thp: drop all split_huge_page()-related code
We will re-introduce new version with new refcounting later in patchset. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
56a17b8836
commit
ad0bed24e9
|
@ -95,28 +95,12 @@ extern bool is_vma_temporary_stack(struct vm_area_struct *vma);
|
|||
#endif /* CONFIG_DEBUG_VM */
|
||||
|
||||
extern unsigned long transparent_hugepage_flags;
|
||||
extern int split_huge_page_to_list(struct page *page, struct list_head *list);
|
||||
static inline int split_huge_page(struct page *page)
|
||||
{
|
||||
return split_huge_page_to_list(page, NULL);
|
||||
}
|
||||
extern void __split_huge_page_pmd(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmd);
|
||||
#define split_huge_pmd(__vma, __pmd, __address) \
|
||||
do { \
|
||||
pmd_t *____pmd = (__pmd); \
|
||||
if (unlikely(pmd_trans_huge(*____pmd))) \
|
||||
__split_huge_page_pmd(__vma, __address, \
|
||||
____pmd); \
|
||||
} while (0)
|
||||
#define wait_split_huge_page(__anon_vma, __pmd) \
|
||||
do { \
|
||||
pmd_t *____pmd = (__pmd); \
|
||||
anon_vma_lock_write(__anon_vma); \
|
||||
anon_vma_unlock_write(__anon_vma); \
|
||||
BUG_ON(pmd_trans_splitting(*____pmd) || \
|
||||
pmd_trans_huge(*____pmd)); \
|
||||
} while (0)
|
||||
|
||||
#define split_huge_page_to_list(page, list) BUILD_BUG()
|
||||
#define split_huge_page(page) BUILD_BUG()
|
||||
#define split_huge_pmd(__vma, __pmd, __address) BUILD_BUG()
|
||||
|
||||
#define wait_split_huge_page(__anon_vma, __pmd) BUILD_BUG()
|
||||
#if HPAGE_PMD_ORDER >= MAX_ORDER
|
||||
#error "hugepages can't be allocated by the buddy allocator"
|
||||
#endif
|
||||
|
|
401
mm/huge_memory.c
401
mm/huge_memory.c
|
@ -1710,328 +1710,6 @@ unlock:
|
|||
return NULL;
|
||||
}
|
||||
|
||||
static int __split_huge_page_splitting(struct page *page,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long address)
|
||||
{
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
spinlock_t *ptl;
|
||||
pmd_t *pmd;
|
||||
int ret = 0;
|
||||
/* For mmu_notifiers */
|
||||
const unsigned long mmun_start = address;
|
||||
const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
|
||||
|
||||
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
||||
pmd = page_check_address_pmd(page, mm, address,
|
||||
PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
|
||||
if (pmd) {
|
||||
/*
|
||||
* We can't temporarily set the pmd to null in order
|
||||
* to split it, the pmd must remain marked huge at all
|
||||
* times or the VM won't take the pmd_trans_huge paths
|
||||
* and it won't wait on the anon_vma->root->rwsem to
|
||||
* serialize against split_huge_page*.
|
||||
*/
|
||||
pmdp_splitting_flush(vma, address, pmd);
|
||||
|
||||
ret = 1;
|
||||
spin_unlock(ptl);
|
||||
}
|
||||
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __split_huge_page_refcount(struct page *page,
|
||||
struct list_head *list)
|
||||
{
|
||||
int i;
|
||||
struct zone *zone = page_zone(page);
|
||||
struct lruvec *lruvec;
|
||||
int tail_count = 0;
|
||||
|
||||
/* prevent PageLRU to go away from under us, and freeze lru stats */
|
||||
spin_lock_irq(&zone->lru_lock);
|
||||
lruvec = mem_cgroup_page_lruvec(page, zone);
|
||||
|
||||
compound_lock(page);
|
||||
/* complete memcg works before add pages to LRU */
|
||||
mem_cgroup_split_huge_fixup(page);
|
||||
|
||||
for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
|
||||
struct page *page_tail = page + i;
|
||||
|
||||
/* tail_page->_mapcount cannot change */
|
||||
BUG_ON(page_mapcount(page_tail) < 0);
|
||||
tail_count += page_mapcount(page_tail);
|
||||
/* check for overflow */
|
||||
BUG_ON(tail_count < 0);
|
||||
BUG_ON(atomic_read(&page_tail->_count) != 0);
|
||||
/*
|
||||
* tail_page->_count is zero and not changing from
|
||||
* under us. But get_page_unless_zero() may be running
|
||||
* from under us on the tail_page. If we used
|
||||
* atomic_set() below instead of atomic_add(), we
|
||||
* would then run atomic_set() concurrently with
|
||||
* get_page_unless_zero(), and atomic_set() is
|
||||
* implemented in C not using locked ops. spin_unlock
|
||||
* on x86 sometime uses locked ops because of PPro
|
||||
* errata 66, 92, so unless somebody can guarantee
|
||||
* atomic_set() here would be safe on all archs (and
|
||||
* not only on x86), it's safer to use atomic_add().
|
||||
*/
|
||||
atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
|
||||
&page_tail->_count);
|
||||
|
||||
/* after clearing PageTail the gup refcount can be released */
|
||||
smp_mb__after_atomic();
|
||||
|
||||
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
||||
page_tail->flags |= (page->flags &
|
||||
((1L << PG_referenced) |
|
||||
(1L << PG_swapbacked) |
|
||||
(1L << PG_mlocked) |
|
||||
(1L << PG_uptodate) |
|
||||
(1L << PG_active) |
|
||||
(1L << PG_unevictable)));
|
||||
page_tail->flags |= (1L << PG_dirty);
|
||||
|
||||
clear_compound_head(page_tail);
|
||||
|
||||
if (page_is_young(page))
|
||||
set_page_young(page_tail);
|
||||
if (page_is_idle(page))
|
||||
set_page_idle(page_tail);
|
||||
|
||||
/*
|
||||
* __split_huge_page_splitting() already set the
|
||||
* splitting bit in all pmd that could map this
|
||||
* hugepage, that will ensure no CPU can alter the
|
||||
* mapcount on the head page. The mapcount is only
|
||||
* accounted in the head page and it has to be
|
||||
* transferred to all tail pages in the below code. So
|
||||
* for this code to be safe, the split the mapcount
|
||||
* can't change. But that doesn't mean userland can't
|
||||
* keep changing and reading the page contents while
|
||||
* we transfer the mapcount, so the pmd splitting
|
||||
* status is achieved setting a reserved bit in the
|
||||
* pmd, not by clearing the present bit.
|
||||
*/
|
||||
page_tail->_mapcount = page->_mapcount;
|
||||
|
||||
BUG_ON(page_tail->mapping != TAIL_MAPPING);
|
||||
page_tail->mapping = page->mapping;
|
||||
|
||||
page_tail->index = page->index + i;
|
||||
page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
|
||||
|
||||
BUG_ON(!PageAnon(page_tail));
|
||||
BUG_ON(!PageUptodate(page_tail));
|
||||
BUG_ON(!PageDirty(page_tail));
|
||||
BUG_ON(!PageSwapBacked(page_tail));
|
||||
|
||||
lru_add_page_tail(page, page_tail, lruvec, list);
|
||||
}
|
||||
atomic_sub(tail_count, &page->_count);
|
||||
BUG_ON(atomic_read(&page->_count) <= 0);
|
||||
|
||||
__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
|
||||
|
||||
ClearPageCompound(page);
|
||||
compound_unlock(page);
|
||||
spin_unlock_irq(&zone->lru_lock);
|
||||
|
||||
for (i = 1; i < HPAGE_PMD_NR; i++) {
|
||||
struct page *page_tail = page + i;
|
||||
BUG_ON(page_count(page_tail) <= 0);
|
||||
/*
|
||||
* Tail pages may be freed if there wasn't any mapping
|
||||
* like if add_to_swap() is running on a lru page that
|
||||
* had its mapping zapped. And freeing these pages
|
||||
* requires taking the lru_lock so we do the put_page
|
||||
* of the tail pages after the split is complete.
|
||||
*/
|
||||
put_page(page_tail);
|
||||
}
|
||||
|
||||
/*
|
||||
* Only the head page (now become a regular page) is required
|
||||
* to be pinned by the caller.
|
||||
*/
|
||||
BUG_ON(page_count(page) <= 0);
|
||||
}
|
||||
|
||||
static int __split_huge_page_map(struct page *page,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long address)
|
||||
{
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
spinlock_t *ptl;
|
||||
pmd_t *pmd, _pmd;
|
||||
int ret = 0, i;
|
||||
pgtable_t pgtable;
|
||||
unsigned long haddr;
|
||||
|
||||
pmd = page_check_address_pmd(page, mm, address,
|
||||
PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
|
||||
if (pmd) {
|
||||
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
||||
pmd_populate(mm, &_pmd, pgtable);
|
||||
if (pmd_write(*pmd))
|
||||
BUG_ON(page_mapcount(page) != 1);
|
||||
|
||||
haddr = address;
|
||||
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
||||
pte_t *pte, entry;
|
||||
BUG_ON(PageCompound(page+i));
|
||||
/*
|
||||
* Note that NUMA hinting access restrictions are not
|
||||
* transferred to avoid any possibility of altering
|
||||
* permissions across VMAs.
|
||||
*/
|
||||
entry = mk_pte(page + i, vma->vm_page_prot);
|
||||
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
||||
if (!pmd_write(*pmd))
|
||||
entry = pte_wrprotect(entry);
|
||||
if (!pmd_young(*pmd))
|
||||
entry = pte_mkold(entry);
|
||||
pte = pte_offset_map(&_pmd, haddr);
|
||||
BUG_ON(!pte_none(*pte));
|
||||
set_pte_at(mm, haddr, pte, entry);
|
||||
pte_unmap(pte);
|
||||
}
|
||||
|
||||
smp_wmb(); /* make pte visible before pmd */
|
||||
/*
|
||||
* Up to this point the pmd is present and huge and
|
||||
* userland has the whole access to the hugepage
|
||||
* during the split (which happens in place). If we
|
||||
* overwrite the pmd with the not-huge version
|
||||
* pointing to the pte here (which of course we could
|
||||
* if all CPUs were bug free), userland could trigger
|
||||
* a small page size TLB miss on the small sized TLB
|
||||
* while the hugepage TLB entry is still established
|
||||
* in the huge TLB. Some CPU doesn't like that. See
|
||||
* http://support.amd.com/us/Processor_TechDocs/41322.pdf,
|
||||
* Erratum 383 on page 93. Intel should be safe but is
|
||||
* also warns that it's only safe if the permission
|
||||
* and cache attributes of the two entries loaded in
|
||||
* the two TLB is identical (which should be the case
|
||||
* here). But it is generally safer to never allow
|
||||
* small and huge TLB entries for the same virtual
|
||||
* address to be loaded simultaneously. So instead of
|
||||
* doing "pmd_populate(); flush_pmd_tlb_range();" we first
|
||||
* mark the current pmd notpresent (atomically because
|
||||
* here the pmd_trans_huge and pmd_trans_splitting
|
||||
* must remain set at all times on the pmd until the
|
||||
* split is complete for this pmd), then we flush the
|
||||
* SMP TLB and finally we write the non-huge version
|
||||
* of the pmd entry with pmd_populate.
|
||||
*/
|
||||
pmdp_invalidate(vma, address, pmd);
|
||||
pmd_populate(mm, pmd, pgtable);
|
||||
ret = 1;
|
||||
spin_unlock(ptl);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* must be called with anon_vma->root->rwsem held */
|
||||
static void __split_huge_page(struct page *page,
|
||||
struct anon_vma *anon_vma,
|
||||
struct list_head *list)
|
||||
{
|
||||
int mapcount, mapcount2;
|
||||
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
||||
struct anon_vma_chain *avc;
|
||||
|
||||
BUG_ON(!PageHead(page));
|
||||
BUG_ON(PageTail(page));
|
||||
|
||||
mapcount = 0;
|
||||
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
|
||||
struct vm_area_struct *vma = avc->vma;
|
||||
unsigned long addr = vma_address(page, vma);
|
||||
BUG_ON(is_vma_temporary_stack(vma));
|
||||
mapcount += __split_huge_page_splitting(page, vma, addr);
|
||||
}
|
||||
/*
|
||||
* It is critical that new vmas are added to the tail of the
|
||||
* anon_vma list. This guarantes that if copy_huge_pmd() runs
|
||||
* and establishes a child pmd before
|
||||
* __split_huge_page_splitting() freezes the parent pmd (so if
|
||||
* we fail to prevent copy_huge_pmd() from running until the
|
||||
* whole __split_huge_page() is complete), we will still see
|
||||
* the newly established pmd of the child later during the
|
||||
* walk, to be able to set it as pmd_trans_splitting too.
|
||||
*/
|
||||
if (mapcount != page_mapcount(page)) {
|
||||
pr_err("mapcount %d page_mapcount %d\n",
|
||||
mapcount, page_mapcount(page));
|
||||
BUG();
|
||||
}
|
||||
|
||||
__split_huge_page_refcount(page, list);
|
||||
|
||||
mapcount2 = 0;
|
||||
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
|
||||
struct vm_area_struct *vma = avc->vma;
|
||||
unsigned long addr = vma_address(page, vma);
|
||||
BUG_ON(is_vma_temporary_stack(vma));
|
||||
mapcount2 += __split_huge_page_map(page, vma, addr);
|
||||
}
|
||||
if (mapcount != mapcount2) {
|
||||
pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
|
||||
mapcount, mapcount2, page_mapcount(page));
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Split a hugepage into normal pages. This doesn't change the position of head
|
||||
* page. If @list is null, tail pages will be added to LRU list, otherwise, to
|
||||
* @list. Both head page and tail pages will inherit mapping, flags, and so on
|
||||
* from the hugepage.
|
||||
* Return 0 if the hugepage is split successfully otherwise return 1.
|
||||
*/
|
||||
int split_huge_page_to_list(struct page *page, struct list_head *list)
|
||||
{
|
||||
struct anon_vma *anon_vma;
|
||||
int ret = 1;
|
||||
|
||||
BUG_ON(is_huge_zero_page(page));
|
||||
BUG_ON(!PageAnon(page));
|
||||
|
||||
/*
|
||||
* The caller does not necessarily hold an mmap_sem that would prevent
|
||||
* the anon_vma disappearing so we first we take a reference to it
|
||||
* and then lock the anon_vma for write. This is similar to
|
||||
* page_lock_anon_vma_read except the write lock is taken to serialise
|
||||
* against parallel split or collapse operations.
|
||||
*/
|
||||
anon_vma = page_get_anon_vma(page);
|
||||
if (!anon_vma)
|
||||
goto out;
|
||||
anon_vma_lock_write(anon_vma);
|
||||
|
||||
ret = 0;
|
||||
if (!PageCompound(page))
|
||||
goto out_unlock;
|
||||
|
||||
BUG_ON(!PageSwapBacked(page));
|
||||
__split_huge_page(page, anon_vma, list);
|
||||
count_vm_event(THP_SPLIT_PAGE);
|
||||
|
||||
BUG_ON(PageCompound(page));
|
||||
out_unlock:
|
||||
anon_vma_unlock_write(anon_vma);
|
||||
put_anon_vma(anon_vma);
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
|
||||
|
||||
int hugepage_madvise(struct vm_area_struct *vma,
|
||||
|
@ -3054,83 +2732,6 @@ static int khugepaged(void *none)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
|
||||
unsigned long haddr, pmd_t *pmd)
|
||||
{
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
pgtable_t pgtable;
|
||||
pmd_t _pmd;
|
||||
int i;
|
||||
|
||||
pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
||||
/* leave pmd empty until pte is filled */
|
||||
|
||||
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
||||
pmd_populate(mm, &_pmd, pgtable);
|
||||
|
||||
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
||||
pte_t *pte, entry;
|
||||
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
|
||||
entry = pte_mkspecial(entry);
|
||||
pte = pte_offset_map(&_pmd, haddr);
|
||||
VM_BUG_ON(!pte_none(*pte));
|
||||
set_pte_at(mm, haddr, pte, entry);
|
||||
pte_unmap(pte);
|
||||
}
|
||||
smp_wmb(); /* make pte visible before pmd */
|
||||
pmd_populate(mm, pmd, pgtable);
|
||||
put_huge_zero_page();
|
||||
}
|
||||
|
||||
void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
|
||||
pmd_t *pmd)
|
||||
{
|
||||
spinlock_t *ptl;
|
||||
struct page *page = NULL;
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
unsigned long haddr = address & HPAGE_PMD_MASK;
|
||||
unsigned long mmun_start; /* For mmu_notifiers */
|
||||
unsigned long mmun_end; /* For mmu_notifiers */
|
||||
|
||||
BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
|
||||
|
||||
mmun_start = haddr;
|
||||
mmun_end = haddr + HPAGE_PMD_SIZE;
|
||||
again:
|
||||
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
||||
ptl = pmd_lock(mm, pmd);
|
||||
if (unlikely(!pmd_trans_huge(*pmd)))
|
||||
goto unlock;
|
||||
if (vma_is_dax(vma)) {
|
||||
pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
||||
if (is_huge_zero_pmd(_pmd))
|
||||
put_huge_zero_page();
|
||||
} else if (is_huge_zero_pmd(*pmd)) {
|
||||
__split_huge_zero_page_pmd(vma, haddr, pmd);
|
||||
} else {
|
||||
page = pmd_page(*pmd);
|
||||
VM_BUG_ON_PAGE(!page_count(page), page);
|
||||
get_page(page);
|
||||
}
|
||||
unlock:
|
||||
spin_unlock(ptl);
|
||||
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
||||
|
||||
if (!page)
|
||||
return;
|
||||
|
||||
split_huge_page(page);
|
||||
put_page(page);
|
||||
|
||||
/*
|
||||
* We don't always have down_write of mmap_sem here: a racing
|
||||
* do_huge_pmd_wp_page() might have copied-on-write to another
|
||||
* huge page before our split_huge_page() got the anon_vma lock.
|
||||
*/
|
||||
if (unlikely(pmd_trans_huge(*pmd)))
|
||||
goto again;
|
||||
}
|
||||
|
||||
static void split_huge_pmd_address(struct vm_area_struct *vma,
|
||||
unsigned long address)
|
||||
{
|
||||
|
@ -3155,7 +2756,7 @@ static void split_huge_pmd_address(struct vm_area_struct *vma,
|
|||
* Caller holds the mmap_sem write mode, so a huge pmd cannot
|
||||
* materialize from under us.
|
||||
*/
|
||||
__split_huge_page_pmd(vma, address, pmd);
|
||||
split_huge_pmd(vma, pmd, address);
|
||||
}
|
||||
|
||||
void vma_adjust_trans_huge(struct vm_area_struct *vma,
|
||||
|
|
Loading…
Reference in New Issue