
|
||||
/*
|
||||
* Use byte values for the following shift parameters
|
||||
* Usage:
|
||||
* psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
|
||||
* E1000_PSRCTL_BSIZE0_MASK) |
|
||||
|
@ -206,7 +207,8 @@
|
|||
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
|
||||
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
|
||||
|
||||
/* Bit definitions for the Management Data IO (MDIO) and Management Data
|
||||
/*
|
||||
* Bit definitions for the Management Data IO (MDIO) and Management Data
|
||||
* Clock (MDC) pins in the Device Control Register.
|
||||
*/
|
||||
|
||||
|
@ -279,7 +281,7 @@
|
|||
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
|
||||
|
||||
/* Transmit Control */
|
||||
#define E1000_TCTL_EN 0x00000002 /* enable tx */
|
||||
#define E1000_TCTL_EN 0x00000002 /* enable Tx */
|
||||
#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
|
||||
#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
|
||||
#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
|
||||
|
@ -337,8 +339,8 @@
|
|||
#define E1000_KABGTXD_BGSQLBIAS 0x00050000
|
||||
|
||||
/* PBA constants */
|
||||
#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
|
||||
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
|
||||
#define E1000_PBA_8K 0x0008 /* 8KB */
|
||||
#define E1000_PBA_16K 0x0010 /* 16KB */
|
||||
|
||||
#define E1000_PBS_16K E1000_PBA_16K
|
||||
|
||||
|
@ -356,12 +358,13 @@
|
|||
/* Interrupt Cause Read */
|
||||
#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
|
||||
#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
|
||||
#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
|
||||
#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
|
||||
#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
|
||||
#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
|
||||
#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
|
||||
#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
|
||||
#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
|
||||
|
||||
/* This defines the bits that are set in the Interrupt Mask
|
||||
/*
|
||||
* This defines the bits that are set in the Interrupt Mask
|
||||
* Set/Read Register. Each bit is documented below:
|
||||
* o RXT0 = Receiver Timer Interrupt (ring 0)
|
||||
* o TXDW = Transmit Descriptor Written Back
|
||||
|
@ -379,21 +382,22 @@
|
|||
/* Interrupt Mask Set */
|
||||
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
|
||||
#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
|
||||
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
|
||||
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
|
||||
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
|
||||
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
|
||||
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
|
||||
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
|
||||
|
||||
/* Interrupt Cause Set */
|
||||
#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
|
||||
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
|
||||
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
|
||||
|
||||
/* Transmit Descriptor Control */
|
||||
#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
|
||||
#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
|
||||
#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
|
||||
#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
|
||||
#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
|
||||
still to be processed. */
|
||||
/* Enable the counting of desc. still to be processed. */
|
||||
#define E1000_TXDCTL_COUNT_DESC 0x00400000
|
||||
|
||||
/* Flow Control Constants */
|
||||
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
|
||||
|
@ -404,7 +408,8 @@
|
|||
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
|
||||
|
||||
/* Receive Address */
|
||||
/* Number of high/low register pairs in the RAR. The RAR (Receive Address
|
||||
/*
|
||||
* Number of high/low register pairs in the RAR. The RAR (Receive Address
|
||||
* Registers) holds the directed and multicast addresses that we monitor.
|
||||
* Technically, we have 16 spots. However, we reserve one of these spots
|
||||
* (RAR[15]) for our directed address used by controllers with
|
||||
|
@ -533,8 +538,8 @@
|
|||
#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
|
||||
#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
|
||||
#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
|
||||
#define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type
|
||||
* (0-small, 1-large) */
|
||||
/* NVM Addressing bits based on type (0-small, 1-large) */
|
||||
#define E1000_EECD_ADDR_BITS 0x00000400
|
||||
#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
|
||||
#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
|
||||
#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
|
||||
|
@ -626,7 +631,8 @@
|
|||
#define MAX_PHY_MULTI_PAGE_REG 0xF
|
||||
|
||||
/* Bit definitions for valid PHY IDs. */
|
||||
/* I = Integrated
|
||||
/*
|
||||
* I = Integrated
|
||||
* E = External
|
||||
*/
|
||||
#define M88E1000_E_PHY_ID 0x01410C50
|
||||
|
@ -653,37 +659,37 @@
|
|||
#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
|
||||
/* Manual MDI configuration */
|
||||
#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
|
||||
#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
|
||||
* 100BASE-TX/10BASE-T:
|
||||
* MDI Mode
|
||||
*/
|
||||
#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
|
||||
* all speeds.
|
||||
*/
|
||||
/* 1=Enable Extended 10BASE-T distance
|
||||
* (Lower 10BASE-T RX Threshold)
|
||||
* 0=Normal 10BASE-T RX Threshold */
|
||||
/* 1=5-Bit interface in 100BASE-TX
|
||||
* 0=MII interface in 100BASE-TX */
|
||||
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
|
||||
/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
|
||||
#define M88E1000_PSCR_AUTO_X_1000T 0x0040
|
||||
/* Auto crossover enabled all speeds */
|
||||
#define M88E1000_PSCR_AUTO_X_MODE 0x0060
|
||||
/*
|
||||
* 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
|
||||
* 0=Normal 10BASE-T Rx Threshold
|
||||
*/
|
||||
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
|
||||
|
||||
/* M88E1000 PHY Specific Status Register */
|
||||
#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
|
||||
#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
|
||||
#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
|
||||
#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
|
||||
* 3=110-140M;4=>140M */
|
||||
/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
|
||||
#define M88E1000_PSSR_CABLE_LENGTH 0x0380
|
||||
#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
|
||||
#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
|
||||
|
||||
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
|
||||
|
||||
/* Number of times we will attempt to autonegotiate before downshifting if we
|
||||
* are the master */
|
||||
/*
|
||||
* Number of times we will attempt to autonegotiate before downshifting if we
|
||||
* are the master
|
||||
*/
|
||||
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
|
||||
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
|
||||
/* Number of times we will attempt to autonegotiate before downshifting if we
|
||||
* are the slave */
|
||||
/*
|
||||
* Number of times we will attempt to autonegotiate before downshifting if we
|
||||
* are the slave
|
||||
*/
|
||||
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
|
||||
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
|
||||
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
|
||||
|
@ -692,7 +698,8 @@
|
|||
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
|
||||
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
|
||||
|
||||
/* Bits...
|
||||
/*
|
||||
* Bits...
|
||||
* 15-5: page
|
||||
* 4-0: register offset
|
||||
*/
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -61,7 +61,7 @@ struct e1000_info;
|
|||
ndev_printk(KERN_NOTICE , netdev, format, ## arg)
|
||||
|
||||
|
||||
/* TX/RX descriptor defines */
|
||||
/* Tx/Rx descriptor defines */
|
||||
#define E1000_DEFAULT_TXD 256
|
||||
#define E1000_MAX_TXD 4096
|
||||
#define E1000_MIN_TXD 80
|
||||
|
@ -114,13 +114,13 @@ struct e1000_buffer {
|
|||
dma_addr_t dma;
|
||||
struct sk_buff *skb;
|
||||
union {
|
||||
/* TX */
|
||||
/* Tx */
|
||||
struct {
|
||||
unsigned long time_stamp;
|
||||
u16 length;
|
||||
u16 next_to_watch;
|
||||
};
|
||||
/* RX */
|
||||
/* Rx */
|
||||
/* arrays of page information for packet split */
|
||||
struct e1000_ps_page *ps_pages;
|
||||
};
|
||||
|
@ -177,7 +177,7 @@ struct e1000_adapter {
|
|||
u16 rx_itr;
|
||||
|
||||
/*
|
||||
* TX
|
||||
* Tx
|
||||
*/
|
||||
struct e1000_ring *tx_ring /* One per active queue */
|
||||
____cacheline_aligned_in_smp;
|
||||
|
@ -199,7 +199,7 @@ struct e1000_adapter {
|
|||
unsigned int total_rx_bytes;
|
||||
unsigned int total_rx_packets;
|
||||
|
||||
/* TX stats */
|
||||
/* Tx stats */
|
||||
u64 tpt_old;
|
||||
u64 colc_old;
|
||||
u64 gotcl_old;
|
||||
|
@ -211,7 +211,7 @@ struct e1000_adapter {
|
|||
u32 tx_dma_failed;
|
||||
|
||||
/*
|
||||
* RX
|
||||
* Rx
|
||||
*/
|
||||
bool (*clean_rx) (struct e1000_adapter *adapter,
|
||||
int *work_done, int work_to_do)
|
||||
|
@ -223,7 +223,7 @@ struct e1000_adapter {
|
|||
u32 rx_int_delay;
|
||||
u32 rx_abs_int_delay;
|
||||
|
||||
/* RX stats */
|
||||
/* Rx stats */
|
||||
u64 hw_csum_err;
|
||||
u64 hw_csum_good;
|
||||
u64 rx_hdr_split;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -92,7 +92,8 @@
|
|||
/* In-Band Control Register (Page 194, Register 18) */
|
||||
#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
|
||||
|
||||
/* A table for the GG82563 cable length where the range is defined
|
||||
/*
|
||||
* A table for the GG82563 cable length where the range is defined
|
||||
* with a lower bound at "index" and the upper bound at
|
||||
* "index + 5".
|
||||
*/
|
||||
|
@ -167,12 +168,13 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
|
|||
break;
|
||||
}
|
||||
|
||||
nvm->type = e1000_nvm_eeprom_spi;
|
||||
nvm->type = e1000_nvm_eeprom_spi;
|
||||
|
||||
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
||||
E1000_EECD_SIZE_EX_SHIFT);
|
||||
|
||||
/* Added to a constant, "size" becomes the left-shift value
|
||||
/*
|
||||
* Added to a constant, "size" becomes the left-shift value
|
||||
* for setting word_size.
|
||||
*/
|
||||
size += NVM_WORD_SIZE_BASE_SHIFT;
|
||||
|
@ -208,8 +210,7 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
|
|||
/* Set rar entry count */
|
||||
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
||||
/* Set if manageability features are enabled. */
|
||||
mac->arc_subsystem_valid =
|
||||
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
||||
mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
||||
|
||||
/* check for link */
|
||||
switch (hw->media_type) {
|
||||
|
@ -344,8 +345,10 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
|
|||
if (!(swfw_sync & (fwmask | swmask)))
|
||||
break;
|
||||
|
||||
/* Firmware currently using resource (fwmask)
|
||||
* or other software thread using resource (swmask) */
|
||||
/*
|
||||
* Firmware currently using resource (fwmask)
|
||||
* or other software thread using resource (swmask)
|
||||
*/
|
||||
e1000e_put_hw_semaphore(hw);
|
||||
mdelay(5);
|
||||
i++;
|
||||
|
@ -407,7 +410,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|||
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
|
||||
page_select = GG82563_PHY_PAGE_SELECT;
|
||||
else
|
||||
/* Use Alternative Page Select register to access
|
||||
/*
|
||||
* Use Alternative Page Select register to access
|
||||
* registers 30 and 31
|
||||
*/
|
||||
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
||||
|
@ -417,7 +421,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* The "ready" bit in the MDIC register may be incorrectly set
|
||||
/*
|
||||
* The "ready" bit in the MDIC register may be incorrectly set
|
||||
* before the device has completed the "Page Select" MDI
|
||||
* transaction. So we wait 200us after each MDI command...
|
||||
*/
|
||||
|
@ -462,7 +467,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|||
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
|
||||
page_select = GG82563_PHY_PAGE_SELECT;
|
||||
else
|
||||
/* Use Alternative Page Select register to access
|
||||
/*
|
||||
* Use Alternative Page Select register to access
|
||||
* registers 30 and 31
|
||||
*/
|
||||
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
||||
|
@ -473,7 +479,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|||
return ret_val;
|
||||
|
||||
|
||||
/* The "ready" bit in the MDIC register may be incorrectly set
|
||||
/*
|
||||
* The "ready" bit in the MDIC register may be incorrectly set
|
||||
* before the device has completed the "Page Select" MDI
|
||||
* transaction. So we wait 200us after each MDI command...
|
||||
*/
|
||||
|
@ -554,7 +561,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
|||
u16 phy_data;
|
||||
bool link;
|
||||
|
||||
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
||||
/*
|
||||
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
||||
* forced whenever speed and duplex are forced.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||||
|
@ -593,7 +601,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
|
||||
if (!link) {
|
||||
/* We didn't get link.
|
||||
/*
|
||||
* We didn't get link.
|
||||
* Reset the DSP and cross our fingers.
|
||||
*/
|
||||
ret_val = e1000e_phy_reset_dsp(hw);
|
||||
|
@ -612,7 +621,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Resetting the phy means we need to verify the TX_CLK corresponds
|
||||
/*
|
||||
* Resetting the phy means we need to verify the TX_CLK corresponds
|
||||
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
|
||||
*/
|
||||
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
|
||||
|
@ -621,7 +631,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
|||
else
|
||||
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
|
||||
|
||||
/* In addition, we must re-enable CRS on Tx for both half and full
|
||||
/*
|
||||
* In addition, we must re-enable CRS on Tx for both half and full
|
||||
* duplex.
|
||||
*/
|
||||
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
||||
|
@ -704,7 +715,8 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
|
|||
u32 icr;
|
||||
s32 ret_val;
|
||||
|
||||
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
/*
|
||||
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
* on the last TLP read/write transaction when MAC is reset.
|
||||
*/
|
||||
ret_val = e1000e_disable_pcie_master(hw);
|
||||
|
@ -808,7 +820,8 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
|
|||
reg_data &= ~0x00100000;
|
||||
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
|
||||
|
||||
/* Clear all of the statistics registers (clear on read). It is
|
||||
/*
|
||||
* Clear all of the statistics registers (clear on read). It is
|
||||
* important that we do this after we have tried to establish link
|
||||
* because the symbol error count will increment wildly if there
|
||||
* is no link.
|
||||
|
@ -881,7 +894,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Options:
|
||||
/*
|
||||
* Options:
|
||||
* MDI/MDI-X = 0 (default)
|
||||
* 0 - Auto for all speeds
|
||||
* 1 - MDI mode
|
||||
|
@ -907,7 +921,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|||
break;
|
||||
}
|
||||
|
||||
/* Options:
|
||||
/*
|
||||
* Options:
|
||||
* disable_polarity_correction = 0 (default)
|
||||
* Automatic Correction for Reversed Cable Polarity
|
||||
* 0 - Disabled
|
||||
|
@ -928,10 +943,9 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Bypass RX and TX FIFO's */
|
||||
ret_val = e1000e_write_kmrn_reg(hw,
|
||||
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
|
||||
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
|
||||
/* Bypass Rx and Tx FIFO's */
|
||||
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
|
||||
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
|
||||
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
@ -953,7 +967,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Do not init these registers when the HW is in IAMT mode, since the
|
||||
/*
|
||||
* Do not init these registers when the HW is in IAMT mode, since the
|
||||
* firmware will have already initialized them. We only initialize
|
||||
* them if the HW is not in IAMT mode.
|
||||
*/
|
||||
|
@ -974,7 +989,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Workaround: Disable padding in Kumeran interface in the MAC
|
||||
/*
|
||||
* Workaround: Disable padding in Kumeran interface in the MAC
|
||||
* and in the PHY to avoid CRC errors.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
|
||||
|
@ -1007,9 +1023,11 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
|
|||
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||||
ew32(CTRL, ctrl);
|
||||
|
||||
/* Set the mac to wait the maximum time between each
|
||||
/*
|
||||
* Set the mac to wait the maximum time between each
|
||||
* iteration and increase the max iterations when
|
||||
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
|
||||
* polling the phy; this fixes erroneous timeouts at 10Mbps.
|
||||
*/
|
||||
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
@ -1026,9 +1044,8 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
|
||||
ret_val = e1000e_write_kmrn_reg(hw,
|
||||
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
||||
reg_data);
|
||||
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
||||
reg_data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
|
@ -1056,9 +1073,8 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
|
|||
u16 reg_data;
|
||||
|
||||
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
|
||||
ret_val = e1000e_write_kmrn_reg(hw,
|
||||
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
||||
reg_data);
|
||||
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
||||
reg_data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
|
@ -1096,9 +1112,8 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
|
|||
u32 tipg;
|
||||
|
||||
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
|
||||
ret_val = e1000e_write_kmrn_reg(hw,
|
||||
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
||||
reg_data);
|
||||
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
||||
reg_data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -102,7 +102,7 @@ static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
|
|||
"Interrupt test (offline)", "Loopback test (offline)",
|
||||
"Link test (on/offline)"
|
||||
};
|
||||
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
|
||||
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
|
||||
|
||||
static int e1000_get_settings(struct net_device *netdev,
|
||||
struct ethtool_cmd *ecmd)
|
||||
|
@ -226,8 +226,10 @@ static int e1000_set_settings(struct net_device *netdev,
|
|||
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||||
struct e1000_hw *hw = &adapter->hw;
|
||||
|
||||
/* When SoL/IDER sessions are active, autoneg/speed/duplex
|
||||
* cannot be changed */
|
||||
/*
|
||||
* When SoL/IDER sessions are active, autoneg/speed/duplex
|
||||
* cannot be changed
|
||||
*/
|
||||
if (e1000_check_reset_block(hw)) {
|
||||
ndev_err(netdev, "Cannot change link "
|
||||
"characteristics when SoL/IDER is active.\n");
|
||||
|
@ -558,8 +560,10 @@ static int e1000_set_eeprom(struct net_device *netdev,
|
|||
ret_val = e1000_write_nvm(hw, first_word,
|
||||
last_word - first_word + 1, eeprom_buff);
|
||||
|
||||
/* Update the checksum over the first part of the EEPROM if needed
|
||||
* and flush shadow RAM for 82573 controllers */
|
||||
/*
|
||||
* Update the checksum over the first part of the EEPROM if needed
|
||||
* and flush shadow RAM for 82573 controllers
|
||||
*/
|
||||
if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
|
||||
(hw->mac.type == e1000_82573)))
|
||||
e1000e_update_nvm_checksum(hw);
|
||||
|
@ -578,8 +582,10 @@ static void e1000_get_drvinfo(struct net_device *netdev,
|
|||
strncpy(drvinfo->driver, e1000e_driver_name, 32);
|
||||
strncpy(drvinfo->version, e1000e_driver_version, 32);
|
||||
|
||||
/* EEPROM image version # is reported as firmware version # for
|
||||
* PCI-E controllers */
|
||||
/*
|
||||
* EEPROM image version # is reported as firmware version # for
|
||||
* PCI-E controllers
|
||||
*/
|
||||
e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
|
||||
sprintf(firmware_version, "%d.%d-%d",
|
||||
(eeprom_data & 0xF000) >> 12,
|
||||
|
@ -658,8 +664,10 @@ static int e1000_set_ringparam(struct net_device *netdev,
|
|||
if (err)
|
||||
goto err_setup_tx;
|
||||
|
||||
/* save the new, restore the old in order to free it,
|
||||
* then restore the new back again */
|
||||
/*
|
||||
* restore the old in order to free it,
|
||||
* then add in the new
|
||||
*/
|
||||
adapter->rx_ring = rx_old;
|
||||
adapter->tx_ring = tx_old;
|
||||
e1000e_free_rx_resources(adapter);
|
||||
|
@ -758,7 +766,8 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
|
|||
u32 i;
|
||||
u32 toggle;
|
||||
|
||||
/* The status register is Read Only, so a write should fail.
|
||||
/*
|
||||
* The status register is Read Only, so a write should fail.
|
||||
* Some bits that get toggled are ignored.
|
||||
*/
|
||||
switch (mac->type) {
|
||||
|
@ -908,7 +917,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
|
|||
mask = 1 << i;
|
||||
|
||||
if (!shared_int) {
|
||||
/* Disable the interrupt to be reported in
|
||||
/*
|
||||
* Disable the interrupt to be reported in
|
||||
* the cause register and then force the same
|
||||
* interrupt and see if one gets posted. If
|
||||
* an interrupt was posted to the bus, the
|
||||
|
@ -925,7 +935,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
|
|||
}
|
||||
}
|
||||
|
||||
/* Enable the interrupt to be reported in
|
||||
/*
|
||||
* Enable the interrupt to be reported in
|
||||
* the cause register and then force the same
|
||||
* interrupt and see if one gets posted. If
|
||||
* an interrupt was not posted to the bus, the
|
||||
|
@ -942,7 +953,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
|
|||
}
|
||||
|
||||
if (!shared_int) {
|
||||
/* Disable the other interrupts to be reported in
|
||||
/*
|
||||
* Disable the other interrupts to be reported in
|
||||
* the cause register and then force the other
|
||||
* interrupts and see if any get posted. If
|
||||
* an interrupt was posted to the bus, the
|
||||
|
@ -1216,8 +1228,10 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
|
|||
adapter->hw.phy.type == e1000_phy_m88) {
|
||||
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
|
||||
} else {
|
||||
/* Set the ILOS bit on the fiber Nic if half duplex link is
|
||||
* detected. */
|
||||
/*
|
||||
* Set the ILOS bit on the fiber Nic if half duplex link is
|
||||
* detected.
|
||||
*/
|
||||
stat_reg = er32(STATUS);
|
||||
if ((stat_reg & E1000_STATUS_FD) == 0)
|
||||
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
|
||||
|
@ -1225,7 +1239,8 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
|
|||
|
||||
ew32(CTRL, ctrl_reg);
|
||||
|
||||
/* Disable the receiver on the PHY so when a cable is plugged in, the
|
||||
/*
|
||||
* Disable the receiver on the PHY so when a cable is plugged in, the
|
||||
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
|
||||
*/
|
||||
if (adapter->hw.phy.type == e1000_phy_m88)
|
||||
|
@ -1244,8 +1259,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
|
|||
|
||||
/* special requirements for 82571/82572 fiber adapters */
|
||||
|
||||
/* jump through hoops to make sure link is up because serdes
|
||||
* link is hardwired up */
|
||||
/*
|
||||
* jump through hoops to make sure link is up because serdes
|
||||
* link is hardwired up
|
||||
*/
|
||||
ctrl |= E1000_CTRL_SLU;
|
||||
ew32(CTRL, ctrl);
|
||||
|
||||
|
@ -1263,8 +1280,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
|
|||
ew32(CTRL, ctrl);
|
||||
}
|
||||
|
||||
/* special write to serdes control register to enable SerDes analog
|
||||
* loopback */
|
||||
/*
|
||||
* special write to serdes control register to enable SerDes analog
|
||||
* loopback
|
||||
*/
|
||||
#define E1000_SERDES_LB_ON 0x410
|
||||
ew32(SCTL, E1000_SERDES_LB_ON);
|
||||
msleep(10);
|
||||
|
@ -1279,8 +1298,10 @@ static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
|
|||
u32 ctrlext = er32(CTRL_EXT);
|
||||
u32 ctrl = er32(CTRL);
|
||||
|
||||
/* save CTRL_EXT to restore later, reuse an empty variable (unused
|
||||
on mac_type 80003es2lan) */
|
||||
/*
|
||||
* save CTRL_EXT to restore later, reuse an empty variable (unused
|
||||
* on mac_type 80003es2lan)
|
||||
*/
|
||||
adapter->tx_fifo_head = ctrlext;
|
||||
|
||||
/* clear the serdes mode bits, putting the device into mac loopback */
|
||||
|
@ -1350,8 +1371,7 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
|
|||
if (hw->media_type == e1000_media_type_fiber ||
|
||||
hw->media_type == e1000_media_type_internal_serdes) {
|
||||
/* restore CTRL_EXT, stealing space from tx_fifo_head */
|
||||
ew32(CTRL_EXT,
|
||||
adapter->tx_fifo_head);
|
||||
ew32(CTRL_EXT, adapter->tx_fifo_head);
|
||||
adapter->tx_fifo_head = 0;
|
||||
}
|
||||
/* fall through */
|
||||
|
@ -1414,7 +1434,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|||
|
||||
ew32(RDT, rx_ring->count - 1);
|
||||
|
||||
/* Calculate the loop count based on the largest descriptor ring
|
||||
/*
|
||||
* Calculate the loop count based on the largest descriptor ring
|
||||
* The idea is to wrap the largest ring a number of times using 64
|
||||
* send/receive pairs during each loop
|
||||
*/
|
||||
|
@ -1454,7 +1475,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|||
l++;
|
||||
if (l == rx_ring->count)
|
||||
l = 0;
|
||||
/* time + 20 msecs (200 msecs on 2.4) is more than
|
||||
/*
|
||||
* time + 20 msecs (200 msecs on 2.4) is more than
|
||||
* enough time to complete the receives, if it's
|
||||
* exceeded, break and error off
|
||||
*/
|
||||
|
@ -1473,8 +1495,10 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|||
|
||||
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
|
||||
{
|
||||
/* PHY loopback cannot be performed if SoL/IDER
|
||||
* sessions are active */
|
||||
/*
|
||||
* PHY loopback cannot be performed if SoL/IDER
|
||||
* sessions are active
|
||||
*/
|
||||
if (e1000_check_reset_block(&adapter->hw)) {
|
||||
ndev_err(adapter->netdev, "Cannot do PHY loopback test "
|
||||
"when SoL/IDER is active.\n");
|
||||
|
@ -1508,8 +1532,10 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
|
|||
int i = 0;
|
||||
hw->mac.serdes_has_link = 0;
|
||||
|
||||
/* On some blade server designs, link establishment
|
||||
* could take as long as 2-3 minutes */
|
||||
/*
|
||||
* On some blade server designs, link establishment
|
||||
* could take as long as 2-3 minutes
|
||||
*/
|
||||
do {
|
||||
hw->mac.ops.check_for_link(hw);
|
||||
if (hw->mac.serdes_has_link)
|
||||
|
@ -1562,8 +1588,10 @@ static void e1000_diag_test(struct net_device *netdev,
|
|||
|
||||
ndev_info(netdev, "offline testing starting\n");
|
||||
|
||||
/* Link test performed before hardware reset so autoneg doesn't
|
||||
* interfere with test result */
|
||||
/*
|
||||
* Link test performed before hardware reset so autoneg doesn't
|
||||
* interfere with test result
|
||||
*/
|
||||
if (e1000_link_test(adapter, &data[4]))
|
||||
eth_test->flags |= ETH_TEST_FL_FAILED;
|
||||
|
||||
|
@ -1768,8 +1796,7 @@ static void e1000_get_strings(struct net_device *netdev, u32 stringset,
|
|||
|
||||
switch (stringset) {
|
||||
case ETH_SS_TEST:
|
||||
memcpy(data, *e1000_gstrings_test,
|
||||
sizeof(e1000_gstrings_test));
|
||||
memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
|
||||
break;
|
||||
case ETH_SS_STATS:
|
||||
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -66,14 +66,14 @@ enum e1e_registers {
|
|||
E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
|
||||
E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
|
||||
E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
|
||||
E1000_RCTL = 0x00100, /* RX Control - RW */
|
||||
E1000_RCTL = 0x00100, /* Rx Control - RW */
|
||||
E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
|
||||
E1000_TXCW = 0x00178, /* TX Configuration Word - RW */
|
||||
E1000_RXCW = 0x00180, /* RX Configuration Word - RO */
|
||||
E1000_TCTL = 0x00400, /* TX Control - RW */
|
||||
E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */
|
||||
E1000_TIPG = 0x00410, /* TX Inter-packet gap -RW */
|
||||
E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */
|
||||
E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */
|
||||
E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */
|
||||
E1000_TCTL = 0x00400, /* Tx Control - RW */
|
||||
E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
|
||||
E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */
|
||||
E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
|
||||
E1000_LEDCTL = 0x00E00, /* LED Control - RW */
|
||||
E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
|
||||
E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
|
||||
|
@ -87,12 +87,12 @@ enum e1e_registers {
|
|||
E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
|
||||
E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
|
||||
E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
|
||||
E1000_RDBAL = 0x02800, /* RX Descriptor Base Address Low - RW */
|
||||
E1000_RDBAH = 0x02804, /* RX Descriptor Base Address High - RW */
|
||||
E1000_RDLEN = 0x02808, /* RX Descriptor Length - RW */
|
||||
E1000_RDH = 0x02810, /* RX Descriptor Head - RW */
|
||||
E1000_RDT = 0x02818, /* RX Descriptor Tail - RW */
|
||||
E1000_RDTR = 0x02820, /* RX Delay Timer - RW */
|
||||
E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */
|
||||
E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */
|
||||
E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */
|
||||
E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */
|
||||
E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */
|
||||
E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */
|
||||
E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
|
||||
|
||||
/* Convenience macros
|
||||
|
@ -105,17 +105,17 @@ enum e1e_registers {
|
|||
*/
|
||||
#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
|
||||
E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
|
||||
E1000_TDBAL = 0x03800, /* TX Descriptor Base Address Low - RW */
|
||||
E1000_TDBAH = 0x03804, /* TX Descriptor Base Address High - RW */
|
||||
E1000_TDLEN = 0x03808, /* TX Descriptor Length - RW */
|
||||
E1000_TDH = 0x03810, /* TX Descriptor Head - RW */
|
||||
E1000_TDT = 0x03818, /* TX Descriptor Tail - RW */
|
||||
E1000_TIDV = 0x03820, /* TX Interrupt Delay Value - RW */
|
||||
E1000_TXDCTL = 0x03828, /* TX Descriptor Control - RW */
|
||||
E1000_TADV = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */
|
||||
E1000_TARC0 = 0x03840, /* TX Arbitration Count (0) */
|
||||
E1000_TXDCTL1 = 0x03928, /* TX Descriptor Control (1) - RW */
|
||||
E1000_TARC1 = 0x03940, /* TX Arbitration Count (1) */
|
||||
E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */
|
||||
E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */
|
||||
E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */
|
||||
E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */
|
||||
E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */
|
||||
E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */
|
||||
E1000_TXDCTL = 0x03828, /* Tx Descriptor Control - RW */
|
||||
E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
|
||||
E1000_TARC0 = 0x03840, /* Tx Arbitration Count (0) */
|
||||
E1000_TXDCTL1 = 0x03928, /* Tx Descriptor Control (1) - RW */
|
||||
E1000_TARC1 = 0x03940, /* Tx Arbitration Count (1) */
|
||||
E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
|
||||
E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
|
||||
E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
|
||||
|
@ -127,53 +127,53 @@ enum e1e_registers {
|
|||
E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
|
||||
E1000_COLC = 0x04028, /* Collision Count - R/clr */
|
||||
E1000_DC = 0x04030, /* Defer Count - R/clr */
|
||||
E1000_TNCRS = 0x04034, /* TX-No CRS - R/clr */
|
||||
E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */
|
||||
E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
|
||||
E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
|
||||
E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
|
||||
E1000_XONRXC = 0x04048, /* XON RX Count - R/clr */
|
||||
E1000_XONTXC = 0x0404C, /* XON TX Count - R/clr */
|
||||
E1000_XOFFRXC = 0x04050, /* XOFF RX Count - R/clr */
|
||||
E1000_XOFFTXC = 0x04054, /* XOFF TX Count - R/clr */
|
||||
E1000_FCRUC = 0x04058, /* Flow Control RX Unsupported Count- R/clr */
|
||||
E1000_PRC64 = 0x0405C, /* Packets RX (64 bytes) - R/clr */
|
||||
E1000_PRC127 = 0x04060, /* Packets RX (65-127 bytes) - R/clr */
|
||||
E1000_PRC255 = 0x04064, /* Packets RX (128-255 bytes) - R/clr */
|
||||
E1000_PRC511 = 0x04068, /* Packets RX (255-511 bytes) - R/clr */
|
||||
E1000_PRC1023 = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */
|
||||
E1000_PRC1522 = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */
|
||||
E1000_GPRC = 0x04074, /* Good Packets RX Count - R/clr */
|
||||
E1000_BPRC = 0x04078, /* Broadcast Packets RX Count - R/clr */
|
||||
E1000_MPRC = 0x0407C, /* Multicast Packets RX Count - R/clr */
|
||||
E1000_GPTC = 0x04080, /* Good Packets TX Count - R/clr */
|
||||
E1000_GORCL = 0x04088, /* Good Octets RX Count Low - R/clr */
|
||||
E1000_GORCH = 0x0408C, /* Good Octets RX Count High - R/clr */
|
||||
E1000_GOTCL = 0x04090, /* Good Octets TX Count Low - R/clr */
|
||||
E1000_GOTCH = 0x04094, /* Good Octets TX Count High - R/clr */
|
||||
E1000_RNBC = 0x040A0, /* RX No Buffers Count - R/clr */
|
||||
E1000_RUC = 0x040A4, /* RX Undersize Count - R/clr */
|
||||
E1000_RFC = 0x040A8, /* RX Fragment Count - R/clr */
|
||||
E1000_ROC = 0x040AC, /* RX Oversize Count - R/clr */
|
||||
E1000_RJC = 0x040B0, /* RX Jabber Count - R/clr */
|
||||
E1000_MGTPRC = 0x040B4, /* Management Packets RX Count - R/clr */
|
||||
E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */
|
||||
E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */
|
||||
E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */
|
||||
E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */
|
||||
E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
|
||||
E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
|
||||
E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
|
||||
E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
|
||||
E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
|
||||
E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
|
||||
E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
|
||||
E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */
|
||||
E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */
|
||||
E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */
|
||||
E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */
|
||||
E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */
|
||||
E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */
|
||||
E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */
|
||||
E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */
|
||||
E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */
|
||||
E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */
|
||||
E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */
|
||||
E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */
|
||||
E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */
|
||||
E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */
|
||||
E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
|
||||
E1000_MGTPTC = 0x040BC, /* Management Packets TX Count - R/clr */
|
||||
E1000_TORL = 0x040C0, /* Total Octets RX Low - R/clr */
|
||||
E1000_TORH = 0x040C4, /* Total Octets RX High - R/clr */
|
||||
E1000_TOTL = 0x040C8, /* Total Octets TX Low - R/clr */
|
||||
E1000_TOTH = 0x040CC, /* Total Octets TX High - R/clr */
|
||||
E1000_TPR = 0x040D0, /* Total Packets RX - R/clr */
|
||||
E1000_TPT = 0x040D4, /* Total Packets TX - R/clr */
|
||||
E1000_PTC64 = 0x040D8, /* Packets TX (64 bytes) - R/clr */
|
||||
E1000_PTC127 = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */
|
||||
E1000_PTC255 = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */
|
||||
E1000_PTC511 = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */
|
||||
E1000_PTC1023 = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */
|
||||
E1000_PTC1522 = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */
|
||||
E1000_MPTC = 0x040F0, /* Multicast Packets TX Count - R/clr */
|
||||
E1000_BPTC = 0x040F4, /* Broadcast Packets TX Count - R/clr */
|
||||
E1000_TSCTC = 0x040F8, /* TCP Segmentation Context TX - R/clr */
|
||||
E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */
|
||||
E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */
|
||||
E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */
|
||||
E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */
|
||||
E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */
|
||||
E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */
|
||||
E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */
|
||||
E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */
|
||||
E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
|
||||
E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
|
||||
E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
|
||||
E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
|
||||
E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
|
||||
E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
|
||||
E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */
|
||||
E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
|
||||
E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
|
||||
E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
|
||||
E1000_IAC = 0x04100, /* Interrupt Assertion Count */
|
||||
E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
|
||||
E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
|
||||
|
@ -183,7 +183,7 @@ enum e1e_registers {
|
|||
E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
|
||||
E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
|
||||
E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
|
||||
E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */
|
||||
E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */
|
||||
E1000_RFCTL = 0x05008, /* Receive Filter Control */
|
||||
E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
|
||||
E1000_RA = 0x05400, /* Receive Address - RW Array */
|
||||
|
@ -250,8 +250,8 @@ enum e1e_registers {
|
|||
#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
|
||||
|
||||
#define E1000_HICR_EN 0x01 /* Enable bit - RO */
|
||||
#define E1000_HICR_C 0x02 /* Driver sets this bit when done
|
||||
* to put command in RAM */
|
||||
/* Driver sets this bit when done to put command in RAM */
|
||||
#define E1000_HICR_C 0x02
|
||||
#define E1000_HICR_FW_RESET_ENABLE 0x40
|
||||
#define E1000_HICR_FW_RESET 0x80
|
||||
|
||||
|
@ -685,8 +685,7 @@ struct e1000_mac_operations {
|
|||
s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
|
||||
s32 (*led_on)(struct e1000_hw *);
|
||||
s32 (*led_off)(struct e1000_hw *);
|
||||
void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32,
|
||||
u32);
|
||||
void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32, u32);
|
||||
s32 (*reset_hw)(struct e1000_hw *);
|
||||
s32 (*init_hw)(struct e1000_hw *);
|
||||
s32 (*setup_link)(struct e1000_hw *);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -243,8 +243,7 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
|
|||
u32 sector_end_addr;
|
||||
u16 i;
|
||||
|
||||
/* Can't read flash registers if the register set isn't mapped.
|
||||
*/
|
||||
/* Can't read flash registers if the register set isn't mapped. */
|
||||
if (!hw->flash_address) {
|
||||
hw_dbg(hw, "ERROR: Flash registers not mapped\n");
|
||||
return -E1000_ERR_CONFIG;
|
||||
|
@ -254,17 +253,21 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
gfpreg = er32flash(ICH_FLASH_GFPREG);
|
||||
|
||||
/* sector_X_addr is a "sector"-aligned address (4096 bytes)
|
||||
/*
|
||||
* sector_X_addr is a "sector"-aligned address (4096 bytes)
|
||||
* Add 1 to sector_end_addr since this sector is included in
|
||||
* the overall size. */
|
||||
* the overall size.
|
||||
*/
|
||||
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
|
||||
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
|
||||
|
||||
/* flash_base_addr is byte-aligned */
|
||||
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
|
||||
|
||||
/* find total size of the NVM, then cut in half since the total
|
||||
* size represents two separate NVM banks. */
|
||||
/*
|
||||
* find total size of the NVM, then cut in half since the total
|
||||
* size represents two separate NVM banks.
|
||||
*/
|
||||
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
|
||||
<< FLASH_SECTOR_ADDR_SHIFT;
|
||||
nvm->flash_bank_size /= 2;
|
||||
|
@ -496,7 +499,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Initialize the PHY from the NVM on ICH platforms. This
|
||||
/*
|
||||
* Initialize the PHY from the NVM on ICH platforms. This
|
||||
* is needed due to an issue where the NVM configuration is
|
||||
* not properly autoloaded after power transitions.
|
||||
* Therefore, after each PHY reset, we will load the
|
||||
|
@ -523,7 +527,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
udelay(100);
|
||||
} while ((!data) && --loop);
|
||||
|
||||
/* If basic configuration is incomplete before the above loop
|
||||
/*
|
||||
* If basic configuration is incomplete before the above loop
|
||||
* count reaches 0, loading the configuration from NVM will
|
||||
* leave the PHY in a bad state possibly resulting in no link.
|
||||
*/
|
||||
|
@ -536,8 +541,10 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
data &= ~E1000_STATUS_LAN_INIT_DONE;
|
||||
ew32(STATUS, data);
|
||||
|
||||
/* Make sure HW does not configure LCD from PHY
|
||||
* extended configuration before SW configuration */
|
||||
/*
|
||||
* Make sure HW does not configure LCD from PHY
|
||||
* extended configuration before SW configuration
|
||||
*/
|
||||
data = er32(EXTCNF_CTRL);
|
||||
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
|
||||
return 0;
|
||||
|
@ -551,8 +558,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
|
||||
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
|
||||
|
||||
/* Configure LCD from extended configuration
|
||||
* region. */
|
||||
/* Configure LCD from extended configuration region. */
|
||||
|
||||
/* cnf_base_addr is in DWORD */
|
||||
word_addr = (u16)(cnf_base_addr << 1);
|
||||
|
@ -681,8 +687,8 @@ static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 phy_data, offset, mask;
|
||||
|
||||
/* Polarity is determined based on the reversal feature
|
||||
* being enabled.
|
||||
/*
|
||||
* Polarity is determined based on the reversal feature being enabled.
|
||||
*/
|
||||
if (phy->polarity_correction) {
|
||||
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
|
||||
|
@ -731,8 +737,10 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|||
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
|
||||
/* Call gig speed drop workaround on LPLU before accessing
|
||||
* any PHY registers */
|
||||
/*
|
||||
* Call gig speed drop workaround on LPLU before accessing
|
||||
* any PHY registers
|
||||
*/
|
||||
if ((hw->mac.type == e1000_ich8lan) &&
|
||||
(hw->phy.type == e1000_phy_igp_3))
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
@ -747,30 +755,32 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|||
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
|
||||
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
/*
|
||||
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
* during Dx states where the power conservation is most
|
||||
* important. During driver activity we should enable
|
||||
* SmartSpeed, so performance is maintained. */
|
||||
* SmartSpeed, so performance is maintained.
|
||||
*/
|
||||
if (phy->smart_speed == e1000_smart_speed_on) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -804,34 +814,32 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|||
if (!active) {
|
||||
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
/*
|
||||
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
* during Dx states where the power conservation is most
|
||||
* important. During driver activity we should enable
|
||||
* SmartSpeed, so performance is maintained. */
|
||||
* SmartSpeed, so performance is maintained.
|
||||
*/
|
||||
if (phy->smart_speed == e1000_smart_speed_on) {
|
||||
ret_val = e1e_rphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||||
ret_val = e1e_rphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -841,23 +849,21 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|||
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
|
||||
/* Call gig speed drop workaround on LPLU before accessing
|
||||
* any PHY registers */
|
||||
/*
|
||||
* Call gig speed drop workaround on LPLU before accessing
|
||||
* any PHY registers
|
||||
*/
|
||||
if ((hw->mac.type == e1000_ich8lan) &&
|
||||
(hw->phy.type == e1000_phy_igp_3))
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
||||
/* When LPLU is enabled, we should disable SmartSpeed */
|
||||
ret_val = e1e_rphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw,
|
||||
IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
@ -944,7 +950,8 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||||
|
||||
/* Either we should have a hardware SPI cycle in progress
|
||||
/*
|
||||
* Either we should have a hardware SPI cycle in progress
|
||||
* bit to check against, in order to start a new cycle or
|
||||
* FDONE bit should be changed in the hardware so that it
|
||||
* is 1 after hardware reset, which can then be used as an
|
||||
|
@ -953,15 +960,19 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
|
|||
*/
|
||||
|
||||
if (hsfsts.hsf_status.flcinprog == 0) {
|
||||
/* There is no cycle running at present,
|
||||
* so we can start a cycle */
|
||||
/* Begin by setting Flash Cycle Done. */
|
||||
/*
|
||||
* There is no cycle running at present,
|
||||
* so we can start a cycle
|
||||
* Begin by setting Flash Cycle Done.
|
||||
*/
|
||||
hsfsts.hsf_status.flcdone = 1;
|
||||
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||||
ret_val = 0;
|
||||
} else {
|
||||
/* otherwise poll for sometime so the current
|
||||
* cycle has a chance to end before giving up. */
|
||||
/*
|
||||
* otherwise poll for sometime so the current
|
||||
* cycle has a chance to end before giving up.
|
||||
*/
|
||||
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
|
||||
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
|
||||
if (hsfsts.hsf_status.flcinprog == 0) {
|
||||
|
@ -971,8 +982,10 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
|
|||
udelay(1);
|
||||
}
|
||||
if (ret_val == 0) {
|
||||
/* Successful in waiting for previous cycle to timeout,
|
||||
* now set the Flash Cycle Done. */
|
||||
/*
|
||||
* Successful in waiting for previous cycle to timeout,
|
||||
* now set the Flash Cycle Done.
|
||||
*/
|
||||
hsfsts.hsf_status.flcdone = 1;
|
||||
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||||
} else {
|
||||
|
@ -1077,10 +1090,12 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|||
ret_val = e1000_flash_cycle_ich8lan(hw,
|
||||
ICH_FLASH_READ_COMMAND_TIMEOUT);
|
||||
|
||||
/* Check if FCERR is set to 1, if set to 1, clear it
|
||||
/*
|
||||
* Check if FCERR is set to 1, if set to 1, clear it
|
||||
* and try the whole sequence a few more times, else
|
||||
* read in (shift in) the Flash Data0, the order is
|
||||
* least significant byte first msb to lsb */
|
||||
* least significant byte first msb to lsb
|
||||
*/
|
||||
if (ret_val == 0) {
|
||||
flash_data = er32flash(ICH_FLASH_FDATA0);
|
||||
if (size == 1) {
|
||||
|
@ -1090,7 +1105,8 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|||
}
|
||||
break;
|
||||
} else {
|
||||
/* If we've gotten here, then things are probably
|
||||
/*
|
||||
* If we've gotten here, then things are probably
|
||||
* completely hosed, but if the error condition is
|
||||
* detected, it won't hurt to give it another try...
|
||||
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
||||
|
@ -1168,18 +1184,20 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
ret_val = e1000e_update_nvm_checksum_generic(hw);
|
||||
if (ret_val)
|
||||
return ret_val;;
|
||||
return ret_val;
|
||||
|
||||
if (nvm->type != e1000_nvm_flash_sw)
|
||||
return ret_val;;
|
||||
return ret_val;
|
||||
|
||||
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||||
if (ret_val)
|
||||
return ret_val;;
|
||||
return ret_val;
|
||||
|
||||
/* We're writing to the opposite bank so if we're on bank 1,
|
||||
/*
|
||||
* We're writing to the opposite bank so if we're on bank 1,
|
||||
* write to bank 0 etc. We also need to erase the segment that
|
||||
* is going to be written */
|
||||
* is going to be written
|
||||
*/
|
||||
if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
|
||||
new_bank_offset = nvm->flash_bank_size;
|
||||
old_bank_offset = 0;
|
||||
|
@ -1191,9 +1209,11 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
}
|
||||
|
||||
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
|
||||
/* Determine whether to write the value stored
|
||||
/*
|
||||
* Determine whether to write the value stored
|
||||
* in the other NVM bank or a modified value stored
|
||||
* in the shadow RAM */
|
||||
* in the shadow RAM
|
||||
*/
|
||||
if (dev_spec->shadow_ram[i].modified) {
|
||||
data = dev_spec->shadow_ram[i].value;
|
||||
} else {
|
||||
|
@ -1202,12 +1222,14 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
&data);
|
||||
}
|
||||
|
||||
/* If the word is 0x13, then make sure the signature bits
|
||||
/*
|
||||
* If the word is 0x13, then make sure the signature bits
|
||||
* (15:14) are 11b until the commit has completed.
|
||||
* This will allow us to write 10b which indicates the
|
||||
* signature is valid. We want to do this after the write
|
||||
* has completed so that we don't mark the segment valid
|
||||
* while the write is still in progress */
|
||||
* while the write is still in progress
|
||||
*/
|
||||
if (i == E1000_ICH_NVM_SIG_WORD)
|
||||
data |= E1000_ICH_NVM_SIG_MASK;
|
||||
|
||||
|
@ -1230,18 +1252,22 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
break;
|
||||
}
|
||||
|
||||
/* Don't bother writing the segment valid bits if sector
|
||||
* programming failed. */
|
||||
/*
|
||||
* Don't bother writing the segment valid bits if sector
|
||||
* programming failed.
|
||||
*/
|
||||
if (ret_val) {
|
||||
hw_dbg(hw, "Flash commit failed.\n");
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Finally validate the new segment by setting bit 15:14
|
||||
/*
|
||||
* Finally validate the new segment by setting bit 15:14
|
||||
* to 10b in word 0x13 , this can be done without an
|
||||
* erase as well since these bits are 11 to start with
|
||||
* and we need to change bit 14 to 0b */
|
||||
* and we need to change bit 14 to 0b
|
||||
*/
|
||||
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
|
||||
e1000_read_flash_word_ich8lan(hw, act_offset, &data);
|
||||
data &= 0xBFFF;
|
||||
|
@ -1253,10 +1279,12 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* And invalidate the previously valid segment by setting
|
||||
/*
|
||||
* And invalidate the previously valid segment by setting
|
||||
* its signature word (0x13) high_byte to 0b. This can be
|
||||
* done without an erase because flash erase sets all bits
|
||||
* to 1's. We can write 1's to 0's without an erase */
|
||||
* to 1's. We can write 1's to 0's without an erase
|
||||
*/
|
||||
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
|
||||
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
|
||||
if (ret_val) {
|
||||
|
@ -1272,7 +1300,8 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
|
||||
/* Reload the EEPROM, or else modifications will not appear
|
||||
/*
|
||||
* Reload the EEPROM, or else modifications will not appear
|
||||
* until after the next adapter reset.
|
||||
*/
|
||||
e1000e_reload_nvm(hw);
|
||||
|
@ -1294,7 +1323,8 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 data;
|
||||
|
||||
/* Read 0x19 and check bit 6. If this bit is 0, the checksum
|
||||
/*
|
||||
* Read 0x19 and check bit 6. If this bit is 0, the checksum
|
||||
* needs to be fixed. This bit is an indication that the NVM
|
||||
* was prepared by OEM software and did not calculate the
|
||||
* checksum...a likely scenario.
|
||||
|
@ -1364,14 +1394,17 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|||
|
||||
ew32flash(ICH_FLASH_FDATA0, flash_data);
|
||||
|
||||
/* check if FCERR is set to 1 , if set to 1, clear it
|
||||
* and try the whole sequence a few more times else done */
|
||||
/*
|
||||
* check if FCERR is set to 1 , if set to 1, clear it
|
||||
* and try the whole sequence a few more times else done
|
||||
*/
|
||||
ret_val = e1000_flash_cycle_ich8lan(hw,
|
||||
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
|
||||
if (!ret_val)
|
||||
break;
|
||||
|
||||
/* If we're here, then things are most likely
|
||||
/*
|
||||
* If we're here, then things are most likely
|
||||
* completely hosed, but if the error condition
|
||||
* is detected, it won't hurt to give it another
|
||||
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
||||
|
@ -1462,9 +1495,10 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
|
|||
|
||||
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||||
|
||||
/* Determine HW Sector size: Read BERASE bits of hw flash status
|
||||
* register */
|
||||
/* 00: The Hw sector is 256 bytes, hence we need to erase 16
|
||||
/*
|
||||
* Determine HW Sector size: Read BERASE bits of hw flash status
|
||||
* register
|
||||
* 00: The Hw sector is 256 bytes, hence we need to erase 16
|
||||
* consecutive sectors. The start index for the nth Hw sector
|
||||
* can be calculated as = bank * 4096 + n * 256
|
||||
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
|
||||
|
@ -1511,13 +1545,16 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Write a value 11 (block Erase) in Flash
|
||||
* Cycle field in hw flash control */
|
||||
/*
|
||||
* Write a value 11 (block Erase) in Flash
|
||||
* Cycle field in hw flash control
|
||||
*/
|
||||
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
||||
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
|
||||
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
||||
|
||||
/* Write the last 24 bits of an index within the
|
||||
/*
|
||||
* Write the last 24 bits of an index within the
|
||||
* block into Flash Linear address field in Flash
|
||||
* Address.
|
||||
*/
|
||||
|
@ -1529,13 +1566,14 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
|
|||
if (ret_val == 0)
|
||||
break;
|
||||
|
||||
/* Check if FCERR is set to 1. If 1,
|
||||
/*
|
||||
* Check if FCERR is set to 1. If 1,
|
||||
* clear it and try the whole sequence
|
||||
* a few more times else Done */
|
||||
* a few more times else Done
|
||||
*/
|
||||
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||||
if (hsfsts.hsf_status.flcerr == 1)
|
||||
/* repeat for some time before
|
||||
* giving up */
|
||||
/* repeat for some time before giving up */
|
||||
continue;
|
||||
else if (hsfsts.hsf_status.flcdone == 0)
|
||||
return ret_val;
|
||||
|
@ -1585,7 +1623,8 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
ret_val = e1000e_get_bus_info_pcie(hw);
|
||||
|
||||
/* ICH devices are "PCI Express"-ish. They have
|
||||
/*
|
||||
* ICH devices are "PCI Express"-ish. They have
|
||||
* a configuration space, but do not contain
|
||||
* PCI Express Capability registers, so bus width
|
||||
* must be hardcoded.
|
||||
|
@ -1608,7 +1647,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
|||
u32 ctrl, icr, kab;
|
||||
s32 ret_val;
|
||||
|
||||
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
/*
|
||||
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||||
* on the last TLP read/write transaction when MAC is reset.
|
||||
*/
|
||||
ret_val = e1000e_disable_pcie_master(hw);
|
||||
|
@ -1619,7 +1659,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
|||
hw_dbg(hw, "Masking off all interrupts\n");
|
||||
ew32(IMC, 0xffffffff);
|
||||
|
||||
/* Disable the Transmit and Receive units. Then delay to allow
|
||||
/*
|
||||
* Disable the Transmit and Receive units. Then delay to allow
|
||||
* any pending transactions to complete before we hit the MAC
|
||||
* with the global reset.
|
||||
*/
|
||||
|
@ -1640,7 +1681,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
|||
ctrl = er32(CTRL);
|
||||
|
||||
if (!e1000_check_reset_block(hw)) {
|
||||
/* PHY HW reset requires MAC CORE reset at the same
|
||||
/*
|
||||
* PHY HW reset requires MAC CORE reset at the same
|
||||
* time to make sure the interface between MAC and the
|
||||
* external PHY is reset.
|
||||
*/
|
||||
|
@ -1724,8 +1766,10 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
|
|||
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
|
||||
ew32(TXDCTL1, txdctl);
|
||||
|
||||
/* ICH8 has opposite polarity of no_snoop bits.
|
||||
* By default, we should use snoop behavior. */
|
||||
/*
|
||||
* ICH8 has opposite polarity of no_snoop bits.
|
||||
* By default, we should use snoop behavior.
|
||||
*/
|
||||
if (mac->type == e1000_ich8lan)
|
||||
snoop = PCIE_ICH8_SNOOP_ALL;
|
||||
else
|
||||
|
@ -1736,7 +1780,8 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
|
|||
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
||||
ew32(CTRL_EXT, ctrl_ext);
|
||||
|
||||
/* Clear all of the statistics registers (clear on read). It is
|
||||
/*
|
||||
* Clear all of the statistics registers (clear on read). It is
|
||||
* important that we do this after we have tried to establish link
|
||||
* because the symbol error count will increment wildly if there
|
||||
* is no link.
|
||||
|
@ -1813,7 +1858,8 @@ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
|
|||
if (e1000_check_reset_block(hw))
|
||||
return 0;
|
||||
|
||||
/* ICH parts do not have a word in the NVM to determine
|
||||
/*
|
||||
* ICH parts do not have a word in the NVM to determine
|
||||
* the default flow control setting, so we explicitly
|
||||
* set it to full.
|
||||
*/
|
||||
|
@ -1853,9 +1899,11 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
|
|||
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||||
ew32(CTRL, ctrl);
|
||||
|
||||
/* Set the mac to wait the maximum time between each iteration
|
||||
/*
|
||||
* Set the mac to wait the maximum time between each iteration
|
||||
* and increase the max iterations when polling the phy;
|
||||
* this fixes erroneous timeouts at 10Mbps. */
|
||||
* this fixes erroneous timeouts at 10Mbps.
|
||||
*/
|
||||
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
@ -1882,7 +1930,7 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
|
|||
* @speed: pointer to store current link speed
|
||||
* @duplex: pointer to store the current link duplex
|
||||
*
|
||||
* Calls the generic get_speed_and_duplex to retreive the current link
|
||||
* Calls the generic get_speed_and_duplex to retrieve the current link
|
||||
* information and then calls the Kumeran lock loss workaround for links at
|
||||
* gigabit speeds.
|
||||
**/
|
||||
|
@ -1930,9 +1978,11 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
|
|||
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
|
||||
return 0;
|
||||
|
||||
/* Make sure link is up before proceeding. If not just return.
|
||||
/*
|
||||
* Make sure link is up before proceeding. If not just return.
|
||||
* Attempting this while link is negotiating fouled up link
|
||||
* stability */
|
||||
* stability
|
||||
*/
|
||||
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
||||
if (!link)
|
||||
return 0;
|
||||
|
@ -1961,8 +2011,10 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
|
|||
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
|
||||
/* Call gig speed drop workaround on Gig disable before accessing
|
||||
* any PHY registers */
|
||||
/*
|
||||
* Call gig speed drop workaround on Gig disable before accessing
|
||||
* any PHY registers
|
||||
*/
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
||||
/* unable to acquire PCS lock */
|
||||
|
@ -1970,7 +2022,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
|
||||
* e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
|
||||
* @hw: pointer to the HW structure
|
||||
* @state: boolean value used to set the current Kumeran workaround state
|
||||
*
|
||||
|
@ -2017,8 +2069,10 @@ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
|
|||
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
||||
ew32(PHY_CTRL, reg);
|
||||
|
||||
/* Call gig speed drop workaround on Gig disable before
|
||||
* accessing any PHY registers */
|
||||
/*
|
||||
* Call gig speed drop workaround on Gig disable before
|
||||
* accessing any PHY registers
|
||||
*/
|
||||
if (hw->mac.type == e1000_ich8lan)
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -43,8 +43,8 @@ enum e1000_mng_mode {
|
|||
|
||||
#define E1000_FACTPS_MNGCG 0x20000000
|
||||
|
||||
#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management
|
||||
* Technology signature */
|
||||
/* Intel(R) Active Management Technology signature */
|
||||
#define E1000_IAMT_SIGNATURE 0x544D4149
|
||||
|
||||
/**
|
||||
* e1000e_get_bus_info_pcie - Get PCIe bus information
|
||||
|
@ -142,7 +142,8 @@ void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
|
|||
{
|
||||
u32 rar_low, rar_high;
|
||||
|
||||
/* HW expects these in little endian so we reverse the byte order
|
||||
/*
|
||||
* HW expects these in little endian so we reverse the byte order
|
||||
* from network order (big endian) to little endian
|
||||
*/
|
||||
rar_low = ((u32) addr[0] |
|
||||
|
@ -171,7 +172,8 @@ static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
|
|||
{
|
||||
u32 hash_bit, hash_reg, mta;
|
||||
|
||||
/* The MTA is a register array of 32-bit registers. It is
|
||||
/*
|
||||
* The MTA is a register array of 32-bit registers. It is
|
||||
* treated like an array of (32*mta_reg_count) bits. We want to
|
||||
* set bit BitArray[hash_value]. So we figure out what register
|
||||
* the bit is in, read it, OR in the new bit, then write
|
||||
|
@ -208,12 +210,15 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|||
/* Register count multiplied by bits per register */
|
||||
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
|
||||
|
||||
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
|
||||
* where 0xFF would still fall within the hash mask. */
|
||||
/*
|
||||
* For a mc_filter_type of 0, bit_shift is the number of left-shifts
|
||||
* where 0xFF would still fall within the hash mask.
|
||||
*/
|
||||
while (hash_mask >> bit_shift != 0xFF)
|
||||
bit_shift++;
|
||||
|
||||
/* The portion of the address that is used for the hash table
|
||||
/*
|
||||
* The portion of the address that is used for the hash table
|
||||
* is determined by the mc_filter_type setting.
|
||||
* The algorithm is such that there is a total of 8 bits of shifting.
|
||||
* The bit_shift for a mc_filter_type of 0 represents the number of
|
||||
|
@ -224,8 +229,8 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|||
* cases are a variation of this algorithm...essentially raising the
|
||||
* number of bits to shift mc_addr[5] left, while still keeping the
|
||||
* 8-bit shifting total.
|
||||
*/
|
||||
/* For example, given the following Destination MAC Address and an
|
||||
*
|
||||
* For example, given the following Destination MAC Address and an
|
||||
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
|
||||
* we can see that the bit_shift for case 0 is 4. These are the hash
|
||||
* values resulting from each mc_filter_type...
|
||||
|
@ -279,7 +284,8 @@ void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
|
|||
u32 hash_value;
|
||||
u32 i;
|
||||
|
||||
/* Load the first set of multicast addresses into the exact
|
||||
/*
|
||||
* Load the first set of multicast addresses into the exact
|
||||
* filters (RAR). If there are not enough to fill the RAR
|
||||
* array, clear the filters.
|
||||
*/
|
||||
|
@ -375,7 +381,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
bool link;
|
||||
|
||||
/* We only want to go out to the PHY registers to see if Auto-Neg
|
||||
/*
|
||||
* We only want to go out to the PHY registers to see if Auto-Neg
|
||||
* has completed and/or if our link status has changed. The
|
||||
* get_link_status flag is set upon receiving a Link Status
|
||||
* Change or Rx Sequence Error interrupt.
|
||||
|
@ -383,7 +390,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
|
|||
if (!mac->get_link_status)
|
||||
return 0;
|
||||
|
||||
/* First we want to see if the MII Status Register reports
|
||||
/*
|
||||
* First we want to see if the MII Status Register reports
|
||||
* link. If so, then we want to get the current speed/duplex
|
||||
* of the PHY.
|
||||
*/
|
||||
|
@ -396,11 +404,14 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
|
|||
|
||||
mac->get_link_status = 0;
|
||||
|
||||
/* Check if there was DownShift, must be checked
|
||||
* immediately after link-up */
|
||||
/*
|
||||
* Check if there was DownShift, must be checked
|
||||
* immediately after link-up
|
||||
*/
|
||||
e1000e_check_downshift(hw);
|
||||
|
||||
/* If we are forcing speed/duplex, then we simply return since
|
||||
/*
|
||||
* If we are forcing speed/duplex, then we simply return since
|
||||
* we have already determined whether we have link or not.
|
||||
*/
|
||||
if (!mac->autoneg) {
|
||||
|
@ -408,13 +419,15 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Auto-Neg is enabled. Auto Speed Detection takes care
|
||||
/*
|
||||
* Auto-Neg is enabled. Auto Speed Detection takes care
|
||||
* of MAC speed/duplex configuration. So we only need to
|
||||
* configure Collision Distance in the MAC.
|
||||
*/
|
||||
e1000e_config_collision_dist(hw);
|
||||
|
||||
/* Configure Flow Control now that Auto-Neg has completed.
|
||||
/*
|
||||
* Configure Flow Control now that Auto-Neg has completed.
|
||||
* First, we need to restore the desired flow control
|
||||
* settings because we may have had to re-autoneg with a
|
||||
* different link partner.
|
||||
|
@ -446,7 +459,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
|
|||
status = er32(STATUS);
|
||||
rxcw = er32(RXCW);
|
||||
|
||||
/* If we don't have link (auto-negotiation failed or link partner
|
||||
/*
|
||||
* If we don't have link (auto-negotiation failed or link partner
|
||||
* cannot auto-negotiate), the cable is plugged in (we have signal),
|
||||
* and our link partner is not trying to auto-negotiate with us (we
|
||||
* are receiving idles or data), we need to force link up. We also
|
||||
|
@ -477,7 +491,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
|
||||
/* If we are forcing link and we are receiving /C/ ordered
|
||||
/*
|
||||
* If we are forcing link and we are receiving /C/ ordered
|
||||
* sets, re-enable auto-negotiation in the TXCW register
|
||||
* and disable forced link in the Device Control register
|
||||
* in an attempt to auto-negotiate with our link partner.
|
||||
|
@ -511,7 +526,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
|
|||
status = er32(STATUS);
|
||||
rxcw = er32(RXCW);
|
||||
|
||||
/* If we don't have link (auto-negotiation failed or link partner
|
||||
/*
|
||||
* If we don't have link (auto-negotiation failed or link partner
|
||||
* cannot auto-negotiate), and our link partner is not trying to
|
||||
* auto-negotiate with us (we are receiving idles or data),
|
||||
* we need to force link up. We also need to give auto-negotiation
|
||||
|
@ -540,7 +556,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
|
||||
/* If we are forcing link and we are receiving /C/ ordered
|
||||
/*
|
||||
* If we are forcing link and we are receiving /C/ ordered
|
||||
* sets, re-enable auto-negotiation in the TXCW register
|
||||
* and disable forced link in the Device Control register
|
||||
* in an attempt to auto-negotiate with our link partner.
|
||||
|
@ -551,7 +568,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
|
|||
|
||||
mac->serdes_has_link = 1;
|
||||
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
|
||||
/* If we force link for non-auto-negotiation switch, check
|
||||
/*
|
||||
* If we force link for non-auto-negotiation switch, check
|
||||
* link status based on MAC synchronization for internal
|
||||
* serdes media type.
|
||||
*/
|
||||
|
@ -589,7 +607,8 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 nvm_data;
|
||||
|
||||
/* Read and store word 0x0F of the EEPROM. This word contains bits
|
||||
/*
|
||||
* Read and store word 0x0F of the EEPROM. This word contains bits
|
||||
* that determine the hardware's default PAUSE (flow control) mode,
|
||||
* a bit that determines whether the HW defaults to enabling or
|
||||
* disabling auto-negotiation, and the direction of the
|
||||
|
@ -630,7 +649,8 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
|
|||
struct e1000_mac_info *mac = &hw->mac;
|
||||
s32 ret_val;
|
||||
|
||||
/* In the case of the phy reset being blocked, we already have a link.
|
||||
/*
|
||||
* In the case of the phy reset being blocked, we already have a link.
|
||||
* We do not need to set it up again.
|
||||
*/
|
||||
if (e1000_check_reset_block(hw))
|
||||
|
@ -646,7 +666,8 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* We want to save off the original Flow Control configuration just
|
||||
/*
|
||||
* We want to save off the original Flow Control configuration just
|
||||
* in case we get disconnected and then reconnected into a different
|
||||
* hub or switch with different Flow Control capabilities.
|
||||
*/
|
||||
|
@ -659,7 +680,8 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Initialize the flow control address, type, and PAUSE timer
|
||||
/*
|
||||
* Initialize the flow control address, type, and PAUSE timer
|
||||
* registers to their default values. This is done even if flow
|
||||
* control is disabled, because it does not hurt anything to
|
||||
* initialize these registers.
|
||||
|
@ -686,7 +708,8 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
|
|||
struct e1000_mac_info *mac = &hw->mac;
|
||||
u32 txcw;
|
||||
|
||||
/* Check for a software override of the flow control settings, and
|
||||
/*
|
||||
* Check for a software override of the flow control settings, and
|
||||
* setup the device accordingly. If auto-negotiation is enabled, then
|
||||
* software will have to set the "PAUSE" bits to the correct value in
|
||||
* the Transmit Config Word Register (TXCW) and re-start auto-
|
||||
|
@ -700,7 +723,7 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
|
|||
* but not send pause frames).
|
||||
* 2: Tx flow control is enabled (we can send pause frames but we
|
||||
* do not support receiving pause frames).
|
||||
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
||||
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
||||
*/
|
||||
switch (mac->fc) {
|
||||
case e1000_fc_none:
|
||||
|
@ -708,23 +731,26 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
|
|||
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
||||
break;
|
||||
case e1000_fc_rx_pause:
|
||||
/* RX Flow control is enabled and TX Flow control is disabled
|
||||
/*
|
||||
* Rx Flow control is enabled and Tx Flow control is disabled
|
||||
* by a software over-ride. Since there really isn't a way to
|
||||
* advertise that we are capable of RX Pause ONLY, we will
|
||||
* advertise that we support both symmetric and asymmetric RX
|
||||
* advertise that we are capable of Rx Pause ONLY, we will
|
||||
* advertise that we support both symmetric and asymmetric Rx
|
||||
* PAUSE. Later, we will disable the adapter's ability to send
|
||||
* PAUSE frames.
|
||||
*/
|
||||
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
||||
break;
|
||||
case e1000_fc_tx_pause:
|
||||
/* TX Flow control is enabled, and RX Flow control is disabled,
|
||||
/*
|
||||
* Tx Flow control is enabled, and Rx Flow control is disabled,
|
||||
* by a software over-ride.
|
||||
*/
|
||||
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
||||
break;
|
||||
case e1000_fc_full:
|
||||
/* Flow control (both RX and TX) is enabled by a software
|
||||
/*
|
||||
* Flow control (both Rx and Tx) is enabled by a software
|
||||
* over-ride.
|
||||
*/
|
||||
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
||||
|
@ -754,7 +780,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
|
|||
u32 i, status;
|
||||
s32 ret_val;
|
||||
|
||||
/* If we have a signal (the cable is plugged in, or assumed true for
|
||||
/*
|
||||
* If we have a signal (the cable is plugged in, or assumed true for
|
||||
* serdes media) then poll for a "Link-Up" indication in the Device
|
||||
* Status Register. Time-out if a link isn't seen in 500 milliseconds
|
||||
* seconds (Auto-negotiation should complete in less than 500
|
||||
|
@ -769,7 +796,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
|
|||
if (i == FIBER_LINK_UP_LIMIT) {
|
||||
hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
|
||||
mac->autoneg_failed = 1;
|
||||
/* AutoNeg failed to achieve a link, so we'll call
|
||||
/*
|
||||
* AutoNeg failed to achieve a link, so we'll call
|
||||
* mac->check_for_link. This routine will force the
|
||||
* link up if we detect a signal. This will allow us to
|
||||
* communicate with non-autonegotiating link partners.
|
||||
|
@ -811,7 +839,8 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Since auto-negotiation is enabled, take the link out of reset (the
|
||||
/*
|
||||
* Since auto-negotiation is enabled, take the link out of reset (the
|
||||
* link will be in reset, because we previously reset the chip). This
|
||||
* will restart auto-negotiation. If auto-negotiation is successful
|
||||
* then the link-up status bit will be set and the flow control enable
|
||||
|
@ -823,7 +852,8 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
|
|||
e1e_flush();
|
||||
msleep(1);
|
||||
|
||||
/* For these adapters, the SW defineable pin 1 is set when the optics
|
||||
/*
|
||||
* For these adapters, the SW definable pin 1 is set when the optics
|
||||
* detect a signal. If we have a signal, then poll for a "Link-Up"
|
||||
* indication.
|
||||
*/
|
||||
|
@ -864,21 +894,23 @@ void e1000e_config_collision_dist(struct e1000_hw *hw)
|
|||
*
|
||||
* Sets the flow control high/low threshold (watermark) registers. If
|
||||
* flow control XON frame transmission is enabled, then set XON frame
|
||||
* tansmission as well.
|
||||
* transmission as well.
|
||||
**/
|
||||
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
|
||||
{
|
||||
struct e1000_mac_info *mac = &hw->mac;
|
||||
u32 fcrtl = 0, fcrth = 0;
|
||||
|
||||
/* Set the flow control receive threshold registers. Normally,
|
||||
/*
|
||||
* Set the flow control receive threshold registers. Normally,
|
||||
* these registers will be set to a default threshold that may be
|
||||
* adjusted later by the driver's runtime code. However, if the
|
||||
* ability to transmit pause frames is not enabled, then these
|
||||
* registers will be set to 0.
|
||||
*/
|
||||
if (mac->fc & e1000_fc_tx_pause) {
|
||||
/* We need to set up the Receive Threshold high and low water
|
||||
/*
|
||||
* We need to set up the Receive Threshold high and low water
|
||||
* marks as well as (optionally) enabling the transmission of
|
||||
* XON frames.
|
||||
*/
|
||||
|
@ -909,7 +941,8 @@ s32 e1000e_force_mac_fc(struct e1000_hw *hw)
|
|||
|
||||
ctrl = er32(CTRL);
|
||||
|
||||
/* Because we didn't get link via the internal auto-negotiation
|
||||
/*
|
||||
* Because we didn't get link via the internal auto-negotiation
|
||||
* mechanism (we either forced link or we got link via PHY
|
||||
* auto-neg), we have to manually enable/disable transmit an
|
||||
* receive flow control.
|
||||
|
@ -923,7 +956,7 @@ s32 e1000e_force_mac_fc(struct e1000_hw *hw)
|
|||
* frames but not send pause frames).
|
||||
* 2: Tx flow control is enabled (we can send pause frames
|
||||
* frames but we do not receive pause frames).
|
||||
* 3: Both Rx and TX flow control (symmetric) is enabled.
|
||||
* 3: Both Rx and Tx flow control (symmetric) is enabled.
|
||||
* other: No other values should be possible at this point.
|
||||
*/
|
||||
hw_dbg(hw, "mac->fc = %u\n", mac->fc);
|
||||
|
@ -970,7 +1003,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
|
||||
u16 speed, duplex;
|
||||
|
||||
/* Check for the case where we have fiber media and auto-neg failed
|
||||
/*
|
||||
* Check for the case where we have fiber media and auto-neg failed
|
||||
* so we had to force link. In this case, we need to force the
|
||||
* configuration of the MAC to match the "fc" parameter.
|
||||
*/
|
||||
|
@ -988,13 +1022,15 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Check for the case where we have copper media and auto-neg is
|
||||
/*
|
||||
* Check for the case where we have copper media and auto-neg is
|
||||
* enabled. In this case, we need to check and see if Auto-Neg
|
||||
* has completed, and if so, how the PHY and link partner has
|
||||
* flow control configured.
|
||||
*/
|
||||
if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
|
||||
/* Read the MII Status Register and check to see if AutoNeg
|
||||
/*
|
||||
* Read the MII Status Register and check to see if AutoNeg
|
||||
* has completed. We read this twice because this reg has
|
||||
* some "sticky" (latched) bits.
|
||||
*/
|
||||
|
@ -1011,7 +1047,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* The AutoNeg process has completed, so we now need to
|
||||
/*
|
||||
* The AutoNeg process has completed, so we now need to
|
||||
* read both the Auto Negotiation Advertisement
|
||||
* Register (Address 4) and the Auto_Negotiation Base
|
||||
* Page Ability Register (Address 5) to determine how
|
||||
|
@ -1024,7 +1061,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Two bits in the Auto Negotiation Advertisement Register
|
||||
/*
|
||||
* Two bits in the Auto Negotiation Advertisement Register
|
||||
* (Address 4) and two bits in the Auto Negotiation Base
|
||||
* Page Ability Register (Address 5) determine flow control
|
||||
* for both the PHY and the link partner. The following
|
||||
|
@ -1045,8 +1083,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
* 1 | 1 | 0 | 0 | e1000_fc_none
|
||||
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
||||
*
|
||||
*/
|
||||
/* Are both PAUSE bits set to 1? If so, this implies
|
||||
*
|
||||
* Are both PAUSE bits set to 1? If so, this implies
|
||||
* Symmetric Flow Control is enabled at both ends. The
|
||||
* ASM_DIR bits are irrelevant per the spec.
|
||||
*
|
||||
|
@ -1060,9 +1098,10 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
*/
|
||||
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
||||
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
||||
/* Now we need to check if the user selected RX ONLY
|
||||
/*
|
||||
* Now we need to check if the user selected Rx ONLY
|
||||
* of pause frames. In this case, we had to advertise
|
||||
* FULL flow control because we could not advertise RX
|
||||
* FULL flow control because we could not advertise Rx
|
||||
* ONLY. Hence, we must now check to see if we need to
|
||||
* turn OFF the TRANSMISSION of PAUSE frames.
|
||||
*/
|
||||
|
@ -1075,7 +1114,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
"RX PAUSE frames only.\r\n");
|
||||
}
|
||||
}
|
||||
/* For receiving PAUSE frames ONLY.
|
||||
/*
|
||||
* For receiving PAUSE frames ONLY.
|
||||
*
|
||||
* LOCAL DEVICE | LINK PARTNER
|
||||
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
||||
|
@ -1090,7 +1130,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
mac->fc = e1000_fc_tx_pause;
|
||||
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
|
||||
}
|
||||
/* For transmitting PAUSE frames ONLY.
|
||||
/*
|
||||
* For transmitting PAUSE frames ONLY.
|
||||
*
|
||||
* LOCAL DEVICE | LINK PARTNER
|
||||
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
||||
|
@ -1113,7 +1154,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
hw_dbg(hw, "Flow Control = NONE.\r\n");
|
||||
}
|
||||
|
||||
/* Now we need to do one last check... If we auto-
|
||||
/*
|
||||
* Now we need to do one last check... If we auto-
|
||||
* negotiated to HALF DUPLEX, flow control should not be
|
||||
* enabled per IEEE 802.3 spec.
|
||||
*/
|
||||
|
@ -1126,7 +1168,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|||
if (duplex == HALF_DUPLEX)
|
||||
mac->fc = e1000_fc_none;
|
||||
|
||||
/* Now we call a subroutine to actually force the MAC
|
||||
/*
|
||||
* Now we call a subroutine to actually force the MAC
|
||||
* controller to use the correct flow control settings.
|
||||
*/
|
||||
ret_val = e1000e_force_mac_fc(hw);
|
||||
|
@ -1398,8 +1441,10 @@ s32 e1000e_blink_led(struct e1000_hw *hw)
|
|||
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
||||
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
||||
} else {
|
||||
/* set the blink bit for each LED that's "on" (0x0E)
|
||||
* in ledctl_mode2 */
|
||||
/*
|
||||
* set the blink bit for each LED that's "on" (0x0E)
|
||||
* in ledctl_mode2
|
||||
*/
|
||||
ledctl_blink = hw->mac.ledctl_mode2;
|
||||
for (i = 0; i < 4; i++)
|
||||
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
|
||||
|
@ -1562,8 +1607,7 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
|
|||
else
|
||||
mac->current_ifs_val +=
|
||||
mac->ifs_step_size;
|
||||
ew32(AIT,
|
||||
mac->current_ifs_val);
|
||||
ew32(AIT, mac->current_ifs_val);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -1826,10 +1870,12 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
|
|||
udelay(1);
|
||||
timeout = NVM_MAX_RETRY_SPI;
|
||||
|
||||
/* Read "Status Register" repeatedly until the LSB is cleared.
|
||||
/*
|
||||
* Read "Status Register" repeatedly until the LSB is cleared.
|
||||
* The EEPROM will signal that the command has been completed
|
||||
* by clearing bit 0 of the internal status register. If it's
|
||||
* not cleared within 'timeout', then error out. */
|
||||
* not cleared within 'timeout', then error out.
|
||||
*/
|
||||
while (timeout) {
|
||||
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
|
||||
hw->nvm.opcode_bits);
|
||||
|
@ -1866,8 +1912,10 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|||
u32 i, eerd = 0;
|
||||
s32 ret_val = 0;
|
||||
|
||||
/* A check for invalid values: offset too large, too many words,
|
||||
* and not enough words. */
|
||||
/*
|
||||
* A check for invalid values: offset too large, too many words,
|
||||
* too many words for the offset, and not enough words.
|
||||
*/
|
||||
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
||||
(words == 0)) {
|
||||
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||||
|
@ -1883,8 +1931,7 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|||
if (ret_val)
|
||||
break;
|
||||
|
||||
data[i] = (er32(EERD) >>
|
||||
E1000_NVM_RW_REG_DATA);
|
||||
data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
|
||||
}
|
||||
|
||||
return ret_val;
|
||||
|
@ -1908,8 +1955,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|||
s32 ret_val;
|
||||
u16 widx = 0;
|
||||
|
||||
/* A check for invalid values: offset too large, too many words,
|
||||
* and not enough words. */
|
||||
/*
|
||||
* A check for invalid values: offset too large, too many words,
|
||||
* and not enough words.
|
||||
*/
|
||||
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
||||
(words == 0)) {
|
||||
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||||
|
@ -1939,8 +1988,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|||
|
||||
e1000_standby_nvm(hw);
|
||||
|
||||
/* Some SPI eeproms use the 8th address bit embedded in the
|
||||
* opcode */
|
||||
/*
|
||||
* Some SPI eeproms use the 8th address bit embedded in the
|
||||
* opcode
|
||||
*/
|
||||
if ((nvm->address_bits == 8) && (offset >= 128))
|
||||
write_opcode |= NVM_A8_OPCODE_SPI;
|
||||
|
||||
|
@ -1985,9 +2036,9 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
|
|||
/* Check for an alternate MAC address. An alternate MAC
|
||||
* address can be setup by pre-boot software and must be
|
||||
* treated like a permanent address and must override the
|
||||
* actual permanent MAC address. */
|
||||
* actual permanent MAC address.*/
|
||||
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
|
||||
&mac_addr_offset);
|
||||
&mac_addr_offset);
|
||||
if (ret_val) {
|
||||
hw_dbg(hw, "NVM Read Error\n");
|
||||
return ret_val;
|
||||
|
@ -2000,7 +2051,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
|
|||
mac_addr_offset += ETH_ALEN/sizeof(u16);
|
||||
|
||||
/* make sure we have a valid mac address here
|
||||
* before using it */
|
||||
* before using it */
|
||||
ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
|
||||
&nvm_data);
|
||||
if (ret_val) {
|
||||
|
@ -2012,7 +2063,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
|
|||
}
|
||||
|
||||
if (mac_addr_offset)
|
||||
hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
|
||||
hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
|
||||
}
|
||||
|
||||
for (i = 0; i < ETH_ALEN; i += 2) {
|
||||
|
@ -2188,7 +2239,7 @@ bool e1000e_check_mng_mode(struct e1000_hw *hw)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX
|
||||
* e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Enables packet filtering on transmit packets if manageability is enabled
|
||||
|
@ -2208,7 +2259,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* If we can't read from the host interface for whatever
|
||||
/*
|
||||
* If we can't read from the host interface for whatever
|
||||
* reason, disable filtering.
|
||||
*/
|
||||
ret_val = e1000_mng_enable_host_if(hw);
|
||||
|
@ -2226,7 +2278,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
|
|||
hdr->checksum = 0;
|
||||
csum = e1000_calculate_checksum((u8 *)hdr,
|
||||
E1000_MNG_DHCP_COOKIE_LENGTH);
|
||||
/* If either the checksums or signature don't match, then
|
||||
/*
|
||||
* If either the checksums or signature don't match, then
|
||||
* the cookie area isn't considered valid, in which case we
|
||||
* take the safe route of assuming Tx filtering is enabled.
|
||||
*/
|
||||
|
@ -2318,8 +2371,10 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
|
|||
/* Calculate length in DWORDs */
|
||||
length >>= 2;
|
||||
|
||||
/* The device driver writes the relevant command block into the
|
||||
* ram area. */
|
||||
/*
|
||||
* The device driver writes the relevant command block into the
|
||||
* ram area.
|
||||
*/
|
||||
for (i = 0; i < length; i++) {
|
||||
for (j = 0; j < sizeof(u32); j++) {
|
||||
*(tmp + j) = *bufptr++;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -82,7 +82,7 @@ static int e1000_desc_unused(struct e1000_ring *ring)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000_receive_skb - helper function to handle rx indications
|
||||
* e1000_receive_skb - helper function to handle Rx indications
|
||||
* @adapter: board private structure
|
||||
* @status: descriptor status field as written by hardware
|
||||
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
|
||||
|
@ -138,8 +138,9 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
|
|||
/* TCP checksum is good */
|
||||
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||||
} else {
|
||||
/* IP fragment with UDP payload */
|
||||
/* Hardware complements the payload checksum, so we undo it
|
||||
/*
|
||||
* IP fragment with UDP payload
|
||||
* Hardware complements the payload checksum, so we undo it
|
||||
* and then put the value in host order for further stack use.
|
||||
*/
|
||||
__sum16 sum = (__force __sum16)htons(csum);
|
||||
|
@ -182,7 +183,8 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
|||
break;
|
||||
}
|
||||
|
||||
/* Make buffer alignment 2 beyond a 16 byte boundary
|
||||
/*
|
||||
* Make buffer alignment 2 beyond a 16 byte boundary
|
||||
* this will result in a 16 byte aligned IP header after
|
||||
* the 14 byte MAC header is removed
|
||||
*/
|
||||
|
@ -213,10 +215,12 @@ map_skb:
|
|||
if (i-- == 0)
|
||||
i = (rx_ring->count - 1);
|
||||
|
||||
/* Force memory writes to complete before letting h/w
|
||||
/*
|
||||
* Force memory writes to complete before letting h/w
|
||||
* know there are new descriptors to fetch. (Only
|
||||
* applicable for weak-ordered memory model archs,
|
||||
* such as IA-64). */
|
||||
* such as IA-64).
|
||||
*/
|
||||
wmb();
|
||||
writel(i, adapter->hw.hw_addr + rx_ring->tail);
|
||||
}
|
||||
|
@ -285,7 +289,8 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
|||
break;
|
||||
}
|
||||
|
||||
/* Make buffer alignment 2 beyond a 16 byte boundary
|
||||
/*
|
||||
* Make buffer alignment 2 beyond a 16 byte boundary
|
||||
* this will result in a 16 byte aligned IP header after
|
||||
* the 14 byte MAC header is removed
|
||||
*/
|
||||
|
@ -319,12 +324,15 @@ no_buffers:
|
|||
if (!(i--))
|
||||
i = (rx_ring->count - 1);
|
||||
|
||||
/* Force memory writes to complete before letting h/w
|
||||
/*
|
||||
* Force memory writes to complete before letting h/w
|
||||
* know there are new descriptors to fetch. (Only
|
||||
* applicable for weak-ordered memory model archs,
|
||||
* such as IA-64). */
|
||||
* such as IA-64).
|
||||
*/
|
||||
wmb();
|
||||
/* Hardware increments by 16 bytes, but packet split
|
||||
/*
|
||||
* Hardware increments by 16 bytes, but packet split
|
||||
* descriptors are 32 bytes...so we increment tail
|
||||
* twice as much.
|
||||
*/
|
||||
|
@ -409,9 +417,11 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|||
total_rx_bytes += length;
|
||||
total_rx_packets++;
|
||||
|
||||
/* code added for copybreak, this should improve
|
||||
/*
|
||||
* code added for copybreak, this should improve
|
||||
* performance for small packets with large amounts
|
||||
* of reassembly being done in the stack */
|
||||
* of reassembly being done in the stack
|
||||
*/
|
||||
if (length < copybreak) {
|
||||
struct sk_buff *new_skb =
|
||||
netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
|
||||
|
@ -581,14 +591,15 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
|
|||
}
|
||||
|
||||
if (adapter->detect_tx_hung) {
|
||||
/* Detect a transmit hang in hardware, this serializes the
|
||||
* check with the clearing of time_stamp and movement of i */
|
||||
/*
|
||||
* Detect a transmit hang in hardware, this serializes the
|
||||
* check with the clearing of time_stamp and movement of i
|
||||
*/
|
||||
adapter->detect_tx_hung = 0;
|
||||
if (tx_ring->buffer_info[eop].dma &&
|
||||
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
|
||||
+ (adapter->tx_timeout_factor * HZ))
|
||||
&& !(er32(STATUS) &
|
||||
E1000_STATUS_TXOFF)) {
|
||||
&& !(er32(STATUS) & E1000_STATUS_TXOFF)) {
|
||||
e1000_print_tx_hang(adapter);
|
||||
netif_stop_queue(netdev);
|
||||
}
|
||||
|
@ -677,21 +688,28 @@ static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|||
skb_put(skb, length);
|
||||
|
||||
{
|
||||
/* this looks ugly, but it seems compiler issues make it
|
||||
more efficient than reusing j */
|
||||
/*
|
||||
* this looks ugly, but it seems compiler issues make it
|
||||
* more efficient than reusing j
|
||||
*/
|
||||
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
|
||||
|
||||
/* page alloc/put takes too long and effects small packet
|
||||
* throughput, so unsplit small packets and save the alloc/put*/
|
||||
/*
|
||||
* page alloc/put takes too long and effects small packet
|
||||
* throughput, so unsplit small packets and save the alloc/put
|
||||
* only valid in softirq (napi) context to call kmap_*
|
||||
*/
|
||||
if (l1 && (l1 <= copybreak) &&
|
||||
((length + l1) <= adapter->rx_ps_bsize0)) {
|
||||
u8 *vaddr;
|
||||
|
||||
ps_page = &buffer_info->ps_pages[0];
|
||||
|
||||
/* there is no documentation about how to call
|
||||
/*
|
||||
* there is no documentation about how to call
|
||||
* kmap_atomic, so we can't hold the mapping
|
||||
* very long */
|
||||
* very long
|
||||
*/
|
||||
pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
|
||||
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
||||
vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
|
||||
|
@ -836,19 +854,25 @@ static irqreturn_t e1000_intr_msi(int irq, void *data)
|
|||
struct e1000_hw *hw = &adapter->hw;
|
||||
u32 icr = er32(ICR);
|
||||
|
||||
/* read ICR disables interrupts using IAM */
|
||||
/*
|
||||
* read ICR disables interrupts using IAM
|
||||
*/
|
||||
|
||||
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
||||
hw->mac.get_link_status = 1;
|
||||
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
||||
* disconnect (LSC) before accessing any PHY registers */
|
||||
/*
|
||||
* ICH8 workaround-- Call gig speed drop workaround on cable
|
||||
* disconnect (LSC) before accessing any PHY registers
|
||||
*/
|
||||
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
||||
(!(er32(STATUS) & E1000_STATUS_LU)))
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
||||
/* 80003ES2LAN workaround-- For packet buffer work-around on
|
||||
/*
|
||||
* 80003ES2LAN workaround-- For packet buffer work-around on
|
||||
* link down event; disable receives here in the ISR and reset
|
||||
* adapter in watchdog */
|
||||
* adapter in watchdog
|
||||
*/
|
||||
if (netif_carrier_ok(netdev) &&
|
||||
adapter->flags & FLAG_RX_NEEDS_RESTART) {
|
||||
/* disable receives */
|
||||
|
@ -886,23 +910,31 @@ static irqreturn_t e1000_intr(int irq, void *data)
|
|||
if (!icr)
|
||||
return IRQ_NONE; /* Not our interrupt */
|
||||
|
||||
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
||||
* not set, then the adapter didn't send an interrupt */
|
||||
/*
|
||||
* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
||||
* not set, then the adapter didn't send an interrupt
|
||||
*/
|
||||
if (!(icr & E1000_ICR_INT_ASSERTED))
|
||||
return IRQ_NONE;
|
||||
|
||||
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
|
||||
* need for the IMC write */
|
||||
/*
|
||||
* Interrupt Auto-Mask...upon reading ICR,
|
||||
* interrupts are masked. No need for the
|
||||
* IMC write
|
||||
*/
|
||||
|
||||
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
||||
hw->mac.get_link_status = 1;
|
||||
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
||||
* disconnect (LSC) before accessing any PHY registers */
|
||||
/*
|
||||
* ICH8 workaround-- Call gig speed drop workaround on cable
|
||||
* disconnect (LSC) before accessing any PHY registers
|
||||
*/
|
||||
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
||||
(!(er32(STATUS) & E1000_STATUS_LU)))
|
||||
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||||
|
||||
/* 80003ES2LAN workaround--
|
||||
/*
|
||||
* 80003ES2LAN workaround--
|
||||
* For packet buffer work-around on link down event;
|
||||
* disable receives here in the ISR and
|
||||
* reset adapter in watchdog
|
||||
|
@ -1011,8 +1043,7 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter)
|
|||
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
|
||||
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
||||
ctrl_ext = er32(CTRL_EXT);
|
||||
ew32(CTRL_EXT,
|
||||
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
||||
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1038,8 +1069,7 @@ static void e1000_release_hw_control(struct e1000_adapter *adapter)
|
|||
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
|
||||
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
||||
ctrl_ext = er32(CTRL_EXT);
|
||||
ew32(CTRL_EXT,
|
||||
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
||||
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1341,9 +1371,11 @@ static void e1000_set_itr(struct e1000_adapter *adapter)
|
|||
|
||||
set_itr_now:
|
||||
if (new_itr != adapter->itr) {
|
||||
/* this attempts to bias the interrupt rate towards Bulk
|
||||
/*
|
||||
* this attempts to bias the interrupt rate towards Bulk
|
||||
* by adding intermediate steps when interrupt rate is
|
||||
* increasing */
|
||||
* increasing
|
||||
*/
|
||||
new_itr = new_itr > adapter->itr ?
|
||||
min(adapter->itr + (new_itr >> 2), new_itr) :
|
||||
new_itr;
|
||||
|
@ -1354,7 +1386,7 @@ set_itr_now:
|
|||
|
||||
/**
|
||||
* e1000_clean - NAPI Rx polling callback
|
||||
* @adapter: board private structure
|
||||
* @napi: struct associated with this polling callback
|
||||
* @budget: amount of packets driver is allowed to process this poll
|
||||
**/
|
||||
static int e1000_clean(struct napi_struct *napi, int budget)
|
||||
|
@ -1366,10 +1398,12 @@ static int e1000_clean(struct napi_struct *napi, int budget)
|
|||
/* Must NOT use netdev_priv macro here. */
|
||||
adapter = poll_dev->priv;
|
||||
|
||||
/* e1000_clean is called per-cpu. This lock protects
|
||||
/*
|
||||
* e1000_clean is called per-cpu. This lock protects
|
||||
* tx_ring from being cleaned by multiple cpus
|
||||
* simultaneously. A failure obtaining the lock means
|
||||
* tx_ring is currently being cleaned anyway. */
|
||||
* tx_ring is currently being cleaned anyway.
|
||||
*/
|
||||
if (spin_trylock(&adapter->tx_queue_lock)) {
|
||||
tx_cleaned = e1000_clean_tx_irq(adapter);
|
||||
spin_unlock(&adapter->tx_queue_lock);
|
||||
|
@ -1539,9 +1573,11 @@ static void e1000_init_manageability(struct e1000_adapter *adapter)
|
|||
|
||||
manc = er32(MANC);
|
||||
|
||||
/* enable receiving management packets to the host. this will probably
|
||||
/*
|
||||
* enable receiving management packets to the host. this will probably
|
||||
* generate destination unreachable messages from the host OS, but
|
||||
* the packets will be handled on SMBUS */
|
||||
* the packets will be handled on SMBUS
|
||||
*/
|
||||
manc |= E1000_MANC_EN_MNG2HOST;
|
||||
manc2h = er32(MANC2H);
|
||||
#define E1000_MNG2HOST_PORT_623 (1 << 5)
|
||||
|
@ -1591,7 +1627,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
|
|||
|
||||
/* Set the Tx Interrupt Delay register */
|
||||
ew32(TIDV, adapter->tx_int_delay);
|
||||
/* tx irq moderation */
|
||||
/* Tx irq moderation */
|
||||
ew32(TADV, adapter->tx_abs_int_delay);
|
||||
|
||||
/* Program the Transmit Control Register */
|
||||
|
@ -1602,8 +1638,10 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
|
|||
|
||||
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
|
||||
tarc = er32(TARC0);
|
||||
/* set the speed mode bit, we'll clear it if we're not at
|
||||
* gigabit link later */
|
||||
/*
|
||||
* set the speed mode bit, we'll clear it if we're not at
|
||||
* gigabit link later
|
||||
*/
|
||||
#define SPEED_MODE_BIT (1 << 21)
|
||||
tarc |= SPEED_MODE_BIT;
|
||||
ew32(TARC0, tarc);
|
||||
|
@ -1724,8 +1762,10 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
|
|||
/* Configure extra packet-split registers */
|
||||
rfctl = er32(RFCTL);
|
||||
rfctl |= E1000_RFCTL_EXTEN;
|
||||
/* disable packet split support for IPv6 extension headers,
|
||||
* because some malformed IPv6 headers can hang the RX */
|
||||
/*
|
||||
* disable packet split support for IPv6 extension headers,
|
||||
* because some malformed IPv6 headers can hang the Rx
|
||||
*/
|
||||
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
|
||||
E1000_RFCTL_NEW_IPV6_EXT_DIS);
|
||||
|
||||
|
@ -1794,8 +1834,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
|
|||
/* irq moderation */
|
||||
ew32(RADV, adapter->rx_abs_int_delay);
|
||||
if (adapter->itr_setting != 0)
|
||||
ew32(ITR,
|
||||
1000000000 / (adapter->itr * 256));
|
||||
ew32(ITR, 1000000000 / (adapter->itr * 256));
|
||||
|
||||
ctrl_ext = er32(CTRL_EXT);
|
||||
/* Reset delay timers after every interrupt */
|
||||
|
@ -1806,8 +1845,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
|
|||
ew32(CTRL_EXT, ctrl_ext);
|
||||
e1e_flush();
|
||||
|
||||
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
||||
* the Base and Length of the Rx Descriptor Ring */
|
||||
/*
|
||||
* Setup the HW Rx Head and Tail Descriptor Pointers and
|
||||
* the Base and Length of the Rx Descriptor Ring
|
||||
*/
|
||||
rdba = rx_ring->dma;
|
||||
ew32(RDBAL, (rdba & DMA_32BIT_MASK));
|
||||
ew32(RDBAH, (rdba >> 32));
|
||||
|
@ -1822,8 +1863,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
|
|||
if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
|
||||
rxcsum |= E1000_RXCSUM_TUOFL;
|
||||
|
||||
/* IPv4 payload checksum for UDP fragments must be
|
||||
* used in conjunction with packet-split. */
|
||||
/*
|
||||
* IPv4 payload checksum for UDP fragments must be
|
||||
* used in conjunction with packet-split.
|
||||
*/
|
||||
if (adapter->rx_ps_pages)
|
||||
rxcsum |= E1000_RXCSUM_IPPCSE;
|
||||
} else {
|
||||
|
@ -1832,9 +1875,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
|
|||
}
|
||||
ew32(RXCSUM, rxcsum);
|
||||
|
||||
/* Enable early receives on supported devices, only takes effect when
|
||||
/*
|
||||
* Enable early receives on supported devices, only takes effect when
|
||||
* packet size is equal or larger than the specified value (in 8 byte
|
||||
* units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
|
||||
* units), e.g. using jumbo frames when setting to E1000_ERT_2048
|
||||
*/
|
||||
if ((adapter->flags & FLAG_HAS_ERT) &&
|
||||
(adapter->netdev->mtu > ETH_DATA_LEN))
|
||||
ew32(ERT, E1000_ERT_2048);
|
||||
|
@ -1930,7 +1975,7 @@ static void e1000_set_multi(struct net_device *netdev)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000_configure - configure the hardware for RX and TX
|
||||
* e1000_configure - configure the hardware for Rx and Tx
|
||||
* @adapter: private board structure
|
||||
**/
|
||||
static void e1000_configure(struct e1000_adapter *adapter)
|
||||
|
@ -1943,8 +1988,7 @@ static void e1000_configure(struct e1000_adapter *adapter)
|
|||
e1000_configure_tx(adapter);
|
||||
e1000_setup_rctl(adapter);
|
||||
e1000_configure_rx(adapter);
|
||||
adapter->alloc_rx_buf(adapter,
|
||||
e1000_desc_unused(adapter->rx_ring));
|
||||
adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1961,8 +2005,10 @@ void e1000e_power_up_phy(struct e1000_adapter *adapter)
|
|||
|
||||
/* Just clear the power down bit to wake the phy back up */
|
||||
if (adapter->hw.media_type == e1000_media_type_copper) {
|
||||
/* according to the manual, the phy will retain its
|
||||
* settings across a power-down/up cycle */
|
||||
/*
|
||||
* According to the manual, the phy will retain its
|
||||
* settings across a power-down/up cycle
|
||||
*/
|
||||
e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
|
||||
mii_reg &= ~MII_CR_POWER_DOWN;
|
||||
e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
|
||||
|
@ -1991,8 +2037,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
|
|||
return;
|
||||
|
||||
/* reset is blocked because of a SoL/IDER session */
|
||||
if (e1000e_check_mng_mode(hw) ||
|
||||
e1000_check_reset_block(hw))
|
||||
if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
|
||||
return;
|
||||
|
||||
/* manageability (AMT) is enabled */
|
||||
|
@ -2012,7 +2057,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
|
|||
* This function boots the hardware and enables some settings that
|
||||
* require a configuration cycle of the hardware - those cannot be
|
||||
* set/changed during runtime. After reset the device needs to be
|
||||
* properly configured for rx, tx etc.
|
||||
* properly configured for Rx, Tx etc.
|
||||
*/
|
||||
void e1000e_reset(struct e1000_adapter *adapter)
|
||||
{
|
||||
|
@ -2022,23 +2067,27 @@ void e1000e_reset(struct e1000_adapter *adapter)
|
|||
u32 pba;
|
||||
u16 hwm;
|
||||
|
||||
/* reset Packet Buffer Allocation to default */
|
||||
ew32(PBA, adapter->pba);
|
||||
|
||||
if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
|
||||
/* To maintain wire speed transmits, the Tx FIFO should be
|
||||
/*
|
||||
* To maintain wire speed transmits, the Tx FIFO should be
|
||||
* large enough to accommodate two full transmit packets,
|
||||
* rounded up to the next 1KB and expressed in KB. Likewise,
|
||||
* the Rx FIFO should be large enough to accommodate at least
|
||||
* one full receive packet and is similarly rounded up and
|
||||
* expressed in KB. */
|
||||
* expressed in KB.
|
||||
*/
|
||||
pba = er32(PBA);
|
||||
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
||||
tx_space = pba >> 16;
|
||||
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
||||
pba &= 0xffff;
|
||||
/* the tx fifo also stores 16 bytes of information about the tx
|
||||
* but don't include ethernet FCS because hardware appends it */
|
||||
min_tx_space = (mac->max_frame_size +
|
||||
/*
|
||||
* the Tx fifo also stores 16 bytes of information about the tx
|
||||
* but don't include ethernet FCS because hardware appends it
|
||||
*/ min_tx_space = (mac->max_frame_size +
|
||||
sizeof(struct e1000_tx_desc) -
|
||||
ETH_FCS_LEN) * 2;
|
||||
min_tx_space = ALIGN(min_tx_space, 1024);
|
||||
|
@ -2048,15 +2097,19 @@ void e1000e_reset(struct e1000_adapter *adapter)
|
|||
min_rx_space = ALIGN(min_rx_space, 1024);
|
||||
min_rx_space >>= 10;
|
||||
|
||||
/* If current Tx allocation is less than the min Tx FIFO size,
|
||||
/*
|
||||
* If current Tx allocation is less than the min Tx FIFO size,
|
||||
* and the min Tx FIFO size is less than the current Rx FIFO
|
||||
* allocation, take space away from current Rx allocation */
|
||||
* allocation, take space away from current Rx allocation
|
||||
*/
|
||||
if ((tx_space < min_tx_space) &&
|
||||
((min_tx_space - tx_space) < pba)) {
|
||||
pba -= min_tx_space - tx_space;
|
||||
|
||||
/* if short on rx space, rx wins and must trump tx
|
||||
* adjustment or use Early Receive if available */
|
||||
/*
|
||||
* if short on Rx space, Rx wins and must trump tx
|
||||
* adjustment or use Early Receive if available
|
||||
*/
|
||||
if ((pba < min_rx_space) &&
|
||||
(!(adapter->flags & FLAG_HAS_ERT)))
|
||||
/* ERT enabled in e1000_configure_rx */
|
||||
|
@ -2067,14 +2120,17 @@ void e1000e_reset(struct e1000_adapter *adapter)
|
|||
}
|
||||
|
||||
|
||||
/* flow control settings */
|
||||
/* The high water mark must be low enough to fit one full frame
|
||||
/*
|
||||
* flow control settings
|
||||
*
|
||||
* The high water mark must be low enough to fit one full frame
|
||||
* (or the size used for early receive) above it in the Rx FIFO.
|
||||
* Set it to the lower of:
|
||||
* - 90% of the Rx FIFO size, and
|
||||
* - the full Rx FIFO size minus the early receive size (for parts
|
||||
* with ERT support assuming ERT set to E1000_ERT_2048), or
|
||||
* - the full Rx FIFO size minus one full frame */
|
||||
* - the full Rx FIFO size minus one full frame
|
||||
*/
|
||||
if (adapter->flags & FLAG_HAS_ERT)
|
||||
hwm = min(((adapter->pba << 10) * 9 / 10),
|
||||
((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
|
||||
|
@ -2108,9 +2164,11 @@ void e1000e_reset(struct e1000_adapter *adapter)
|
|||
|
||||
if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
|
||||
u16 phy_data = 0;
|
||||
/* speed up time to link by disabling smart power down, ignore
|
||||
/*
|
||||
* speed up time to link by disabling smart power down, ignore
|
||||
* the return value of this function because there is nothing
|
||||
* different we would do if it failed */
|
||||
* different we would do if it failed
|
||||
*/
|
||||
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
||||
phy_data &= ~IGP02E1000_PM_SPD;
|
||||
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
|
||||
|
@ -2140,8 +2198,10 @@ void e1000e_down(struct e1000_adapter *adapter)
|
|||
struct e1000_hw *hw = &adapter->hw;
|
||||
u32 tctl, rctl;
|
||||
|
||||
/* signal that we're down so the interrupt handler does not
|
||||
* reschedule our watchdog timer */
|
||||
/*
|
||||
* signal that we're down so the interrupt handler does not
|
||||
* reschedule our watchdog timer
|
||||
*/
|
||||
set_bit(__E1000_DOWN, &adapter->state);
|
||||
|
||||
/* disable receives in the hardware */
|
||||
|
@ -2272,16 +2332,20 @@ static int e1000_open(struct net_device *netdev)
|
|||
E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
|
||||
e1000_update_mng_vlan(adapter);
|
||||
|
||||
/* If AMT is enabled, let the firmware know that the network
|
||||
* interface is now open */
|
||||
/*
|
||||
* If AMT is enabled, let the firmware know that the network
|
||||
* interface is now open
|
||||
*/
|
||||
if ((adapter->flags & FLAG_HAS_AMT) &&
|
||||
e1000e_check_mng_mode(&adapter->hw))
|
||||
e1000_get_hw_control(adapter);
|
||||
|
||||
/* before we allocate an interrupt, we must be ready to handle it.
|
||||
/*
|
||||
* before we allocate an interrupt, we must be ready to handle it.
|
||||
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
||||
* as soon as we call pci_request_irq, so we have to setup our
|
||||
* clean_rx handler before we do so. */
|
||||
* clean_rx handler before we do so.
|
||||
*/
|
||||
e1000_configure(adapter);
|
||||
|
||||
err = e1000_request_irq(adapter);
|
||||
|
@ -2335,16 +2399,20 @@ static int e1000_close(struct net_device *netdev)
|
|||
e1000e_free_tx_resources(adapter);
|
||||
e1000e_free_rx_resources(adapter);
|
||||
|
||||
/* kill manageability vlan ID if supported, but not if a vlan with
|
||||
* the same ID is registered on the host OS (let 8021q kill it) */
|
||||
/*
|
||||
* kill manageability vlan ID if supported, but not if a vlan with
|
||||
* the same ID is registered on the host OS (let 8021q kill it)
|
||||
*/
|
||||
if ((adapter->hw.mng_cookie.status &
|
||||
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
||||
!(adapter->vlgrp &&
|
||||
vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
|
||||
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
|
||||
|
||||
/* If AMT is enabled, let the firmware know that the network
|
||||
* interface is now closed */
|
||||
/*
|
||||
* If AMT is enabled, let the firmware know that the network
|
||||
* interface is now closed
|
||||
*/
|
||||
if ((adapter->flags & FLAG_HAS_AMT) &&
|
||||
e1000e_check_mng_mode(&adapter->hw))
|
||||
e1000_release_hw_control(adapter);
|
||||
|
@ -2375,12 +2443,14 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
|
|||
/* activate the work around */
|
||||
e1000e_set_laa_state_82571(&adapter->hw, 1);
|
||||
|
||||
/* Hold a copy of the LAA in RAR[14] This is done so that
|
||||
/*
|
||||
* Hold a copy of the LAA in RAR[14] This is done so that
|
||||
* between the time RAR[0] gets clobbered and the time it
|
||||
* gets fixed (in e1000_watchdog), the actual LAA is in one
|
||||
* of the RARs and no incoming packets directed to this port
|
||||
* are dropped. Eventually the LAA will be in RAR[0] and
|
||||
* RAR[14] */
|
||||
* RAR[14]
|
||||
*/
|
||||
e1000e_rar_set(&adapter->hw,
|
||||
adapter->hw.mac.addr,
|
||||
adapter->hw.mac.rar_entry_count - 1);
|
||||
|
@ -2389,8 +2459,10 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Need to wait a few seconds after link up to get diagnostic information from
|
||||
* the phy */
|
||||
/*
|
||||
* Need to wait a few seconds after link up to get diagnostic information from
|
||||
* the phy
|
||||
*/
|
||||
static void e1000_update_phy_info(unsigned long data)
|
||||
{
|
||||
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
||||
|
@ -2421,7 +2493,8 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
|
|||
|
||||
spin_lock_irqsave(&adapter->stats_lock, irq_flags);
|
||||
|
||||
/* these counters are modified from e1000_adjust_tbi_stats,
|
||||
/*
|
||||
* these counters are modified from e1000_adjust_tbi_stats,
|
||||
* called from the interrupt context, so they must only
|
||||
* be written while holding adapter->stats_lock
|
||||
*/
|
||||
|
@ -2515,8 +2588,10 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
|
|||
|
||||
/* Rx Errors */
|
||||
|
||||
/* RLEC on some newer hardware can be incorrect so build
|
||||
* our own version based on RUC and ROC */
|
||||
/*
|
||||
* RLEC on some newer hardware can be incorrect so build
|
||||
* our own version based on RUC and ROC
|
||||
*/
|
||||
adapter->net_stats.rx_errors = adapter->stats.rxerrc +
|
||||
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
||||
adapter->stats.ruc + adapter->stats.roc +
|
||||
|
@ -2628,8 +2703,10 @@ static void e1000_watchdog_task(struct work_struct *work)
|
|||
&adapter->link_speed,
|
||||
&adapter->link_duplex);
|
||||
e1000_print_link_info(adapter);
|
||||
/* tweak tx_queue_len according to speed/duplex
|
||||
* and adjust the timeout factor */
|
||||
/*
|
||||
* tweak tx_queue_len according to speed/duplex
|
||||
* and adjust the timeout factor
|
||||
*/
|
||||
netdev->tx_queue_len = adapter->tx_queue_len;
|
||||
adapter->tx_timeout_factor = 1;
|
||||
switch (adapter->link_speed) {
|
||||
|
@ -2645,8 +2722,10 @@ static void e1000_watchdog_task(struct work_struct *work)
|
|||
break;
|
||||
}
|
||||
|
||||
/* workaround: re-program speed mode bit after
|
||||
* link-up event */
|
||||
/*
|
||||
* workaround: re-program speed mode bit after
|
||||
* link-up event
|
||||
*/
|
||||
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
|
||||
!txb2b) {
|
||||
u32 tarc0;
|
||||
|
@ -2655,8 +2734,10 @@ static void e1000_watchdog_task(struct work_struct *work)
|
|||
ew32(TARC0, tarc0);
|
||||
}
|
||||
|
||||
/* disable TSO for pcie and 10/100 speeds, to avoid
|
||||
* some hardware issues */
|
||||
/*
|
||||
* disable TSO for pcie and 10/100 speeds, to avoid
|
||||
* some hardware issues
|
||||
*/
|
||||
if (!(adapter->flags & FLAG_TSO_FORCE)) {
|
||||
switch (adapter->link_speed) {
|
||||
case SPEED_10:
|
||||
|
@ -2676,8 +2757,10 @@ static void e1000_watchdog_task(struct work_struct *work)
|
|||
}
|
||||
}
|
||||
|
||||
/* enable transmits in the hardware, need to do this
|
||||
* after setting TARC0 */
|
||||
/*
|
||||
* enable transmits in the hardware, need to do this
|
||||
* after setting TARC(0)
|
||||
*/
|
||||
tctl = er32(TCTL);
|
||||
tctl |= E1000_TCTL_EN;
|
||||
ew32(TCTL, tctl);
|
||||
|
@ -2731,23 +2814,27 @@ link_up:
|
|||
tx_pending = (e1000_desc_unused(tx_ring) + 1 <
|
||||
tx_ring->count);
|
||||
if (tx_pending) {
|
||||
/* We've lost link, so the controller stops DMA,
|
||||
/*
|
||||
* We've lost link, so the controller stops DMA,
|
||||
* but we've got queued Tx work that's never going
|
||||
* to get done, so reset controller to flush Tx.
|
||||
* (Do the reset outside of interrupt context). */
|
||||
* (Do the reset outside of interrupt context).
|
||||
*/
|
||||
adapter->tx_timeout_count++;
|
||||
schedule_work(&adapter->reset_task);
|
||||
}
|
||||
}
|
||||
|
||||
/* Cause software interrupt to ensure rx ring is cleaned */
|
||||
/* Cause software interrupt to ensure Rx ring is cleaned */
|
||||
ew32(ICS, E1000_ICS_RXDMT0);
|
||||
|
||||
/* Force detection of hung controller every watchdog period */
|
||||
adapter->detect_tx_hung = 1;
|
||||
|
||||
/* With 82571 controllers, LAA may be overwritten due to controller
|
||||
* reset from the other port. Set the appropriate LAA in RAR[0] */
|
||||
/*
|
||||
* With 82571 controllers, LAA may be overwritten due to controller
|
||||
* reset from the other port. Set the appropriate LAA in RAR[0]
|
||||
*/
|
||||
if (e1000e_get_laa_state_82571(hw))
|
||||
e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
|
||||
|
||||
|
@ -3023,16 +3110,20 @@ static void e1000_tx_queue(struct e1000_adapter *adapter,
|
|||
|
||||
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
||||
|
||||
/* Force memory writes to complete before letting h/w
|
||||
/*
|
||||
* Force memory writes to complete before letting h/w
|
||||
* know there are new descriptors to fetch. (Only
|
||||
* applicable for weak-ordered memory model archs,
|
||||
* such as IA-64). */
|
||||
* such as IA-64).
|
||||
*/
|
||||
wmb();
|
||||
|
||||
tx_ring->next_to_use = i;
|
||||
writel(i, adapter->hw.hw_addr + tx_ring->tail);
|
||||
/* we need this if more than one processor can write to our tail
|
||||
* at a time, it synchronizes IO on IA64/Altix systems */
|
||||
/*
|
||||
* we need this if more than one processor can write to our tail
|
||||
* at a time, it synchronizes IO on IA64/Altix systems
|
||||
*/
|
||||
mmiowb();
|
||||
}
|
||||
|
||||
|
@ -3080,13 +3171,17 @@ static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
|
|||
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||||
|
||||
netif_stop_queue(netdev);
|
||||
/* Herbert's original patch had:
|
||||
/*
|
||||
* Herbert's original patch had:
|
||||
* smp_mb__after_netif_stop_queue();
|
||||
* but since that doesn't exist yet, just open code it. */
|
||||
* but since that doesn't exist yet, just open code it.
|
||||
*/
|
||||
smp_mb();
|
||||
|
||||
/* We need to check again in a case another CPU has just
|
||||
* made room available. */
|
||||
/*
|
||||
* We need to check again in a case another CPU has just
|
||||
* made room available.
|
||||
*/
|
||||
if (e1000_desc_unused(adapter->tx_ring) < size)
|
||||
return -EBUSY;
|
||||
|
||||
|
@ -3133,21 +3228,29 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|||
}
|
||||
|
||||
mss = skb_shinfo(skb)->gso_size;
|
||||
/* The controller does a simple calculation to
|
||||
/*
|
||||
* The controller does a simple calculation to
|
||||
* make sure there is enough room in the FIFO before
|
||||
* initiating the DMA for each buffer. The calc is:
|
||||
* 4 = ceil(buffer len/mss). To make sure we don't
|
||||
* overrun the FIFO, adjust the max buffer len if mss
|
||||
* drops. */
|
||||
* drops.
|
||||
*/
|
||||
if (mss) {
|
||||
u8 hdr_len;
|
||||
max_per_txd = min(mss << 2, max_per_txd);
|
||||
max_txd_pwr = fls(max_per_txd) - 1;
|
||||
|
||||
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
|
||||
* points to just header, pull a few bytes of payload from
|
||||
* frags into skb->data */
|
||||
/*
|
||||
* TSO Workaround for 82571/2/3 Controllers -- if skb->data
|
||||
* points to just header, pull a few bytes of payload from
|
||||
* frags into skb->data
|
||||
*/
|
||||
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
||||
/*
|
||||
* we do this workaround for ES2LAN, but it is un-necessary,
|
||||
* avoiding it could save a lot of cycles
|
||||
*/
|
||||
if (skb->data_len && (hdr_len == len)) {
|
||||
unsigned int pull_size;
|
||||
|
||||
|
@ -3181,8 +3284,10 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|||
/* Collision - tell upper layer to requeue */
|
||||
return NETDEV_TX_LOCKED;
|
||||
|
||||
/* need: count + 2 desc gap to keep tail from touching
|
||||
* head, otherwise try next time */
|
||||
/*
|
||||
* need: count + 2 desc gap to keep tail from touching
|
||||
* head, otherwise try next time
|
||||
*/
|
||||
if (e1000_maybe_stop_tx(netdev, count + 2)) {
|
||||
spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
|
||||
return NETDEV_TX_BUSY;
|
||||
|
@ -3207,9 +3312,11 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|||
else if (e1000_tx_csum(adapter, skb))
|
||||
tx_flags |= E1000_TX_FLAGS_CSUM;
|
||||
|
||||
/* Old method was to assume IPv4 packet by default if TSO was enabled.
|
||||
/*
|
||||
* Old method was to assume IPv4 packet by default if TSO was enabled.
|
||||
* 82571 hardware supports TSO capabilities for IPv6 as well...
|
||||
* no longer assume, we must. */
|
||||
* no longer assume, we must.
|
||||
*/
|
||||
if (skb->protocol == htons(ETH_P_IP))
|
||||
tx_flags |= E1000_TX_FLAGS_IPV4;
|
||||
|
||||
|
@ -3311,10 +3418,12 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
|||
if (netif_running(netdev))
|
||||
e1000e_down(adapter);
|
||||
|
||||
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
||||
/*
|
||||
* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
||||
* means we reserve 2 more, this pushes us to allocate from the next
|
||||
* larger slab size.
|
||||
* i.e. RXBUFFER_2048 --> size-4096 slab */
|
||||
* i.e. RXBUFFER_2048 --> size-4096 slab
|
||||
*/
|
||||
|
||||
if (max_frame <= 256)
|
||||
adapter->rx_buffer_len = 256;
|
||||
|
@ -3331,7 +3440,7 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
|||
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
|
||||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
|
||||
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
|
||||
+ ETH_FCS_LEN ;
|
||||
+ ETH_FCS_LEN;
|
||||
|
||||
ndev_info(netdev, "changing MTU from %d to %d\n",
|
||||
netdev->mtu, new_mtu);
|
||||
|
@ -3467,8 +3576,10 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
|
|||
if (adapter->hw.phy.type == e1000_phy_igp_3)
|
||||
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
|
||||
|
||||
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||||
* would have already happened in close and is redundant. */
|
||||
/*
|
||||
* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||||
* would have already happened in close and is redundant.
|
||||
*/
|
||||
e1000_release_hw_control(adapter);
|
||||
|
||||
pci_disable_device(pdev);
|
||||
|
@ -3543,9 +3654,11 @@ static int e1000_resume(struct pci_dev *pdev)
|
|||
|
||||
netif_device_attach(netdev);
|
||||
|
||||
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
/*
|
||||
* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
* is up. For all other cases, let the f/w know that the h/w is now
|
||||
* under the control of the driver. */
|
||||
* under the control of the driver.
|
||||
*/
|
||||
if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
|
||||
e1000_get_hw_control(adapter);
|
||||
|
||||
|
@ -3656,9 +3769,11 @@ static void e1000_io_resume(struct pci_dev *pdev)
|
|||
|
||||
netif_device_attach(netdev);
|
||||
|
||||
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
/*
|
||||
* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
* is up. For all other cases, let the f/w know that the h/w is now
|
||||
* under the control of the driver. */
|
||||
* under the control of the driver.
|
||||
*/
|
||||
if (!(adapter->flags & FLAG_HAS_AMT) ||
|
||||
!e1000e_check_mng_mode(&adapter->hw))
|
||||
e1000_get_hw_control(adapter);
|
||||
|
@ -3852,15 +3967,19 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
|
|||
if (pci_using_dac)
|
||||
netdev->features |= NETIF_F_HIGHDMA;
|
||||
|
||||
/* We should not be using LLTX anymore, but we are still TX faster with
|
||||
* it. */
|
||||
/*
|
||||
* We should not be using LLTX anymore, but we are still Tx faster with
|
||||
* it.
|
||||
*/
|
||||
netdev->features |= NETIF_F_LLTX;
|
||||
|
||||
if (e1000e_enable_mng_pass_thru(&adapter->hw))
|
||||
adapter->flags |= FLAG_MNG_PT_ENABLED;
|
||||
|
||||
/* before reading the NVM, reset the controller to
|
||||
* put the device in a known good starting state */
|
||||
/*
|
||||
* before reading the NVM, reset the controller to
|
||||
* put the device in a known good starting state
|
||||
*/
|
||||
adapter->hw.mac.ops.reset_hw(&adapter->hw);
|
||||
|
||||
/*
|
||||
|
@ -3954,9 +4073,11 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
|
|||
/* reset the hardware with the new settings */
|
||||
e1000e_reset(adapter);
|
||||
|
||||
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
/*
|
||||
* If the controller has AMT, do not set DRV_LOAD until the interface
|
||||
* is up. For all other cases, let the f/w know that the h/w is now
|
||||
* under the control of the driver. */
|
||||
* under the control of the driver.
|
||||
*/
|
||||
if (!(adapter->flags & FLAG_HAS_AMT) ||
|
||||
!e1000e_check_mng_mode(&adapter->hw))
|
||||
e1000_get_hw_control(adapter);
|
||||
|
@ -4013,16 +4134,20 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
|
|||
struct net_device *netdev = pci_get_drvdata(pdev);
|
||||
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||||
|
||||
/* flush_scheduled work may reschedule our watchdog task, so
|
||||
* explicitly disable watchdog tasks from being rescheduled */
|
||||
/*
|
||||
* flush_scheduled work may reschedule our watchdog task, so
|
||||
* explicitly disable watchdog tasks from being rescheduled
|
||||
*/
|
||||
set_bit(__E1000_DOWN, &adapter->state);
|
||||
del_timer_sync(&adapter->watchdog_timer);
|
||||
del_timer_sync(&adapter->phy_info_timer);
|
||||
|
||||
flush_scheduled_work();
|
||||
|
||||
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||||
* would have already happened in close and is redundant. */
|
||||
/*
|
||||
* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||||
* would have already happened in close and is redundant.
|
||||
*/
|
||||
e1000_release_hw_control(adapter);
|
||||
|
||||
unregister_netdev(netdev);
|
||||
|
@ -4060,13 +4185,16 @@ static struct pci_device_id e1000_pci_tbl[] = {
|
|||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
|
||||
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
|
||||
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
|
||||
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
|
||||
board_80003es2lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
|
||||
|
@ -4075,6 +4203,7 @@ static struct pci_device_id e1000_pci_tbl[] = {
|
|||
board_80003es2lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
|
||||
board_80003es2lan },
|
||||
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
|
||||
|
@ -4082,6 +4211,7 @@ static struct pci_device_id e1000_pci_tbl[] = {
|
|||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
|
||||
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
|
||||
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
|
||||
|
@ -4099,7 +4229,7 @@ static struct pci_driver e1000_driver = {
|
|||
.probe = e1000_probe,
|
||||
.remove = __devexit_p(e1000_remove),
|
||||
#ifdef CONFIG_PM
|
||||
/* Power Managment Hooks */
|
||||
/* Power Management Hooks */
|
||||
.suspend = e1000_suspend,
|
||||
.resume = e1000_resume,
|
||||
#endif
|
||||
|
@ -4118,7 +4248,7 @@ static int __init e1000_init_module(void)
|
|||
int ret;
|
||||
printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
|
||||
e1000e_driver_name, e1000e_driver_version);
|
||||
printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
|
||||
printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
|
||||
e1000e_driver_name);
|
||||
ret = pci_register_driver(&e1000_driver);
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -30,7 +30,8 @@
|
|||
|
||||
#include "e1000.h"
|
||||
|
||||
/* This is the only thing that needs to be changed to adjust the
|
||||
/*
|
||||
* This is the only thing that needs to be changed to adjust the
|
||||
* maximum number of ports that the driver can manage.
|
||||
*/
|
||||
|
||||
|
@ -46,7 +47,8 @@ module_param(copybreak, uint, 0644);
|
|||
MODULE_PARM_DESC(copybreak,
|
||||
"Maximum size of packet that is copied to a new buffer on receive");
|
||||
|
||||
/* All parameters are treated the same, as an integer array of values.
|
||||
/*
|
||||
* All parameters are treated the same, as an integer array of values.
|
||||
* This macro just reduces the need to repeat the same declaration code
|
||||
* over and over (plus this helps to avoid typo bugs).
|
||||
*/
|
||||
|
@ -60,8 +62,9 @@ MODULE_PARM_DESC(copybreak,
|
|||
MODULE_PARM_DESC(X, desc);
|
||||
|
||||
|
||||
/* Transmit Interrupt Delay in units of 1.024 microseconds
|
||||
* Tx interrupt delay needs to typically be set to something non zero
|
||||
/*
|
||||
* Transmit Interrupt Delay in units of 1.024 microseconds
|
||||
* Tx interrupt delay needs to typically be set to something non zero
|
||||
*
|
||||
* Valid Range: 0-65535
|
||||
*/
|
||||
|
@ -70,7 +73,8 @@ E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
|
|||
#define MAX_TXDELAY 0xFFFF
|
||||
#define MIN_TXDELAY 0
|
||||
|
||||
/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
|
||||
/*
|
||||
* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
|
||||
*
|
||||
* Valid Range: 0-65535
|
||||
*/
|
||||
|
@ -79,8 +83,9 @@ E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
|
|||
#define MAX_TXABSDELAY 0xFFFF
|
||||
#define MIN_TXABSDELAY 0
|
||||
|
||||
/* Receive Interrupt Delay in units of 1.024 microseconds
|
||||
* hardware will likely hang if you set this to anything but zero.
|
||||
/*
|
||||
* Receive Interrupt Delay in units of 1.024 microseconds
|
||||
* hardware will likely hang if you set this to anything but zero.
|
||||
*
|
||||
* Valid Range: 0-65535
|
||||
*/
|
||||
|
@ -89,7 +94,8 @@ E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
|
|||
#define MAX_RXDELAY 0xFFFF
|
||||
#define MIN_RXDELAY 0
|
||||
|
||||
/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
|
||||
/*
|
||||
* Receive Absolute Interrupt Delay in units of 1.024 microseconds
|
||||
*
|
||||
* Valid Range: 0-65535
|
||||
*/
|
||||
|
@ -98,7 +104,8 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
|
|||
#define MAX_RXABSDELAY 0xFFFF
|
||||
#define MIN_RXABSDELAY 0
|
||||
|
||||
/* Interrupt Throttle Rate (interrupts/sec)
|
||||
/*
|
||||
* Interrupt Throttle Rate (interrupts/sec)
|
||||
*
|
||||
* Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
|
||||
*/
|
||||
|
@ -107,7 +114,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
|
|||
#define MAX_ITR 100000
|
||||
#define MIN_ITR 100
|
||||
|
||||
/* Enable Smart Power Down of the PHY
|
||||
/*
|
||||
* Enable Smart Power Down of the PHY
|
||||
*
|
||||
* Valid Range: 0, 1
|
||||
*
|
||||
|
@ -115,7 +123,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
|
|||
*/
|
||||
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
|
||||
|
||||
/* Enable Kumeran Lock Loss workaround
|
||||
/*
|
||||
* Enable Kumeran Lock Loss workaround
|
||||
*
|
||||
* Valid Range: 0, 1
|
||||
*
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*******************************************************************************
|
||||
|
||||
Intel PRO/1000 Linux driver
|
||||
Copyright(c) 1999 - 2007 Intel Corporation.
|
||||
Copyright(c) 1999 - 2008 Intel Corporation.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms and conditions of the GNU General Public License,
|
||||
|
@ -134,7 +134,8 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
return -E1000_ERR_PARAM;
|
||||
}
|
||||
|
||||
/* Set up Op-code, Phy Address, and register offset in the MDI
|
||||
/*
|
||||
* Set up Op-code, Phy Address, and register offset in the MDI
|
||||
* Control register. The MAC will take care of interfacing with the
|
||||
* PHY to retrieve the desired data.
|
||||
*/
|
||||
|
@ -144,7 +145,11 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
|
||||
ew32(MDIC, mdic);
|
||||
|
||||
/* Poll the ready bit to see if the MDI read completed */
|
||||
/*
|
||||
* Poll the ready bit to see if the MDI read completed
|
||||
* Increasing the time out as testing showed failures with
|
||||
* the lower time out
|
||||
*/
|
||||
for (i = 0; i < 64; i++) {
|
||||
udelay(50);
|
||||
mdic = er32(MDIC);
|
||||
|
@ -182,7 +187,8 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
return -E1000_ERR_PARAM;
|
||||
}
|
||||
|
||||
/* Set up Op-code, Phy Address, and register offset in the MDI
|
||||
/*
|
||||
* Set up Op-code, Phy Address, and register offset in the MDI
|
||||
* Control register. The MAC will take care of interfacing with the
|
||||
* PHY to retrieve the desired data.
|
||||
*/
|
||||
|
@ -409,14 +415,15 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 phy_data;
|
||||
|
||||
/* Enable CRS on TX. This must be set for half-duplex operation. */
|
||||
/* Enable CRS on Tx. This must be set for half-duplex operation. */
|
||||
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
||||
|
||||
/* Options:
|
||||
/*
|
||||
* Options:
|
||||
* MDI/MDI-X = 0 (default)
|
||||
* 0 - Auto for all speeds
|
||||
* 1 - MDI mode
|
||||
|
@ -441,7 +448,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
|
|||
break;
|
||||
}
|
||||
|
||||
/* Options:
|
||||
/*
|
||||
* Options:
|
||||
* disable_polarity_correction = 0 (default)
|
||||
* Automatic Correction for Reversed Cable Polarity
|
||||
* 0 - Disabled
|
||||
|
@ -456,7 +464,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
|
||||
if (phy->revision < 4) {
|
||||
/* Force TX_CLK in the Extended PHY Specific Control Register
|
||||
/*
|
||||
* Force TX_CLK in the Extended PHY Specific Control Register
|
||||
* to 25MHz clock.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
||||
|
@ -543,19 +552,21 @@ s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
|
|||
|
||||
/* set auto-master slave resolution settings */
|
||||
if (hw->mac.autoneg) {
|
||||
/* when autonegotiation advertisement is only 1000Mbps then we
|
||||
/*
|
||||
* when autonegotiation advertisement is only 1000Mbps then we
|
||||
* should disable SmartSpeed and enable Auto MasterSlave
|
||||
* resolution as hardware default. */
|
||||
* resolution as hardware default.
|
||||
*/
|
||||
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
|
||||
/* Disable SmartSpeed */
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
|
@ -630,14 +641,16 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Need to parse both autoneg_advertised and fc and set up
|
||||
/*
|
||||
* Need to parse both autoneg_advertised and fc and set up
|
||||
* the appropriate PHY registers. First we will parse for
|
||||
* autoneg_advertised software override. Since we can advertise
|
||||
* a plethora of combinations, we need to check each bit
|
||||
* individually.
|
||||
*/
|
||||
|
||||
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
||||
/*
|
||||
* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
||||
* Advertisement Register (Address 4) and the 1000 mb speed bits in
|
||||
* the 1000Base-T Control Register (Address 9).
|
||||
*/
|
||||
|
@ -683,7 +696,8 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|||
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
||||
}
|
||||
|
||||
/* Check for a software override of the flow control settings, and
|
||||
/*
|
||||
* Check for a software override of the flow control settings, and
|
||||
* setup the PHY advertisement registers accordingly. If
|
||||
* auto-negotiation is enabled, then software will have to set the
|
||||
* "PAUSE" bits to the correct value in the Auto-Negotiation
|
||||
|
@ -696,38 +710,42 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|||
* but not send pause frames).
|
||||
* 2: Tx flow control is enabled (we can send pause frames
|
||||
* but we do not support receiving pause frames).
|
||||
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
||||
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
||||
* other: No software override. The flow control configuration
|
||||
* in the EEPROM is used.
|
||||
*/
|
||||
switch (hw->mac.fc) {
|
||||
case e1000_fc_none:
|
||||
/* Flow control (RX & TX) is completely disabled by a
|
||||
/*
|
||||
* Flow control (Rx & Tx) is completely disabled by a
|
||||
* software over-ride.
|
||||
*/
|
||||
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||||
break;
|
||||
case e1000_fc_rx_pause:
|
||||
/* RX Flow control is enabled, and TX Flow control is
|
||||
/*
|
||||
* Rx Flow control is enabled, and Tx Flow control is
|
||||
* disabled, by a software over-ride.
|
||||
*/
|
||||
/* Since there really isn't a way to advertise that we are
|
||||
* capable of RX Pause ONLY, we will advertise that we
|
||||
* support both symmetric and asymmetric RX PAUSE. Later
|
||||
*
|
||||
* Since there really isn't a way to advertise that we are
|
||||
* capable of Rx Pause ONLY, we will advertise that we
|
||||
* support both symmetric and asymmetric Rx PAUSE. Later
|
||||
* (in e1000e_config_fc_after_link_up) we will disable the
|
||||
* hw's ability to send PAUSE frames.
|
||||
*/
|
||||
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||||
break;
|
||||
case e1000_fc_tx_pause:
|
||||
/* TX Flow control is enabled, and RX Flow control is
|
||||
/*
|
||||
* Tx Flow control is enabled, and Rx Flow control is
|
||||
* disabled, by a software over-ride.
|
||||
*/
|
||||
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
||||
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
||||
break;
|
||||
case e1000_fc_full:
|
||||
/* Flow control (both RX and TX) is enabled by a software
|
||||
/*
|
||||
* Flow control (both Rx and Tx) is enabled by a software
|
||||
* over-ride.
|
||||
*/
|
||||
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||||
|
@ -758,7 +776,7 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|||
* Performs initial bounds checking on autoneg advertisement parameter, then
|
||||
* configure to advertise the full capability. Setup the PHY to autoneg
|
||||
* and restart the negotiation process between the link partner. If
|
||||
* wait_for_link, then wait for autoneg to complete before exiting.
|
||||
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
|
||||
**/
|
||||
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
||||
{
|
||||
|
@ -766,12 +784,14 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 phy_ctrl;
|
||||
|
||||
/* Perform some bounds checking on the autoneg advertisement
|
||||
/*
|
||||
* Perform some bounds checking on the autoneg advertisement
|
||||
* parameter.
|
||||
*/
|
||||
phy->autoneg_advertised &= phy->autoneg_mask;
|
||||
|
||||
/* If autoneg_advertised is zero, we assume it was not defaulted
|
||||
/*
|
||||
* If autoneg_advertised is zero, we assume it was not defaulted
|
||||
* by the calling code so we set to advertise full capability.
|
||||
*/
|
||||
if (phy->autoneg_advertised == 0)
|
||||
|
@ -785,7 +805,8 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|||
}
|
||||
hw_dbg(hw, "Restarting Auto-Neg\n");
|
||||
|
||||
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
||||
/*
|
||||
* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
||||
* the Auto Neg Restart bit in the PHY control register.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
|
||||
|
@ -797,7 +818,8 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Does the user want to wait for Auto-Neg to complete here, or
|
||||
/*
|
||||
* Does the user want to wait for Auto-Neg to complete here, or
|
||||
* check at a later time (for example, callback routine).
|
||||
*/
|
||||
if (phy->wait_for_link) {
|
||||
|
@ -829,14 +851,18 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw)
|
|||
bool link;
|
||||
|
||||
if (hw->mac.autoneg) {
|
||||
/* Setup autoneg and flow control advertisement and perform
|
||||
* autonegotiation. */
|
||||
/*
|
||||
* Setup autoneg and flow control advertisement and perform
|
||||
* autonegotiation.
|
||||
*/
|
||||
ret_val = e1000_copper_link_autoneg(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
} else {
|
||||
/* PHY will be set to 10H, 10F, 100H or 100F
|
||||
* depending on user settings. */
|
||||
/*
|
||||
* PHY will be set to 10H, 10F, 100H or 100F
|
||||
* depending on user settings.
|
||||
*/
|
||||
hw_dbg(hw, "Forcing Speed and Duplex\n");
|
||||
ret_val = e1000_phy_force_speed_duplex(hw);
|
||||
if (ret_val) {
|
||||
|
@ -845,7 +871,8 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw)
|
|||
}
|
||||
}
|
||||
|
||||
/* Check link status. Wait up to 100 microseconds for link to become
|
||||
/*
|
||||
* Check link status. Wait up to 100 microseconds for link to become
|
||||
* valid.
|
||||
*/
|
||||
ret_val = e1000e_phy_has_link_generic(hw,
|
||||
|
@ -891,7 +918,8 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
||||
/*
|
||||
* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
||||
* forced whenever speed and duplex are forced.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
||||
|
@ -941,7 +969,7 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
|
|||
* Calls the PHY setup function to force speed and duplex. Clears the
|
||||
* auto-crossover to force MDI manually. Resets the PHY to commit the
|
||||
* changes. If time expires while waiting for link up, we reset the DSP.
|
||||
* After reset, TX_CLK and CRS on TX must be set. Return successful upon
|
||||
* After reset, TX_CLK and CRS on Tx must be set. Return successful upon
|
||||
* successful completion, else return corresponding error code.
|
||||
**/
|
||||
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
||||
|
@ -951,7 +979,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
|||
u16 phy_data;
|
||||
bool link;
|
||||
|
||||
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
||||
/*
|
||||
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
||||
* forced whenever speed and duplex are forced.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||||
|
@ -989,10 +1018,12 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
|
||||
if (!link) {
|
||||
/* We didn't get link.
|
||||
/*
|
||||
* We didn't get link.
|
||||
* Reset the DSP and cross our fingers.
|
||||
*/
|
||||
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
|
||||
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
|
||||
0x001d);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
ret_val = e1000e_phy_reset_dsp(hw);
|
||||
|
@ -1011,7 +1042,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Resetting the phy means we need to re-force TX_CLK in the
|
||||
/*
|
||||
* Resetting the phy means we need to re-force TX_CLK in the
|
||||
* Extended PHY Specific Control Register to 25MHz clock from
|
||||
* the reset value of 2.5MHz.
|
||||
*/
|
||||
|
@ -1020,7 +1052,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* In addition, we must re-enable CRS on Tx for both half and full
|
||||
/*
|
||||
* In addition, we must re-enable CRS on Tx for both half and full
|
||||
* duplex.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||||
|
@ -1124,30 +1157,32 @@ s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
|
|||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
/*
|
||||
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||||
* during Dx states where the power conservation is most
|
||||
* important. During driver activity we should enable
|
||||
* SmartSpeed, so performance is maintained. */
|
||||
* SmartSpeed, so performance is maintained.
|
||||
*/
|
||||
if (phy->smart_speed == e1000_smart_speed_on) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
&data);
|
||||
&data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||||
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||||
data);
|
||||
data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -1249,8 +1284,10 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
|
|||
s32 ret_val;
|
||||
u16 data, offset, mask;
|
||||
|
||||
/* Polarity is determined based on the speed of
|
||||
* our connection. */
|
||||
/*
|
||||
* Polarity is determined based on the speed of
|
||||
* our connection.
|
||||
*/
|
||||
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
@ -1260,7 +1297,8 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
|
|||
offset = IGP01E1000_PHY_PCS_INIT_REG;
|
||||
mask = IGP01E1000_PHY_POLARITY_MASK;
|
||||
} else {
|
||||
/* This really only applies to 10Mbps since
|
||||
/*
|
||||
* This really only applies to 10Mbps since
|
||||
* there is no polarity for 100Mbps (always 0).
|
||||
*/
|
||||
offset = IGP01E1000_PHY_PORT_STATUS;
|
||||
|
@ -1278,7 +1316,7 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000_wait_autoneg - Wait for auto-neg compeletion
|
||||
* e1000_wait_autoneg - Wait for auto-neg completion
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Waits for auto-negotiation to complete or for the auto-negotiation time
|
||||
|
@ -1302,7 +1340,8 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw)
|
|||
msleep(100);
|
||||
}
|
||||
|
||||
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
|
||||
/*
|
||||
* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
|
||||
* has completed.
|
||||
*/
|
||||
return ret_val;
|
||||
|
@ -1324,7 +1363,8 @@ s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
|
|||
u16 i, phy_status;
|
||||
|
||||
for (i = 0; i < iterations; i++) {
|
||||
/* Some PHYs require the PHY_STATUS register to be read
|
||||
/*
|
||||
* Some PHYs require the PHY_STATUS register to be read
|
||||
* twice due to the link bit being sticky. No harm doing
|
||||
* it across the board.
|
||||
*/
|
||||
|
@ -1412,10 +1452,12 @@ s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
|
|||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Getting bits 15:9, which represent the combination of
|
||||
/*
|
||||
* Getting bits 15:9, which represent the combination of
|
||||
* course and fine gain values. The result is a number
|
||||
* that can be put into the lookup table to obtain the
|
||||
* approximate cable length. */
|
||||
* approximate cable length.
|
||||
*/
|
||||
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
|
||||
IGP02E1000_AGC_LENGTH_MASK;
|
||||
|
||||
|
|
Loading…
Reference in New Issue