x86: hpet: Cleanup the clockevents init and register code
No need to recalculate the frequency and the conversion factors over and over. Calculate the frequency once and use the new config/register interface and let the core code do the math. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Reviewed-by: Ingo Molnar <mingo@elte.hu> Link: http://lkml.kernel.org/r/%3C20110518210136.646482357%40linutronix.de%3E
This commit is contained in:
parent
61ee9a4ba0
commit
ab0e08f15d
|
@ -217,7 +217,7 @@ static void hpet_reserve_platform_timers(unsigned int id) { }
|
||||||
/*
|
/*
|
||||||
* Common hpet info
|
* Common hpet info
|
||||||
*/
|
*/
|
||||||
static unsigned long hpet_period;
|
static unsigned long hpet_freq;
|
||||||
|
|
||||||
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
||||||
struct clock_event_device *evt);
|
struct clock_event_device *evt);
|
||||||
|
@ -232,7 +232,6 @@ static struct clock_event_device hpet_clockevent = {
|
||||||
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
||||||
.set_mode = hpet_legacy_set_mode,
|
.set_mode = hpet_legacy_set_mode,
|
||||||
.set_next_event = hpet_legacy_next_event,
|
.set_next_event = hpet_legacy_next_event,
|
||||||
.shift = 32,
|
|
||||||
.irq = 0,
|
.irq = 0,
|
||||||
.rating = 50,
|
.rating = 50,
|
||||||
};
|
};
|
||||||
|
@ -289,29 +288,13 @@ static void hpet_legacy_clockevent_register(void)
|
||||||
/* Start HPET legacy interrupts */
|
/* Start HPET legacy interrupts */
|
||||||
hpet_enable_legacy_int();
|
hpet_enable_legacy_int();
|
||||||
|
|
||||||
/*
|
|
||||||
* The mult factor is defined as (include/linux/clockchips.h)
|
|
||||||
* mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
|
|
||||||
* hpet_period is in units of femtoseconds (per cycle), so
|
|
||||||
* mult/2^shift = cyc/ns = 10^6/hpet_period
|
|
||||||
* mult = (10^6 * 2^shift)/hpet_period
|
|
||||||
* mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
|
|
||||||
*/
|
|
||||||
hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
|
|
||||||
hpet_period, hpet_clockevent.shift);
|
|
||||||
/* Calculate the min / max delta */
|
|
||||||
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
|
|
||||||
&hpet_clockevent);
|
|
||||||
/* Setup minimum reprogramming delta. */
|
|
||||||
hpet_clockevent.min_delta_ns = clockevent_delta2ns(HPET_MIN_PROG_DELTA,
|
|
||||||
&hpet_clockevent);
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Start hpet with the boot cpu mask and make it
|
* Start hpet with the boot cpu mask and make it
|
||||||
* global after the IO_APIC has been initialized.
|
* global after the IO_APIC has been initialized.
|
||||||
*/
|
*/
|
||||||
hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
|
hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
|
||||||
clockevents_register_device(&hpet_clockevent);
|
clockevents_config_and_register(&hpet_clockevent, hpet_freq,
|
||||||
|
HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
|
||||||
global_clock_event = &hpet_clockevent;
|
global_clock_event = &hpet_clockevent;
|
||||||
printk(KERN_DEBUG "hpet clockevent registered\n");
|
printk(KERN_DEBUG "hpet clockevent registered\n");
|
||||||
}
|
}
|
||||||
|
@ -549,7 +532,6 @@ static int hpet_setup_irq(struct hpet_dev *dev)
|
||||||
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
|
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
|
||||||
{
|
{
|
||||||
struct clock_event_device *evt = &hdev->evt;
|
struct clock_event_device *evt = &hdev->evt;
|
||||||
uint64_t hpet_freq;
|
|
||||||
|
|
||||||
WARN_ON(cpu != smp_processor_id());
|
WARN_ON(cpu != smp_processor_id());
|
||||||
if (!(hdev->flags & HPET_DEV_VALID))
|
if (!(hdev->flags & HPET_DEV_VALID))
|
||||||
|
@ -571,24 +553,10 @@ static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
|
||||||
|
|
||||||
evt->set_mode = hpet_msi_set_mode;
|
evt->set_mode = hpet_msi_set_mode;
|
||||||
evt->set_next_event = hpet_msi_next_event;
|
evt->set_next_event = hpet_msi_next_event;
|
||||||
evt->shift = 32;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* The period is a femto seconds value. We need to calculate the
|
|
||||||
* scaled math multiplication factor for nanosecond to hpet tick
|
|
||||||
* conversion.
|
|
||||||
*/
|
|
||||||
hpet_freq = FSEC_PER_SEC;
|
|
||||||
do_div(hpet_freq, hpet_period);
|
|
||||||
evt->mult = div_sc((unsigned long) hpet_freq,
|
|
||||||
NSEC_PER_SEC, evt->shift);
|
|
||||||
/* Calculate the max delta */
|
|
||||||
evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
|
|
||||||
/* 5 usec minimum reprogramming delta. */
|
|
||||||
evt->min_delta_ns = 5000;
|
|
||||||
|
|
||||||
evt->cpumask = cpumask_of(hdev->cpu);
|
evt->cpumask = cpumask_of(hdev->cpu);
|
||||||
clockevents_register_device(evt);
|
|
||||||
|
clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
|
||||||
|
0x7FFFFFFF);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef CONFIG_HPET
|
#ifdef CONFIG_HPET
|
||||||
|
@ -792,7 +760,6 @@ static struct clocksource clocksource_hpet = {
|
||||||
static int hpet_clocksource_register(void)
|
static int hpet_clocksource_register(void)
|
||||||
{
|
{
|
||||||
u64 start, now;
|
u64 start, now;
|
||||||
u64 hpet_freq;
|
|
||||||
cycle_t t1;
|
cycle_t t1;
|
||||||
|
|
||||||
/* Start the counter */
|
/* Start the counter */
|
||||||
|
@ -819,24 +786,7 @@ static int hpet_clocksource_register(void)
|
||||||
return -ENODEV;
|
return -ENODEV;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
* The definition of mult is (include/linux/clocksource.h)
|
|
||||||
* mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
|
|
||||||
* so we first need to convert hpet_period to ns/cyc units:
|
|
||||||
* mult/2^shift = ns/cyc = hpet_period/10^6
|
|
||||||
* mult = (hpet_period * 2^shift)/10^6
|
|
||||||
* mult = (hpet_period << shift)/FSEC_PER_NSEC
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* Need to convert hpet_period (fsec/cyc) to cyc/sec:
|
|
||||||
*
|
|
||||||
* cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
|
|
||||||
* cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
|
|
||||||
*/
|
|
||||||
hpet_freq = FSEC_PER_SEC;
|
|
||||||
do_div(hpet_freq, hpet_period);
|
|
||||||
clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
|
clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -845,7 +795,9 @@ static int hpet_clocksource_register(void)
|
||||||
*/
|
*/
|
||||||
int __init hpet_enable(void)
|
int __init hpet_enable(void)
|
||||||
{
|
{
|
||||||
|
unsigned long hpet_period;
|
||||||
unsigned int id;
|
unsigned int id;
|
||||||
|
u64 freq;
|
||||||
int i;
|
int i;
|
||||||
|
|
||||||
if (!is_hpet_capable())
|
if (!is_hpet_capable())
|
||||||
|
@ -883,6 +835,14 @@ int __init hpet_enable(void)
|
||||||
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
|
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
|
||||||
goto out_nohpet;
|
goto out_nohpet;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The period is a femto seconds value. Convert it to a
|
||||||
|
* frequency.
|
||||||
|
*/
|
||||||
|
freq = FSEC_PER_SEC;
|
||||||
|
do_div(freq, hpet_period);
|
||||||
|
hpet_freq = freq;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Read the HPET ID register to retrieve the IRQ routing
|
* Read the HPET ID register to retrieve the IRQ routing
|
||||||
* information and the number of channels
|
* information and the number of channels
|
||||||
|
|
Loading…
Reference in New Issue