lguest: make registers per-vcpu
This is the most obvious per-vcpu field: registers. So this patch moves it from struct lguest to struct vcpu, and patch the places in which they are used, accordingly Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
parent
a3863f68b0
commit
a53a35a8b4
|
@ -70,7 +70,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
|
|||
/* There are two cases for interrupts: one where the Guest is already
|
||||
* in the kernel, and a more complex one where the Guest is in
|
||||
* userspace. We check the privilege level to find out. */
|
||||
if ((lg->regs->ss&0x3) != GUEST_PL) {
|
||||
if ((cpu->regs->ss&0x3) != GUEST_PL) {
|
||||
/* The Guest told us their kernel stack with the SET_STACK
|
||||
* hypercall: both the virtual address and the segment */
|
||||
virtstack = lg->esp1;
|
||||
|
@ -81,12 +81,12 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
|
|||
* stack: when the Guest does an "iret" back from the interrupt
|
||||
* handler the CPU will notice they're dropping privilege
|
||||
* levels and expect these here. */
|
||||
push_guest_stack(lg, &gstack, lg->regs->ss);
|
||||
push_guest_stack(lg, &gstack, lg->regs->esp);
|
||||
push_guest_stack(lg, &gstack, cpu->regs->ss);
|
||||
push_guest_stack(lg, &gstack, cpu->regs->esp);
|
||||
} else {
|
||||
/* We're staying on the same Guest (kernel) stack. */
|
||||
virtstack = lg->regs->esp;
|
||||
ss = lg->regs->ss;
|
||||
virtstack = cpu->regs->esp;
|
||||
ss = cpu->regs->ss;
|
||||
|
||||
origstack = gstack = guest_pa(lg, virtstack);
|
||||
}
|
||||
|
@ -95,7 +95,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
|
|||
* the "Interrupt Flag" bit is always set. We copy that bit from the
|
||||
* Guest's "irq_enabled" field into the eflags word: we saw the Guest
|
||||
* copy it back in "lguest_iret". */
|
||||
eflags = lg->regs->eflags;
|
||||
eflags = cpu->regs->eflags;
|
||||
if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
|
||||
&& !(irq_enable & X86_EFLAGS_IF))
|
||||
eflags &= ~X86_EFLAGS_IF;
|
||||
|
@ -104,19 +104,19 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
|
|||
* "eflags" word, the old code segment, and the old instruction
|
||||
* pointer. */
|
||||
push_guest_stack(lg, &gstack, eflags);
|
||||
push_guest_stack(lg, &gstack, lg->regs->cs);
|
||||
push_guest_stack(lg, &gstack, lg->regs->eip);
|
||||
push_guest_stack(lg, &gstack, cpu->regs->cs);
|
||||
push_guest_stack(lg, &gstack, cpu->regs->eip);
|
||||
|
||||
/* For the six traps which supply an error code, we push that, too. */
|
||||
if (has_err)
|
||||
push_guest_stack(lg, &gstack, lg->regs->errcode);
|
||||
push_guest_stack(lg, &gstack, cpu->regs->errcode);
|
||||
|
||||
/* Now we've pushed all the old state, we change the stack, the code
|
||||
* segment and the address to execute. */
|
||||
lg->regs->ss = ss;
|
||||
lg->regs->esp = virtstack + (gstack - origstack);
|
||||
lg->regs->cs = (__KERNEL_CS|GUEST_PL);
|
||||
lg->regs->eip = idt_address(lo, hi);
|
||||
cpu->regs->ss = ss;
|
||||
cpu->regs->esp = virtstack + (gstack - origstack);
|
||||
cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
|
||||
cpu->regs->eip = idt_address(lo, hi);
|
||||
|
||||
/* There are two kinds of interrupt handlers: 0xE is an "interrupt
|
||||
* gate" which expects interrupts to be disabled on entry. */
|
||||
|
@ -157,7 +157,7 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
|
|||
|
||||
/* They may be in the middle of an iret, where they asked us never to
|
||||
* deliver interrupts. */
|
||||
if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end)
|
||||
if (cpu->regs->eip >= lg->noirq_start && cpu->regs->eip < lg->noirq_end)
|
||||
return;
|
||||
|
||||
/* If they're halted, interrupts restart them. */
|
||||
|
|
|
@ -44,6 +44,10 @@ struct lg_cpu {
|
|||
unsigned int id;
|
||||
struct lguest *lg;
|
||||
|
||||
/* At end of a page shared mapped over lguest_pages in guest. */
|
||||
unsigned long regs_page;
|
||||
struct lguest_regs *regs;
|
||||
|
||||
/* If a hypercall was asked for, this points to the arguments. */
|
||||
struct hcall_args *hcall;
|
||||
u32 next_hcall;
|
||||
|
@ -58,9 +62,6 @@ struct lg_cpu {
|
|||
/* The private info the thread maintains about the guest. */
|
||||
struct lguest
|
||||
{
|
||||
/* At end of a page shared mapped over lguest_pages in guest. */
|
||||
unsigned long regs_page;
|
||||
struct lguest_regs *regs;
|
||||
struct lguest_data __user *lguest_data;
|
||||
struct task_struct *tsk;
|
||||
struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
|
||||
|
@ -181,7 +182,7 @@ void lguest_arch_run_guest(struct lg_cpu *cpu);
|
|||
void lguest_arch_handle_trap(struct lg_cpu *cpu);
|
||||
int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
|
||||
int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
|
||||
void lguest_arch_setup_regs(struct lguest *lg, unsigned long start);
|
||||
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
|
||||
|
||||
/* <arch>/switcher.S: */
|
||||
extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
|
||||
|
|
|
@ -106,6 +106,19 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
|
|||
cpu->lg->nr_cpus++;
|
||||
init_clockdev(cpu);
|
||||
|
||||
/* We need a complete page for the Guest registers: they are accessible
|
||||
* to the Guest and we can only grant it access to whole pages. */
|
||||
cpu->regs_page = get_zeroed_page(GFP_KERNEL);
|
||||
if (!cpu->regs_page)
|
||||
return -ENOMEM;
|
||||
|
||||
/* We actually put the registers at the bottom of the page. */
|
||||
cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
|
||||
|
||||
/* Now we initialize the Guest's registers, handing it the start
|
||||
* address. */
|
||||
lguest_arch_setup_regs(cpu, start_ip);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -160,16 +173,6 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
if (err)
|
||||
goto release_guest;
|
||||
|
||||
/* We need a complete page for the Guest registers: they are accessible
|
||||
* to the Guest and we can only grant it access to whole pages. */
|
||||
lg->regs_page = get_zeroed_page(GFP_KERNEL);
|
||||
if (!lg->regs_page) {
|
||||
err = -ENOMEM;
|
||||
goto release_guest;
|
||||
}
|
||||
/* We actually put the registers at the bottom of the page. */
|
||||
lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
|
||||
|
||||
/* Initialize the Guest's shadow page tables, using the toplevel
|
||||
* address the Launcher gave us. This allocates memory, so can
|
||||
* fail. */
|
||||
|
@ -177,10 +180,6 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
if (err)
|
||||
goto free_regs;
|
||||
|
||||
/* Now we initialize the Guest's registers, handing it the start
|
||||
* address. */
|
||||
lguest_arch_setup_regs(lg, args[3]);
|
||||
|
||||
/* We keep a pointer to the Launcher task (ie. current task) for when
|
||||
* other Guests want to wake this one (inter-Guest I/O). */
|
||||
lg->tsk = current;
|
||||
|
@ -205,7 +204,8 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
return sizeof(args);
|
||||
|
||||
free_regs:
|
||||
free_page(lg->regs_page);
|
||||
/* FIXME: This should be in free_vcpu */
|
||||
free_page(lg->cpus[0].regs_page);
|
||||
release_guest:
|
||||
kfree(lg);
|
||||
unlock:
|
||||
|
@ -280,9 +280,12 @@ static int close(struct inode *inode, struct file *file)
|
|||
/* We need the big lock, to protect from inter-guest I/O and other
|
||||
* Launchers initializing guests. */
|
||||
mutex_lock(&lguest_lock);
|
||||
for (i = 0; i < lg->nr_cpus; i++)
|
||||
for (i = 0; i < lg->nr_cpus; i++) {
|
||||
/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
|
||||
hrtimer_cancel(&lg->cpus[i].hrt);
|
||||
/* We can free up the register page we allocated. */
|
||||
free_page(lg->cpus[i].regs_page);
|
||||
}
|
||||
/* Free up the shadow page tables for the Guest. */
|
||||
free_guest_pagetable(lg);
|
||||
/* Now all the memory cleanups are done, it's safe to release the
|
||||
|
@ -292,8 +295,6 @@ static int close(struct inode *inode, struct file *file)
|
|||
* kmalloc()ed string, either of which is ok to hand to kfree(). */
|
||||
if (!IS_ERR(lg->dead))
|
||||
kfree(lg->dead);
|
||||
/* We can free up the register page we allocated. */
|
||||
free_page(lg->regs_page);
|
||||
/* We clear the entire structure, which also marks it as free for the
|
||||
* next user. */
|
||||
memset(lg, 0, sizeof(*lg));
|
||||
|
|
|
@ -640,6 +640,7 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|||
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
|
||||
pgd_t switcher_pgd;
|
||||
pte_t regs_pte;
|
||||
unsigned long pfn;
|
||||
|
||||
/* Make the last PGD entry for this Guest point to the Switcher's PTE
|
||||
* page for this CPU (with appropriate flags). */
|
||||
|
@ -654,7 +655,8 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|||
* CPU's "struct lguest_pages": if we make sure the Guest's register
|
||||
* page is already mapped there, we don't have to copy them out
|
||||
* again. */
|
||||
regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
|
||||
pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
|
||||
regs_pte = pfn_pte(pfn, __pgprot(_PAGE_KERNEL));
|
||||
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
|
||||
}
|
||||
/*:*/
|
||||
|
|
|
@ -127,7 +127,7 @@ static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|||
/* Set the trap number to 256 (impossible value). If we fault while
|
||||
* switching to the Guest (bad segment registers or bug), this will
|
||||
* cause us to abort the Guest. */
|
||||
lg->regs->trapnum = 256;
|
||||
cpu->regs->trapnum = 256;
|
||||
|
||||
/* Now: we push the "eflags" register on the stack, then do an "lcall".
|
||||
* This is how we change from using the kernel code segment to using
|
||||
|
@ -195,11 +195,11 @@ void lguest_arch_run_guest(struct lg_cpu *cpu)
|
|||
* bad virtual address. We have to grab this now, because once we
|
||||
* re-enable interrupts an interrupt could fault and thus overwrite
|
||||
* cr2, or we could even move off to a different CPU. */
|
||||
if (lg->regs->trapnum == 14)
|
||||
if (cpu->regs->trapnum == 14)
|
||||
lg->arch.last_pagefault = read_cr2();
|
||||
/* Similarly, if we took a trap because the Guest used the FPU,
|
||||
* we have to restore the FPU it expects to see. */
|
||||
else if (lg->regs->trapnum == 7)
|
||||
else if (cpu->regs->trapnum == 7)
|
||||
math_state_restore();
|
||||
|
||||
/* Restore SYSENTER if it's supposed to be on. */
|
||||
|
@ -225,12 +225,12 @@ static int emulate_insn(struct lg_cpu *cpu)
|
|||
unsigned int insnlen = 0, in = 0, shift = 0;
|
||||
/* The eip contains the *virtual* address of the Guest's instruction:
|
||||
* guest_pa just subtracts the Guest's page_offset. */
|
||||
unsigned long physaddr = guest_pa(lg, lg->regs->eip);
|
||||
unsigned long physaddr = guest_pa(lg, cpu->regs->eip);
|
||||
|
||||
/* This must be the Guest kernel trying to do something, not userspace!
|
||||
* The bottom two bits of the CS segment register are the privilege
|
||||
* level. */
|
||||
if ((lg->regs->cs & 3) != GUEST_PL)
|
||||
if ((cpu->regs->cs & 3) != GUEST_PL)
|
||||
return 0;
|
||||
|
||||
/* Decoding x86 instructions is icky. */
|
||||
|
@ -273,12 +273,12 @@ static int emulate_insn(struct lg_cpu *cpu)
|
|||
if (in) {
|
||||
/* Lower bit tells is whether it's a 16 or 32 bit access */
|
||||
if (insn & 0x1)
|
||||
lg->regs->eax = 0xFFFFFFFF;
|
||||
cpu->regs->eax = 0xFFFFFFFF;
|
||||
else
|
||||
lg->regs->eax |= (0xFFFF << shift);
|
||||
cpu->regs->eax |= (0xFFFF << shift);
|
||||
}
|
||||
/* Finally, we've "done" the instruction, so move past it. */
|
||||
lg->regs->eip += insnlen;
|
||||
cpu->regs->eip += insnlen;
|
||||
/* Success! */
|
||||
return 1;
|
||||
}
|
||||
|
@ -287,12 +287,12 @@ static int emulate_insn(struct lg_cpu *cpu)
|
|||
void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
||||
{
|
||||
struct lguest *lg = cpu->lg;
|
||||
switch (lg->regs->trapnum) {
|
||||
switch (cpu->regs->trapnum) {
|
||||
case 13: /* We've intercepted a General Protection Fault. */
|
||||
/* Check if this was one of those annoying IN or OUT
|
||||
* instructions which we need to emulate. If so, we just go
|
||||
* back into the Guest after we've done it. */
|
||||
if (lg->regs->errcode == 0) {
|
||||
if (cpu->regs->errcode == 0) {
|
||||
if (emulate_insn(cpu))
|
||||
return;
|
||||
}
|
||||
|
@ -307,7 +307,7 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
|||
*
|
||||
* The errcode tells whether this was a read or a write, and
|
||||
* whether kernel or userspace code. */
|
||||
if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode))
|
||||
if (demand_page(lg, lg->arch.last_pagefault, cpu->regs->errcode))
|
||||
return;
|
||||
|
||||
/* OK, it's really not there (or not OK): the Guest needs to
|
||||
|
@ -338,19 +338,19 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
|||
case LGUEST_TRAP_ENTRY:
|
||||
/* Our 'struct hcall_args' maps directly over our regs: we set
|
||||
* up the pointer now to indicate a hypercall is pending. */
|
||||
cpu->hcall = (struct hcall_args *)lg->regs;
|
||||
cpu->hcall = (struct hcall_args *)cpu->regs;
|
||||
return;
|
||||
}
|
||||
|
||||
/* We didn't handle the trap, so it needs to go to the Guest. */
|
||||
if (!deliver_trap(cpu, lg->regs->trapnum))
|
||||
if (!deliver_trap(cpu, cpu->regs->trapnum))
|
||||
/* If the Guest doesn't have a handler (either it hasn't
|
||||
* registered any yet, or it's one of the faults we don't let
|
||||
* it handle), it dies with a cryptic error message. */
|
||||
kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
|
||||
lg->regs->trapnum, lg->regs->eip,
|
||||
lg->regs->trapnum == 14 ? lg->arch.last_pagefault
|
||||
: lg->regs->errcode);
|
||||
cpu->regs->trapnum, cpu->regs->eip,
|
||||
cpu->regs->trapnum == 14 ? lg->arch.last_pagefault
|
||||
: cpu->regs->errcode);
|
||||
}
|
||||
|
||||
/* Now we can look at each of the routines this calls, in increasing order of
|
||||
|
@ -557,9 +557,9 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
|
|||
*
|
||||
* Most of the Guest's registers are left alone: we used get_zeroed_page() to
|
||||
* allocate the structure, so they will be 0. */
|
||||
void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
|
||||
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
|
||||
{
|
||||
struct lguest_regs *regs = lg->regs;
|
||||
struct lguest_regs *regs = cpu->regs;
|
||||
|
||||
/* There are four "segment" registers which the Guest needs to boot:
|
||||
* The "code segment" register (cs) refers to the kernel code segment
|
||||
|
@ -586,5 +586,5 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
|
|||
|
||||
/* There are a couple of GDT entries the Guest expects when first
|
||||
* booting. */
|
||||
setup_guest_gdt(lg);
|
||||
setup_guest_gdt(cpu->lg);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue