video: fbdev: exynos: Remove old non-working MIPI driver

The old non-DRM Exynos MIPI driver does not support DeviceTree and
requires board files.  Our platforms do not provide such so the driver
is not usable since a long time ago.  All features provided by the
driver (and associated s6e8ax0 panel driver) are already supported by
newer DRM version so the old code can be removed.

Cc: Inki Dae <inki.dae@samsung.com>
Cc: Donghwa Lee <dh09.lee@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This commit is contained in:
Krzysztof Kozlowski 2016-09-16 10:32:39 +02:00 committed by Tomi Valkeinen
parent 43da7575cd
commit a38719b3dc
13 changed files with 0 additions and 3677 deletions

View File

@ -4695,15 +4695,6 @@ L: iommu@lists.linux-foundation.org
S: Maintained S: Maintained
F: drivers/iommu/exynos-iommu.c F: drivers/iommu/exynos-iommu.c
EXYNOS MIPI DISPLAY DRIVERS
M: Inki Dae <inki.dae@samsung.com>
M: Donghwa Lee <dh09.lee@samsung.com>
M: Kyungmin Park <kyungmin.park@samsung.com>
L: linux-fbdev@vger.kernel.org
S: Maintained
F: drivers/video/fbdev/exynos/exynos_mipi*
F: include/video/exynos_mipi*
EZchip NPS platform support EZchip NPS platform support
M: Noam Camus <noamc@ezchip.com> M: Noam Camus <noamc@ezchip.com>
S: Supported S: Supported

View File

@ -2447,7 +2447,6 @@ config FB_SIMPLE
source "drivers/video/fbdev/omap/Kconfig" source "drivers/video/fbdev/omap/Kconfig"
source "drivers/video/fbdev/omap2/Kconfig" source "drivers/video/fbdev/omap2/Kconfig"
source "drivers/video/fbdev/exynos/Kconfig"
source "drivers/video/fbdev/mmp/Kconfig" source "drivers/video/fbdev/mmp/Kconfig"
config FB_SH_MOBILE_MERAM config FB_SH_MOBILE_MERAM

View File

@ -6,8 +6,6 @@
obj-y += core/ obj-y += core/
obj-$(CONFIG_EXYNOS_VIDEO) += exynos/
obj-$(CONFIG_FB_MACMODES) += macmodes.o obj-$(CONFIG_FB_MACMODES) += macmodes.o
obj-$(CONFIG_FB_WMT_GE_ROPS) += wmt_ge_rops.o obj-$(CONFIG_FB_WMT_GE_ROPS) += wmt_ge_rops.o

View File

@ -1,32 +0,0 @@
#
# Exynos Video configuration
#
menuconfig EXYNOS_VIDEO
tristate "Exynos Video driver support"
depends on ARCH_S5PV210 || ARCH_EXYNOS
help
This enables support for EXYNOS Video device.
if EXYNOS_VIDEO
#
# MIPI DSI driver
#
config EXYNOS_MIPI_DSI
tristate "EXYNOS MIPI DSI driver support."
select GENERIC_PHY
help
This enables support for MIPI-DSI device.
config EXYNOS_LCD_S6E8AX0
tristate "S6E8AX0 MIPI AMOLED LCD Driver"
depends on EXYNOS_MIPI_DSI && BACKLIGHT_CLASS_DEVICE
depends on (LCD_CLASS_DEVICE = y)
default n
help
If you have an S6E8AX0 MIPI AMOLED LCD Panel, say Y to enable its
LCD control driver.
endif # EXYNOS_VIDEO

View File

@ -1,9 +0,0 @@
#
# Makefile for the exynos video drivers.
#
obj-$(CONFIG_EXYNOS_MIPI_DSI) += exynos-mipi-dsi-mod.o
exynos-mipi-dsi-mod-objs += exynos_mipi_dsi.o exynos_mipi_dsi_common.o \
exynos_mipi_dsi_lowlevel.o
obj-$(CONFIG_EXYNOS_LCD_S6E8AX0) += s6e8ax0.o

View File

@ -1,574 +0,0 @@
/* linux/drivers/video/exynos/exynos_mipi_dsi.c
*
* Samsung SoC MIPI-DSIM driver.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae, <inki.dae@samsung.com>
* Donghwa Lee, <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/ctype.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/memory.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/notifier.h>
#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/err.h>
#include <video/exynos_mipi_dsim.h>
#include "exynos_mipi_dsi_common.h"
#include "exynos_mipi_dsi_lowlevel.h"
struct mipi_dsim_ddi {
int bus_id;
struct list_head list;
struct mipi_dsim_lcd_device *dsim_lcd_dev;
struct mipi_dsim_lcd_driver *dsim_lcd_drv;
};
static LIST_HEAD(dsim_ddi_list);
static DEFINE_MUTEX(mipi_dsim_lock);
static struct mipi_dsim_platform_data *to_dsim_plat(struct platform_device
*pdev)
{
return pdev->dev.platform_data;
}
static struct regulator_bulk_data supplies[] = {
{ .supply = "vdd11", },
{ .supply = "vdd18", },
};
static int exynos_mipi_regulator_enable(struct mipi_dsim_device *dsim)
{
int ret;
mutex_lock(&dsim->lock);
ret = regulator_bulk_enable(ARRAY_SIZE(supplies), supplies);
mutex_unlock(&dsim->lock);
return ret;
}
static int exynos_mipi_regulator_disable(struct mipi_dsim_device *dsim)
{
int ret;
mutex_lock(&dsim->lock);
ret = regulator_bulk_disable(ARRAY_SIZE(supplies), supplies);
mutex_unlock(&dsim->lock);
return ret;
}
/* update all register settings to MIPI DSI controller. */
static void exynos_mipi_update_cfg(struct mipi_dsim_device *dsim)
{
/*
* data from Display controller(FIMD) is not transferred in video mode
* but in case of command mode, all settings is not updated to
* registers.
*/
exynos_mipi_dsi_stand_by(dsim, 0);
exynos_mipi_dsi_init_dsim(dsim);
exynos_mipi_dsi_init_link(dsim);
exynos_mipi_dsi_set_hs_enable(dsim);
/* set display timing. */
exynos_mipi_dsi_set_display_mode(dsim, dsim->dsim_config);
exynos_mipi_dsi_init_interrupt(dsim);
/*
* data from Display controller(FIMD) is transferred in video mode
* but in case of command mode, all settings are updated to registers.
*/
exynos_mipi_dsi_stand_by(dsim, 1);
}
static int exynos_mipi_dsi_early_blank_mode(struct mipi_dsim_device *dsim,
int power)
{
struct mipi_dsim_lcd_driver *client_drv = dsim->dsim_lcd_drv;
struct mipi_dsim_lcd_device *client_dev = dsim->dsim_lcd_dev;
switch (power) {
case FB_BLANK_POWERDOWN:
if (dsim->suspended)
return 0;
if (client_drv && client_drv->suspend)
client_drv->suspend(client_dev);
clk_disable(dsim->clock);
exynos_mipi_regulator_disable(dsim);
dsim->suspended = true;
break;
default:
break;
}
return 0;
}
static int exynos_mipi_dsi_blank_mode(struct mipi_dsim_device *dsim, int power)
{
struct mipi_dsim_lcd_driver *client_drv = dsim->dsim_lcd_drv;
struct mipi_dsim_lcd_device *client_dev = dsim->dsim_lcd_dev;
switch (power) {
case FB_BLANK_UNBLANK:
if (!dsim->suspended)
return 0;
/* lcd panel power on. */
if (client_drv && client_drv->power_on)
client_drv->power_on(client_dev, 1);
exynos_mipi_regulator_enable(dsim);
/* enable MIPI-DSI PHY. */
phy_power_on(dsim->phy);
clk_enable(dsim->clock);
exynos_mipi_update_cfg(dsim);
/* set lcd panel sequence commands. */
if (client_drv && client_drv->set_sequence)
client_drv->set_sequence(client_dev);
dsim->suspended = false;
break;
case FB_BLANK_NORMAL:
/* TODO. */
break;
default:
break;
}
return 0;
}
int exynos_mipi_dsi_register_lcd_device(struct mipi_dsim_lcd_device *lcd_dev)
{
struct mipi_dsim_ddi *dsim_ddi;
if (!lcd_dev->name) {
pr_err("dsim_lcd_device name is NULL.\n");
return -EFAULT;
}
dsim_ddi = kzalloc(sizeof(struct mipi_dsim_ddi), GFP_KERNEL);
if (!dsim_ddi) {
pr_err("failed to allocate dsim_ddi object.\n");
return -ENOMEM;
}
dsim_ddi->dsim_lcd_dev = lcd_dev;
mutex_lock(&mipi_dsim_lock);
list_add_tail(&dsim_ddi->list, &dsim_ddi_list);
mutex_unlock(&mipi_dsim_lock);
return 0;
}
static struct mipi_dsim_ddi *exynos_mipi_dsi_find_lcd_device(
struct mipi_dsim_lcd_driver *lcd_drv)
{
struct mipi_dsim_ddi *dsim_ddi, *next;
struct mipi_dsim_lcd_device *lcd_dev;
mutex_lock(&mipi_dsim_lock);
list_for_each_entry_safe(dsim_ddi, next, &dsim_ddi_list, list) {
if (!dsim_ddi)
goto out;
lcd_dev = dsim_ddi->dsim_lcd_dev;
if (!lcd_dev)
continue;
if ((strcmp(lcd_drv->name, lcd_dev->name)) == 0) {
/**
* bus_id would be used to identify
* connected bus.
*/
dsim_ddi->bus_id = lcd_dev->bus_id;
mutex_unlock(&mipi_dsim_lock);
return dsim_ddi;
}
list_del(&dsim_ddi->list);
kfree(dsim_ddi);
}
out:
mutex_unlock(&mipi_dsim_lock);
return NULL;
}
int exynos_mipi_dsi_register_lcd_driver(struct mipi_dsim_lcd_driver *lcd_drv)
{
struct mipi_dsim_ddi *dsim_ddi;
if (!lcd_drv->name) {
pr_err("dsim_lcd_driver name is NULL.\n");
return -EFAULT;
}
dsim_ddi = exynos_mipi_dsi_find_lcd_device(lcd_drv);
if (!dsim_ddi) {
pr_err("mipi_dsim_ddi object not found.\n");
return -EFAULT;
}
dsim_ddi->dsim_lcd_drv = lcd_drv;
pr_info("registered panel driver(%s) to mipi-dsi driver.\n",
lcd_drv->name);
return 0;
}
EXPORT_SYMBOL_GPL(exynos_mipi_dsi_register_lcd_driver);
static struct mipi_dsim_ddi *exynos_mipi_dsi_bind_lcd_ddi(
struct mipi_dsim_device *dsim,
const char *name)
{
struct mipi_dsim_ddi *dsim_ddi, *next;
struct mipi_dsim_lcd_driver *lcd_drv;
struct mipi_dsim_lcd_device *lcd_dev;
int ret;
mutex_lock(&dsim->lock);
list_for_each_entry_safe(dsim_ddi, next, &dsim_ddi_list, list) {
lcd_drv = dsim_ddi->dsim_lcd_drv;
lcd_dev = dsim_ddi->dsim_lcd_dev;
if (!lcd_drv || !lcd_dev ||
(dsim->id != dsim_ddi->bus_id))
continue;
dev_dbg(dsim->dev, "lcd_drv->id = %d, lcd_dev->id = %d\n",
lcd_drv->id, lcd_dev->id);
dev_dbg(dsim->dev, "lcd_dev->bus_id = %d, dsim->id = %d\n",
lcd_dev->bus_id, dsim->id);
if ((strcmp(lcd_drv->name, name) == 0)) {
lcd_dev->master = dsim;
lcd_dev->dev.parent = dsim->dev;
dev_set_name(&lcd_dev->dev, "%s", lcd_drv->name);
ret = device_register(&lcd_dev->dev);
if (ret < 0) {
dev_err(dsim->dev,
"can't register %s, status %d\n",
dev_name(&lcd_dev->dev), ret);
mutex_unlock(&dsim->lock);
return NULL;
}
dsim->dsim_lcd_dev = lcd_dev;
dsim->dsim_lcd_drv = lcd_drv;
mutex_unlock(&dsim->lock);
return dsim_ddi;
}
}
mutex_unlock(&dsim->lock);
return NULL;
}
/* define MIPI-DSI Master operations. */
static struct mipi_dsim_master_ops master_ops = {
.cmd_read = exynos_mipi_dsi_rd_data,
.cmd_write = exynos_mipi_dsi_wr_data,
.get_dsim_frame_done = exynos_mipi_dsi_get_frame_done_status,
.clear_dsim_frame_done = exynos_mipi_dsi_clear_frame_done,
.set_early_blank_mode = exynos_mipi_dsi_early_blank_mode,
.set_blank_mode = exynos_mipi_dsi_blank_mode,
};
static int exynos_mipi_dsi_probe(struct platform_device *pdev)
{
struct resource *res;
struct mipi_dsim_device *dsim;
struct mipi_dsim_config *dsim_config;
struct mipi_dsim_platform_data *dsim_pd;
struct mipi_dsim_ddi *dsim_ddi;
int ret = -EINVAL;
dsim = devm_kzalloc(&pdev->dev, sizeof(struct mipi_dsim_device),
GFP_KERNEL);
if (!dsim) {
dev_err(&pdev->dev, "failed to allocate dsim object.\n");
return -ENOMEM;
}
dsim->pd = to_dsim_plat(pdev);
dsim->dev = &pdev->dev;
dsim->id = pdev->id;
/* get mipi_dsim_platform_data. */
dsim_pd = (struct mipi_dsim_platform_data *)dsim->pd;
if (dsim_pd == NULL) {
dev_err(&pdev->dev, "failed to get platform data for dsim.\n");
return -EINVAL;
}
/* get mipi_dsim_config. */
dsim_config = dsim_pd->dsim_config;
if (dsim_config == NULL) {
dev_err(&pdev->dev, "failed to get dsim config data.\n");
return -EINVAL;
}
dsim->dsim_config = dsim_config;
dsim->master_ops = &master_ops;
mutex_init(&dsim->lock);
ret = devm_regulator_bulk_get(&pdev->dev, ARRAY_SIZE(supplies),
supplies);
if (ret) {
dev_err(&pdev->dev, "Failed to get regulators: %d\n", ret);
return ret;
}
dsim->phy = devm_phy_get(&pdev->dev, "dsim");
if (IS_ERR(dsim->phy))
return PTR_ERR(dsim->phy);
dsim->clock = devm_clk_get(&pdev->dev, "dsim0");
if (IS_ERR(dsim->clock)) {
dev_err(&pdev->dev, "failed to get dsim clock source\n");
return -ENODEV;
}
clk_enable(dsim->clock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsim->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dsim->reg_base)) {
ret = PTR_ERR(dsim->reg_base);
goto error;
}
mutex_init(&dsim->lock);
/* bind lcd ddi matched with panel name. */
dsim_ddi = exynos_mipi_dsi_bind_lcd_ddi(dsim, dsim_pd->lcd_panel_name);
if (!dsim_ddi) {
dev_err(&pdev->dev, "mipi_dsim_ddi object not found.\n");
ret = -EINVAL;
goto error;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request dsim irq resource\n");
goto error;
}
dsim->irq = ret;
init_completion(&dsim_wr_comp);
init_completion(&dsim_rd_comp);
platform_set_drvdata(pdev, dsim);
ret = devm_request_irq(&pdev->dev, dsim->irq,
exynos_mipi_dsi_interrupt_handler,
IRQF_SHARED, dev_name(&pdev->dev), dsim);
if (ret != 0) {
dev_err(&pdev->dev, "failed to request dsim irq\n");
ret = -EINVAL;
goto error;
}
/* enable interrupts */
exynos_mipi_dsi_init_interrupt(dsim);
/* initialize mipi-dsi client(lcd panel). */
if (dsim_ddi->dsim_lcd_drv && dsim_ddi->dsim_lcd_drv->probe)
dsim_ddi->dsim_lcd_drv->probe(dsim_ddi->dsim_lcd_dev);
/* in case mipi-dsi has been enabled by bootloader */
if (dsim_pd->enabled) {
exynos_mipi_regulator_enable(dsim);
goto done;
}
/* lcd panel power on. */
if (dsim_ddi->dsim_lcd_drv && dsim_ddi->dsim_lcd_drv->power_on)
dsim_ddi->dsim_lcd_drv->power_on(dsim_ddi->dsim_lcd_dev, 1);
exynos_mipi_regulator_enable(dsim);
/* enable MIPI-DSI PHY. */
phy_power_on(dsim->phy);
exynos_mipi_update_cfg(dsim);
/* set lcd panel sequence commands. */
if (dsim_ddi->dsim_lcd_drv && dsim_ddi->dsim_lcd_drv->set_sequence)
dsim_ddi->dsim_lcd_drv->set_sequence(dsim_ddi->dsim_lcd_dev);
dsim->suspended = false;
done:
platform_set_drvdata(pdev, dsim);
dev_dbg(&pdev->dev, "%s() completed successfully (%s mode)\n", __func__,
dsim_config->e_interface == DSIM_COMMAND ? "CPU" : "RGB");
return 0;
error:
clk_disable(dsim->clock);
return ret;
}
static int exynos_mipi_dsi_remove(struct platform_device *pdev)
{
struct mipi_dsim_device *dsim = platform_get_drvdata(pdev);
struct mipi_dsim_ddi *dsim_ddi, *next;
struct mipi_dsim_lcd_driver *dsim_lcd_drv;
clk_disable(dsim->clock);
list_for_each_entry_safe(dsim_ddi, next, &dsim_ddi_list, list) {
if (dsim_ddi) {
if (dsim->id != dsim_ddi->bus_id)
continue;
dsim_lcd_drv = dsim_ddi->dsim_lcd_drv;
if (dsim_lcd_drv->remove)
dsim_lcd_drv->remove(dsim_ddi->dsim_lcd_dev);
kfree(dsim_ddi);
}
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_mipi_dsi_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct mipi_dsim_device *dsim = platform_get_drvdata(pdev);
struct mipi_dsim_lcd_driver *client_drv = dsim->dsim_lcd_drv;
struct mipi_dsim_lcd_device *client_dev = dsim->dsim_lcd_dev;
disable_irq(dsim->irq);
if (dsim->suspended)
return 0;
if (client_drv && client_drv->suspend)
client_drv->suspend(client_dev);
/* disable MIPI-DSI PHY. */
phy_power_off(dsim->phy);
clk_disable(dsim->clock);
exynos_mipi_regulator_disable(dsim);
dsim->suspended = true;
return 0;
}
static int exynos_mipi_dsi_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct mipi_dsim_device *dsim = platform_get_drvdata(pdev);
struct mipi_dsim_lcd_driver *client_drv = dsim->dsim_lcd_drv;
struct mipi_dsim_lcd_device *client_dev = dsim->dsim_lcd_dev;
enable_irq(dsim->irq);
if (!dsim->suspended)
return 0;
/* lcd panel power on. */
if (client_drv && client_drv->power_on)
client_drv->power_on(client_dev, 1);
exynos_mipi_regulator_enable(dsim);
/* enable MIPI-DSI PHY. */
phy_power_on(dsim->phy);
clk_enable(dsim->clock);
exynos_mipi_update_cfg(dsim);
/* set lcd panel sequence commands. */
if (client_drv && client_drv->set_sequence)
client_drv->set_sequence(client_dev);
dsim->suspended = false;
return 0;
}
#endif
static const struct dev_pm_ops exynos_mipi_dsi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(exynos_mipi_dsi_suspend, exynos_mipi_dsi_resume)
};
static struct platform_driver exynos_mipi_dsi_driver = {
.probe = exynos_mipi_dsi_probe,
.remove = exynos_mipi_dsi_remove,
.driver = {
.name = "exynos-mipi-dsim",
.pm = &exynos_mipi_dsi_pm_ops,
},
};
module_platform_driver(exynos_mipi_dsi_driver);
MODULE_AUTHOR("InKi Dae <inki.dae@samsung.com>");
MODULE_DESCRIPTION("Samsung SoC MIPI-DSI driver");
MODULE_LICENSE("GPL");

View File

@ -1,880 +0,0 @@
/* linux/drivers/video/exynos/exynos_mipi_dsi_common.c
*
* Samsung SoC MIPI-DSI common driver.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae, <inki.dae@samsung.com>
* Donghwa Lee, <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/ctype.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/memory.h>
#include <linux/delay.h>
#include <linux/irqreturn.h>
#include <linux/kthread.h>
#include <video/mipi_display.h>
#include <video/exynos_mipi_dsim.h>
#include "exynos_mipi_dsi_regs.h"
#include "exynos_mipi_dsi_lowlevel.h"
#include "exynos_mipi_dsi_common.h"
#define MIPI_FIFO_TIMEOUT msecs_to_jiffies(250)
#define MIPI_RX_FIFO_READ_DONE 0x30800002
#define MIPI_MAX_RX_FIFO 20
#define MHZ (1000 * 1000)
#define FIN_HZ (24 * MHZ)
#define DFIN_PLL_MIN_HZ (6 * MHZ)
#define DFIN_PLL_MAX_HZ (12 * MHZ)
#define DFVCO_MIN_HZ (500 * MHZ)
#define DFVCO_MAX_HZ (1000 * MHZ)
#define TRY_GET_FIFO_TIMEOUT (5000 * 2)
#define TRY_FIFO_CLEAR (10)
/* MIPI-DSIM status types. */
enum {
DSIM_STATE_INIT, /* should be initialized. */
DSIM_STATE_STOP, /* CPU and LCDC are LP mode. */
DSIM_STATE_HSCLKEN, /* HS clock was enabled. */
DSIM_STATE_ULPS
};
/* define DSI lane types. */
enum {
DSIM_LANE_CLOCK = (1 << 0),
DSIM_LANE_DATA0 = (1 << 1),
DSIM_LANE_DATA1 = (1 << 2),
DSIM_LANE_DATA2 = (1 << 3),
DSIM_LANE_DATA3 = (1 << 4)
};
static unsigned int dpll_table[15] = {
100, 120, 170, 220, 270,
320, 390, 450, 510, 560,
640, 690, 770, 870, 950
};
irqreturn_t exynos_mipi_dsi_interrupt_handler(int irq, void *dev_id)
{
struct mipi_dsim_device *dsim = dev_id;
unsigned int intsrc, intmsk;
intsrc = exynos_mipi_dsi_read_interrupt(dsim);
intmsk = exynos_mipi_dsi_read_interrupt_mask(dsim);
intmsk = ~intmsk & intsrc;
if (intsrc & INTMSK_RX_DONE) {
complete(&dsim_rd_comp);
dev_dbg(dsim->dev, "MIPI INTMSK_RX_DONE\n");
}
if (intsrc & INTMSK_FIFO_EMPTY) {
complete(&dsim_wr_comp);
dev_dbg(dsim->dev, "MIPI INTMSK_FIFO_EMPTY\n");
}
exynos_mipi_dsi_clear_interrupt(dsim, intmsk);
return IRQ_HANDLED;
}
/*
* write long packet to mipi dsi slave
* @dsim: mipi dsim device structure.
* @data0: packet data to send.
* @data1: size of packet data
*/
static void exynos_mipi_dsi_long_data_wr(struct mipi_dsim_device *dsim,
const unsigned char *data0, unsigned int data_size)
{
unsigned int data_cnt = 0, payload = 0;
/* in case that data count is more then 4 */
for (data_cnt = 0; data_cnt < data_size; data_cnt += 4) {
/*
* after sending 4bytes per one time,
* send remainder data less then 4.
*/
if ((data_size - data_cnt) < 4) {
if ((data_size - data_cnt) == 3) {
payload = data0[data_cnt] |
data0[data_cnt + 1] << 8 |
data0[data_cnt + 2] << 16;
dev_dbg(dsim->dev, "count = 3 payload = %x, %x %x %x\n",
payload, data0[data_cnt],
data0[data_cnt + 1],
data0[data_cnt + 2]);
} else if ((data_size - data_cnt) == 2) {
payload = data0[data_cnt] |
data0[data_cnt + 1] << 8;
dev_dbg(dsim->dev,
"count = 2 payload = %x, %x %x\n", payload,
data0[data_cnt],
data0[data_cnt + 1]);
} else if ((data_size - data_cnt) == 1) {
payload = data0[data_cnt];
}
exynos_mipi_dsi_wr_tx_data(dsim, payload);
/* send 4bytes per one time. */
} else {
payload = data0[data_cnt] |
data0[data_cnt + 1] << 8 |
data0[data_cnt + 2] << 16 |
data0[data_cnt + 3] << 24;
dev_dbg(dsim->dev,
"count = 4 payload = %x, %x %x %x %x\n",
payload, *(u8 *)(data0 + data_cnt),
data0[data_cnt + 1],
data0[data_cnt + 2],
data0[data_cnt + 3]);
exynos_mipi_dsi_wr_tx_data(dsim, payload);
}
}
}
int exynos_mipi_dsi_wr_data(struct mipi_dsim_device *dsim, unsigned int data_id,
const unsigned char *data0, unsigned int data_size)
{
unsigned int check_rx_ack = 0;
if (dsim->state == DSIM_STATE_ULPS) {
dev_err(dsim->dev, "state is ULPS.\n");
return -EINVAL;
}
/* FIXME!!! why does it need this delay? */
msleep(20);
mutex_lock(&dsim->lock);
switch (data_id) {
/* short packet types of packet types for command. */
case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
case MIPI_DSI_DCS_SHORT_WRITE:
case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
case MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE:
exynos_mipi_dsi_wr_tx_header(dsim, data_id, data0[0], data0[1]);
if (check_rx_ack) {
/* process response func should be implemented */
mutex_unlock(&dsim->lock);
return 0;
} else {
mutex_unlock(&dsim->lock);
return -EINVAL;
}
/* general command */
case MIPI_DSI_COLOR_MODE_OFF:
case MIPI_DSI_COLOR_MODE_ON:
case MIPI_DSI_SHUTDOWN_PERIPHERAL:
case MIPI_DSI_TURN_ON_PERIPHERAL:
exynos_mipi_dsi_wr_tx_header(dsim, data_id, data0[0], data0[1]);
if (check_rx_ack) {
/* process response func should be implemented. */
mutex_unlock(&dsim->lock);
return 0;
} else {
mutex_unlock(&dsim->lock);
return -EINVAL;
}
/* packet types for video data */
case MIPI_DSI_V_SYNC_START:
case MIPI_DSI_V_SYNC_END:
case MIPI_DSI_H_SYNC_START:
case MIPI_DSI_H_SYNC_END:
case MIPI_DSI_END_OF_TRANSMISSION:
mutex_unlock(&dsim->lock);
return 0;
/* long packet type and null packet */
case MIPI_DSI_NULL_PACKET:
case MIPI_DSI_BLANKING_PACKET:
mutex_unlock(&dsim->lock);
return 0;
case MIPI_DSI_GENERIC_LONG_WRITE:
case MIPI_DSI_DCS_LONG_WRITE:
{
unsigned int size, payload = 0;
reinit_completion(&dsim_wr_comp);
size = data_size * 4;
/* if data count is less then 4, then send 3bytes data. */
if (data_size < 4) {
payload = data0[0] |
data0[1] << 8 |
data0[2] << 16;
exynos_mipi_dsi_wr_tx_data(dsim, payload);
dev_dbg(dsim->dev, "count = %d payload = %x,%x %x %x\n",
data_size, payload, data0[0],
data0[1], data0[2]);
/* in case that data count is more then 4 */
} else
exynos_mipi_dsi_long_data_wr(dsim, data0, data_size);
/* put data into header fifo */
exynos_mipi_dsi_wr_tx_header(dsim, data_id, data_size & 0xff,
(data_size & 0xff00) >> 8);
if (!wait_for_completion_interruptible_timeout(&dsim_wr_comp,
MIPI_FIFO_TIMEOUT)) {
dev_warn(dsim->dev, "command write timeout.\n");
mutex_unlock(&dsim->lock);
return -EAGAIN;
}
if (check_rx_ack) {
/* process response func should be implemented. */
mutex_unlock(&dsim->lock);
return 0;
} else {
mutex_unlock(&dsim->lock);
return -EINVAL;
}
}
/* packet typo for video data */
case MIPI_DSI_PACKED_PIXEL_STREAM_16:
case MIPI_DSI_PACKED_PIXEL_STREAM_18:
case MIPI_DSI_PIXEL_STREAM_3BYTE_18:
case MIPI_DSI_PACKED_PIXEL_STREAM_24:
if (check_rx_ack) {
/* process response func should be implemented. */
mutex_unlock(&dsim->lock);
return 0;
} else {
mutex_unlock(&dsim->lock);
return -EINVAL;
}
default:
dev_warn(dsim->dev,
"data id %x is not supported current DSI spec.\n",
data_id);
mutex_unlock(&dsim->lock);
return -EINVAL;
}
}
static unsigned int exynos_mipi_dsi_long_data_rd(struct mipi_dsim_device *dsim,
unsigned int req_size, unsigned int rx_data, u8 *rx_buf)
{
unsigned int rcv_pkt, i, j;
u16 rxsize;
/* for long packet */
rxsize = (u16)((rx_data & 0x00ffff00) >> 8);
dev_dbg(dsim->dev, "mipi dsi rx size : %d\n", rxsize);
if (rxsize != req_size) {
dev_dbg(dsim->dev,
"received size mismatch received: %d, requested: %d\n",
rxsize, req_size);
goto err;
}
for (i = 0; i < (rxsize >> 2); i++) {
rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim);
dev_dbg(dsim->dev, "received pkt : %08x\n", rcv_pkt);
for (j = 0; j < 4; j++) {
rx_buf[(i * 4) + j] =
(u8)(rcv_pkt >> (j * 8)) & 0xff;
dev_dbg(dsim->dev, "received value : %02x\n",
(rcv_pkt >> (j * 8)) & 0xff);
}
}
if (rxsize % 4) {
rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim);
dev_dbg(dsim->dev, "received pkt : %08x\n", rcv_pkt);
for (j = 0; j < (rxsize % 4); j++) {
rx_buf[(i * 4) + j] =
(u8)(rcv_pkt >> (j * 8)) & 0xff;
dev_dbg(dsim->dev, "received value : %02x\n",
(rcv_pkt >> (j * 8)) & 0xff);
}
}
return rxsize;
err:
return -EINVAL;
}
static unsigned int exynos_mipi_dsi_response_size(unsigned int req_size)
{
switch (req_size) {
case 1:
return MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE;
case 2:
return MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE;
default:
return MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE;
}
}
int exynos_mipi_dsi_rd_data(struct mipi_dsim_device *dsim, unsigned int data_id,
unsigned int data0, unsigned int req_size, u8 *rx_buf)
{
unsigned int rx_data, rcv_pkt, i;
u8 response = 0;
u16 rxsize;
if (dsim->state == DSIM_STATE_ULPS) {
dev_err(dsim->dev, "state is ULPS.\n");
return -EINVAL;
}
/* FIXME!!! */
msleep(20);
mutex_lock(&dsim->lock);
reinit_completion(&dsim_rd_comp);
exynos_mipi_dsi_rd_tx_header(dsim,
MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, req_size);
response = exynos_mipi_dsi_response_size(req_size);
switch (data_id) {
case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM:
case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM:
case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM:
case MIPI_DSI_DCS_READ:
exynos_mipi_dsi_rd_tx_header(dsim,
data_id, data0);
/* process response func should be implemented. */
break;
default:
dev_warn(dsim->dev,
"data id %x is not supported current DSI spec.\n",
data_id);
mutex_unlock(&dsim->lock);
return -EINVAL;
}
if (!wait_for_completion_interruptible_timeout(&dsim_rd_comp,
MIPI_FIFO_TIMEOUT)) {
pr_err("RX done interrupt timeout\n");
mutex_unlock(&dsim->lock);
return 0;
}
msleep(20);
rx_data = exynos_mipi_dsi_rd_rx_fifo(dsim);
if ((u8)(rx_data & 0xff) != response) {
printk(KERN_ERR
"mipi dsi wrong response rx_data : %x, response:%x\n",
rx_data, response);
goto clear_rx_fifo;
}
if (req_size <= 2) {
/* for short packet */
for (i = 0; i < req_size; i++)
rx_buf[i] = (rx_data >> (8 + (i * 8))) & 0xff;
rxsize = req_size;
} else {
/* for long packet */
rxsize = exynos_mipi_dsi_long_data_rd(dsim, req_size, rx_data,
rx_buf);
if (rxsize != req_size)
goto clear_rx_fifo;
}
rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim);
msleep(20);
if (rcv_pkt != MIPI_RX_FIFO_READ_DONE) {
dev_info(dsim->dev,
"Can't found RX FIFO READ DONE FLAG : %x\n", rcv_pkt);
goto clear_rx_fifo;
}
mutex_unlock(&dsim->lock);
return rxsize;
clear_rx_fifo:
i = 0;
while (1) {
rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim);
if ((rcv_pkt == MIPI_RX_FIFO_READ_DONE)
|| (i > MIPI_MAX_RX_FIFO))
break;
dev_dbg(dsim->dev,
"mipi dsi clear rx fifo : %08x\n", rcv_pkt);
i++;
}
dev_info(dsim->dev,
"mipi dsi rx done count : %d, rcv_pkt : %08x\n", i, rcv_pkt);
mutex_unlock(&dsim->lock);
return 0;
}
static int exynos_mipi_dsi_pll_on(struct mipi_dsim_device *dsim,
unsigned int enable)
{
int sw_timeout;
if (enable) {
sw_timeout = 1000;
exynos_mipi_dsi_enable_pll(dsim, 1);
while (1) {
sw_timeout--;
if (exynos_mipi_dsi_is_pll_stable(dsim))
return 0;
if (sw_timeout == 0)
return -EINVAL;
}
} else
exynos_mipi_dsi_enable_pll(dsim, 0);
return 0;
}
static unsigned long exynos_mipi_dsi_change_pll(struct mipi_dsim_device *dsim,
unsigned int pre_divider, unsigned int main_divider,
unsigned int scaler)
{
unsigned long dfin_pll, dfvco, dpll_out;
unsigned int i, freq_band = 0xf;
dfin_pll = (FIN_HZ / pre_divider);
/******************************************************
* Serial Clock(=ByteClk X 8) FreqBand[3:0] *
******************************************************
* ~ 99.99 MHz 0000
* 100 ~ 119.99 MHz 0001
* 120 ~ 159.99 MHz 0010
* 160 ~ 199.99 MHz 0011
* 200 ~ 239.99 MHz 0100
* 140 ~ 319.99 MHz 0101
* 320 ~ 389.99 MHz 0110
* 390 ~ 449.99 MHz 0111
* 450 ~ 509.99 MHz 1000
* 510 ~ 559.99 MHz 1001
* 560 ~ 639.99 MHz 1010
* 640 ~ 689.99 MHz 1011
* 690 ~ 769.99 MHz 1100
* 770 ~ 869.99 MHz 1101
* 870 ~ 949.99 MHz 1110
* 950 ~ 1000 MHz 1111
******************************************************/
if (dfin_pll < DFIN_PLL_MIN_HZ || dfin_pll > DFIN_PLL_MAX_HZ) {
dev_warn(dsim->dev, "fin_pll range should be 6MHz ~ 12MHz\n");
exynos_mipi_dsi_enable_afc(dsim, 0, 0);
} else {
if (dfin_pll < 7 * MHZ)
exynos_mipi_dsi_enable_afc(dsim, 1, 0x1);
else if (dfin_pll < 8 * MHZ)
exynos_mipi_dsi_enable_afc(dsim, 1, 0x0);
else if (dfin_pll < 9 * MHZ)
exynos_mipi_dsi_enable_afc(dsim, 1, 0x3);
else if (dfin_pll < 10 * MHZ)
exynos_mipi_dsi_enable_afc(dsim, 1, 0x2);
else if (dfin_pll < 11 * MHZ)
exynos_mipi_dsi_enable_afc(dsim, 1, 0x5);
else
exynos_mipi_dsi_enable_afc(dsim, 1, 0x4);
}
dfvco = dfin_pll * main_divider;
dev_dbg(dsim->dev, "dfvco = %lu, dfin_pll = %lu, main_divider = %d\n",
dfvco, dfin_pll, main_divider);
if (dfvco < DFVCO_MIN_HZ || dfvco > DFVCO_MAX_HZ)
dev_warn(dsim->dev, "fvco range should be 500MHz ~ 1000MHz\n");
dpll_out = dfvco / (1 << scaler);
dev_dbg(dsim->dev, "dpll_out = %lu, dfvco = %lu, scaler = %d\n",
dpll_out, dfvco, scaler);
for (i = 0; i < ARRAY_SIZE(dpll_table); i++) {
if (dpll_out < dpll_table[i] * MHZ) {
freq_band = i;
break;
}
}
dev_dbg(dsim->dev, "freq_band = %d\n", freq_band);
exynos_mipi_dsi_pll_freq(dsim, pre_divider, main_divider, scaler);
exynos_mipi_dsi_hs_zero_ctrl(dsim, 0);
exynos_mipi_dsi_prep_ctrl(dsim, 0);
/* Freq Band */
exynos_mipi_dsi_pll_freq_band(dsim, freq_band);
/* Stable time */
exynos_mipi_dsi_pll_stable_time(dsim, dsim->dsim_config->pll_stable_time);
/* Enable PLL */
dev_dbg(dsim->dev, "FOUT of mipi dphy pll is %luMHz\n",
(dpll_out / MHZ));
return dpll_out;
}
static int exynos_mipi_dsi_set_clock(struct mipi_dsim_device *dsim,
unsigned int byte_clk_sel, unsigned int enable)
{
unsigned int esc_div;
unsigned long esc_clk_error_rate;
unsigned long hs_clk = 0, byte_clk = 0, escape_clk = 0;
if (enable) {
dsim->e_clk_src = byte_clk_sel;
/* Escape mode clock and byte clock source */
exynos_mipi_dsi_set_byte_clock_src(dsim, byte_clk_sel);
/* DPHY, DSIM Link : D-PHY clock out */
if (byte_clk_sel == DSIM_PLL_OUT_DIV8) {
hs_clk = exynos_mipi_dsi_change_pll(dsim,
dsim->dsim_config->p, dsim->dsim_config->m,
dsim->dsim_config->s);
if (hs_clk == 0) {
dev_err(dsim->dev,
"failed to get hs clock.\n");
return -EINVAL;
}
byte_clk = hs_clk / 8;
exynos_mipi_dsi_enable_pll_bypass(dsim, 0);
exynos_mipi_dsi_pll_on(dsim, 1);
/* DPHY : D-PHY clock out, DSIM link : external clock out */
} else if (byte_clk_sel == DSIM_EXT_CLK_DIV8) {
dev_warn(dsim->dev, "this project is not support\n");
dev_warn(dsim->dev,
"external clock source for MIPI DSIM.\n");
} else if (byte_clk_sel == DSIM_EXT_CLK_BYPASS) {
dev_warn(dsim->dev, "this project is not support\n");
dev_warn(dsim->dev,
"external clock source for MIPI DSIM\n");
}
/* escape clock divider */
esc_div = byte_clk / (dsim->dsim_config->esc_clk);
dev_dbg(dsim->dev,
"esc_div = %d, byte_clk = %lu, esc_clk = %lu\n",
esc_div, byte_clk, dsim->dsim_config->esc_clk);
if ((byte_clk / esc_div) >= (20 * MHZ) ||
(byte_clk / esc_div) >
dsim->dsim_config->esc_clk)
esc_div += 1;
escape_clk = byte_clk / esc_div;
dev_dbg(dsim->dev,
"escape_clk = %lu, byte_clk = %lu, esc_div = %d\n",
escape_clk, byte_clk, esc_div);
/* enable escape clock. */
exynos_mipi_dsi_enable_byte_clock(dsim, 1);
/* enable byte clk and escape clock */
exynos_mipi_dsi_set_esc_clk_prs(dsim, 1, esc_div);
/* escape clock on lane */
exynos_mipi_dsi_enable_esc_clk_on_lane(dsim,
(DSIM_LANE_CLOCK | dsim->data_lane), 1);
dev_dbg(dsim->dev, "byte clock is %luMHz\n",
(byte_clk / MHZ));
dev_dbg(dsim->dev, "escape clock that user's need is %lu\n",
(dsim->dsim_config->esc_clk / MHZ));
dev_dbg(dsim->dev, "escape clock divider is %x\n", esc_div);
dev_dbg(dsim->dev, "escape clock is %luMHz\n",
((byte_clk / esc_div) / MHZ));
if ((byte_clk / esc_div) > escape_clk) {
esc_clk_error_rate = escape_clk /
(byte_clk / esc_div);
dev_warn(dsim->dev, "error rate is %lu over.\n",
(esc_clk_error_rate / 100));
} else if ((byte_clk / esc_div) < (escape_clk)) {
esc_clk_error_rate = (byte_clk / esc_div) /
escape_clk;
dev_warn(dsim->dev, "error rate is %lu under.\n",
(esc_clk_error_rate / 100));
}
} else {
exynos_mipi_dsi_enable_esc_clk_on_lane(dsim,
(DSIM_LANE_CLOCK | dsim->data_lane), 0);
exynos_mipi_dsi_set_esc_clk_prs(dsim, 0, 0);
/* disable escape clock. */
exynos_mipi_dsi_enable_byte_clock(dsim, 0);
if (byte_clk_sel == DSIM_PLL_OUT_DIV8)
exynos_mipi_dsi_pll_on(dsim, 0);
}
return 0;
}
int exynos_mipi_dsi_init_dsim(struct mipi_dsim_device *dsim)
{
dsim->state = DSIM_STATE_INIT;
switch (dsim->dsim_config->e_no_data_lane) {
case DSIM_DATA_LANE_1:
dsim->data_lane = DSIM_LANE_DATA0;
break;
case DSIM_DATA_LANE_2:
dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1;
break;
case DSIM_DATA_LANE_3:
dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1 |
DSIM_LANE_DATA2;
break;
case DSIM_DATA_LANE_4:
dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1 |
DSIM_LANE_DATA2 | DSIM_LANE_DATA3;
break;
default:
dev_info(dsim->dev, "data lane is invalid.\n");
return -EINVAL;
}
exynos_mipi_dsi_sw_reset(dsim);
exynos_mipi_dsi_func_reset(dsim);
exynos_mipi_dsi_dp_dn_swap(dsim, 0);
return 0;
}
void exynos_mipi_dsi_init_interrupt(struct mipi_dsim_device *dsim)
{
unsigned int src = 0;
src = (INTSRC_SFR_FIFO_EMPTY | INTSRC_RX_DATA_DONE);
exynos_mipi_dsi_set_interrupt(dsim, src, 1);
src = 0;
src = ~(INTMSK_RX_DONE | INTMSK_FIFO_EMPTY);
exynos_mipi_dsi_set_interrupt_mask(dsim, src, 1);
}
int exynos_mipi_dsi_enable_frame_done_int(struct mipi_dsim_device *dsim,
unsigned int enable)
{
/* enable only frame done interrupt */
exynos_mipi_dsi_set_interrupt_mask(dsim, INTMSK_FRAME_DONE, enable);
return 0;
}
void exynos_mipi_dsi_stand_by(struct mipi_dsim_device *dsim,
unsigned int enable)
{
/* consider Main display and Sub display. */
exynos_mipi_dsi_set_main_stand_by(dsim, enable);
}
int exynos_mipi_dsi_set_display_mode(struct mipi_dsim_device *dsim,
struct mipi_dsim_config *dsim_config)
{
struct mipi_dsim_platform_data *dsim_pd;
struct fb_videomode *timing;
dsim_pd = (struct mipi_dsim_platform_data *)dsim->pd;
timing = (struct fb_videomode *)dsim_pd->lcd_panel_info;
/* in case of VIDEO MODE (RGB INTERFACE), it sets polarities. */
if (dsim_config->e_interface == (u32) DSIM_VIDEO) {
if (dsim_config->auto_vertical_cnt == 0) {
exynos_mipi_dsi_set_main_disp_vporch(dsim,
dsim_config->cmd_allow,
timing->lower_margin,
timing->upper_margin);
exynos_mipi_dsi_set_main_disp_hporch(dsim,
timing->right_margin,
timing->left_margin);
exynos_mipi_dsi_set_main_disp_sync_area(dsim,
timing->vsync_len,
timing->hsync_len);
}
}
exynos_mipi_dsi_set_main_disp_resol(dsim, timing->xres,
timing->yres);
exynos_mipi_dsi_display_config(dsim, dsim_config);
dev_info(dsim->dev, "lcd panel ==> width = %d, height = %d\n",
timing->xres, timing->yres);
return 0;
}
int exynos_mipi_dsi_init_link(struct mipi_dsim_device *dsim)
{
unsigned int time_out = 100;
switch (dsim->state) {
case DSIM_STATE_INIT:
exynos_mipi_dsi_init_fifo_pointer(dsim, 0x1f);
/* dsi configuration */
exynos_mipi_dsi_init_config(dsim);
exynos_mipi_dsi_enable_lane(dsim, DSIM_LANE_CLOCK, 1);
exynos_mipi_dsi_enable_lane(dsim, dsim->data_lane, 1);
/* set clock configuration */
exynos_mipi_dsi_set_clock(dsim, dsim->dsim_config->e_byte_clk, 1);
/* check clock and data lane state are stop state */
while (!(exynos_mipi_dsi_is_lane_state(dsim))) {
time_out--;
if (time_out == 0) {
dev_err(dsim->dev,
"DSI Master is not stop state.\n");
dev_err(dsim->dev,
"Check initialization process\n");
return -EINVAL;
}
}
if (time_out != 0) {
dev_info(dsim->dev,
"DSI Master driver has been completed.\n");
dev_info(dsim->dev, "DSI Master state is stop state\n");
}
dsim->state = DSIM_STATE_STOP;
/* BTA sequence counters */
exynos_mipi_dsi_set_stop_state_counter(dsim,
dsim->dsim_config->stop_holding_cnt);
exynos_mipi_dsi_set_bta_timeout(dsim,
dsim->dsim_config->bta_timeout);
exynos_mipi_dsi_set_lpdr_timeout(dsim,
dsim->dsim_config->rx_timeout);
return 0;
default:
dev_info(dsim->dev, "DSI Master is already init.\n");
return 0;
}
return 0;
}
int exynos_mipi_dsi_set_hs_enable(struct mipi_dsim_device *dsim)
{
if (dsim->state != DSIM_STATE_STOP) {
dev_warn(dsim->dev, "DSIM is not in stop state.\n");
return 0;
}
if (dsim->e_clk_src == DSIM_EXT_CLK_BYPASS) {
dev_warn(dsim->dev, "clock source is external bypass.\n");
return 0;
}
dsim->state = DSIM_STATE_HSCLKEN;
/* set LCDC and CPU transfer mode to HS. */
exynos_mipi_dsi_set_lcdc_transfer_mode(dsim, 0);
exynos_mipi_dsi_set_cpu_transfer_mode(dsim, 0);
exynos_mipi_dsi_enable_hs_clock(dsim, 1);
return 0;
}
int exynos_mipi_dsi_set_data_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int mode)
{
if (mode) {
if (dsim->state != DSIM_STATE_HSCLKEN) {
dev_err(dsim->dev, "HS Clock lane is not enabled.\n");
return -EINVAL;
}
exynos_mipi_dsi_set_lcdc_transfer_mode(dsim, 0);
} else {
if (dsim->state == DSIM_STATE_INIT || dsim->state ==
DSIM_STATE_ULPS) {
dev_err(dsim->dev,
"DSI Master is not STOP or HSDT state.\n");
return -EINVAL;
}
exynos_mipi_dsi_set_cpu_transfer_mode(dsim, 0);
}
return 0;
}
int exynos_mipi_dsi_get_frame_done_status(struct mipi_dsim_device *dsim)
{
return _exynos_mipi_dsi_get_frame_done_status(dsim);
}
int exynos_mipi_dsi_clear_frame_done(struct mipi_dsim_device *dsim)
{
_exynos_mipi_dsi_clear_frame_done(dsim);
return 0;
}
int exynos_mipi_dsi_fifo_clear(struct mipi_dsim_device *dsim,
unsigned int val)
{
int try = TRY_FIFO_CLEAR;
exynos_mipi_dsi_sw_reset_release(dsim);
exynos_mipi_dsi_func_reset(dsim);
do {
if (exynos_mipi_dsi_get_sw_reset_release(dsim)) {
exynos_mipi_dsi_init_interrupt(dsim);
dev_dbg(dsim->dev, "reset release done.\n");
return 0;
}
} while (--try);
dev_err(dsim->dev, "failed to clear dsim fifo.\n");
return -EAGAIN;
}
MODULE_AUTHOR("InKi Dae <inki.dae@samsung.com>");
MODULE_DESCRIPTION("Samsung SoC MIPI-DSI common driver");
MODULE_LICENSE("GPL");

View File

@ -1,46 +0,0 @@
/* linux/drivers/video/exynos_mipi_dsi_common.h
*
* Header file for Samsung SoC MIPI-DSI common driver.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae <inki.dae@samsung.com>
* Donghwa Lee <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _EXYNOS_MIPI_DSI_COMMON_H
#define _EXYNOS_MIPI_DSI_COMMON_H
static DECLARE_COMPLETION(dsim_rd_comp);
static DECLARE_COMPLETION(dsim_wr_comp);
int exynos_mipi_dsi_wr_data(struct mipi_dsim_device *dsim, unsigned int data_id,
const unsigned char *data0, unsigned int data_size);
int exynos_mipi_dsi_rd_data(struct mipi_dsim_device *dsim, unsigned int data_id,
unsigned int data0, unsigned int req_size, u8 *rx_buf);
irqreturn_t exynos_mipi_dsi_interrupt_handler(int irq, void *dev_id);
void exynos_mipi_dsi_init_interrupt(struct mipi_dsim_device *dsim);
int exynos_mipi_dsi_init_dsim(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_stand_by(struct mipi_dsim_device *dsim,
unsigned int enable);
int exynos_mipi_dsi_set_display_mode(struct mipi_dsim_device *dsim,
struct mipi_dsim_config *dsim_info);
int exynos_mipi_dsi_init_link(struct mipi_dsim_device *dsim);
int exynos_mipi_dsi_set_hs_enable(struct mipi_dsim_device *dsim);
int exynos_mipi_dsi_set_data_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int mode);
int exynos_mipi_dsi_enable_frame_done_int(struct mipi_dsim_device *dsim,
unsigned int enable);
int exynos_mipi_dsi_get_frame_done_status(struct mipi_dsim_device *dsim);
int exynos_mipi_dsi_clear_frame_done(struct mipi_dsim_device *dsim);
extern struct fb_info *registered_fb[FB_MAX] __read_mostly;
int exynos_mipi_dsi_fifo_clear(struct mipi_dsim_device *dsim,
unsigned int val);
#endif /* _EXYNOS_MIPI_DSI_COMMON_H */

View File

@ -1,618 +0,0 @@
/* linux/drivers/video/exynos/exynos_mipi_dsi_lowlevel.c
*
* Samsung SoC MIPI-DSI lowlevel driver.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae, <inki.dae@samsung.com>
* Donghwa Lee, <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/ctype.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <video/exynos_mipi_dsim.h>
#include "exynos_mipi_dsi_regs.h"
#include "exynos_mipi_dsi_lowlevel.h"
void exynos_mipi_dsi_func_reset(struct mipi_dsim_device *dsim)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_SWRST);
reg |= DSIM_FUNCRST;
writel(reg, dsim->reg_base + EXYNOS_DSIM_SWRST);
}
void exynos_mipi_dsi_sw_reset(struct mipi_dsim_device *dsim)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_SWRST);
reg |= DSIM_SWRST;
writel(reg, dsim->reg_base + EXYNOS_DSIM_SWRST);
}
void exynos_mipi_dsi_sw_reset_release(struct mipi_dsim_device *dsim)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_INTSRC);
reg |= INTSRC_SW_RST_RELEASE;
writel(reg, dsim->reg_base + EXYNOS_DSIM_INTSRC);
}
int exynos_mipi_dsi_get_sw_reset_release(struct mipi_dsim_device *dsim)
{
return (readl(dsim->reg_base + EXYNOS_DSIM_INTSRC)) &
INTSRC_SW_RST_RELEASE;
}
unsigned int exynos_mipi_dsi_read_interrupt_mask(struct mipi_dsim_device *dsim)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_INTMSK);
return reg;
}
void exynos_mipi_dsi_set_interrupt_mask(struct mipi_dsim_device *dsim,
unsigned int mode, unsigned int mask)
{
unsigned int reg = 0;
if (mask)
reg |= mode;
else
reg &= ~mode;
writel(reg, dsim->reg_base + EXYNOS_DSIM_INTMSK);
}
void exynos_mipi_dsi_init_fifo_pointer(struct mipi_dsim_device *dsim,
unsigned int cfg)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_FIFOCTRL);
writel(reg & ~(cfg), dsim->reg_base + EXYNOS_DSIM_FIFOCTRL);
mdelay(10);
reg |= cfg;
writel(reg, dsim->reg_base + EXYNOS_DSIM_FIFOCTRL);
}
/*
* this function set PLL P, M and S value in D-PHY
*/
void exynos_mipi_dsi_set_phy_tunning(struct mipi_dsim_device *dsim,
unsigned int value)
{
writel(DSIM_AFC_CTL(value), dsim->reg_base + EXYNOS_DSIM_PHYACCHR);
}
void exynos_mipi_dsi_set_main_stand_by(struct mipi_dsim_device *dsim,
unsigned int enable)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_MDRESOL);
reg &= ~DSIM_MAIN_STAND_BY;
if (enable)
reg |= DSIM_MAIN_STAND_BY;
writel(reg, dsim->reg_base + EXYNOS_DSIM_MDRESOL);
}
void exynos_mipi_dsi_set_main_disp_resol(struct mipi_dsim_device *dsim,
unsigned int width_resol, unsigned int height_resol)
{
unsigned int reg;
/* standby should be set after configuration so set to not ready*/
reg = (readl(dsim->reg_base + EXYNOS_DSIM_MDRESOL)) &
~(DSIM_MAIN_STAND_BY);
writel(reg, dsim->reg_base + EXYNOS_DSIM_MDRESOL);
reg &= ~((0x7ff << 16) | (0x7ff << 0));
reg |= DSIM_MAIN_VRESOL(height_resol) | DSIM_MAIN_HRESOL(width_resol);
reg |= DSIM_MAIN_STAND_BY;
writel(reg, dsim->reg_base + EXYNOS_DSIM_MDRESOL);
}
void exynos_mipi_dsi_set_main_disp_vporch(struct mipi_dsim_device *dsim,
unsigned int cmd_allow, unsigned int vfront, unsigned int vback)
{
unsigned int reg;
reg = (readl(dsim->reg_base + EXYNOS_DSIM_MVPORCH)) &
~((DSIM_CMD_ALLOW_MASK) | (DSIM_STABLE_VFP_MASK) |
(DSIM_MAIN_VBP_MASK));
reg |= (DSIM_CMD_ALLOW_SHIFT(cmd_allow & 0xf) |
DSIM_STABLE_VFP_SHIFT(vfront & 0x7ff) |
DSIM_MAIN_VBP_SHIFT(vback & 0x7ff));
writel(reg, dsim->reg_base + EXYNOS_DSIM_MVPORCH);
}
void exynos_mipi_dsi_set_main_disp_hporch(struct mipi_dsim_device *dsim,
unsigned int front, unsigned int back)
{
unsigned int reg;
reg = (readl(dsim->reg_base + EXYNOS_DSIM_MHPORCH)) &
~((DSIM_MAIN_HFP_MASK) | (DSIM_MAIN_HBP_MASK));
reg |= DSIM_MAIN_HFP_SHIFT(front) | DSIM_MAIN_HBP_SHIFT(back);
writel(reg, dsim->reg_base + EXYNOS_DSIM_MHPORCH);
}
void exynos_mipi_dsi_set_main_disp_sync_area(struct mipi_dsim_device *dsim,
unsigned int vert, unsigned int hori)
{
unsigned int reg;
reg = (readl(dsim->reg_base + EXYNOS_DSIM_MSYNC)) &
~((DSIM_MAIN_VSA_MASK) | (DSIM_MAIN_HSA_MASK));
reg |= (DSIM_MAIN_VSA_SHIFT(vert & 0x3ff) |
DSIM_MAIN_HSA_SHIFT(hori));
writel(reg, dsim->reg_base + EXYNOS_DSIM_MSYNC);
}
void exynos_mipi_dsi_set_sub_disp_resol(struct mipi_dsim_device *dsim,
unsigned int vert, unsigned int hori)
{
unsigned int reg;
reg = (readl(dsim->reg_base + EXYNOS_DSIM_SDRESOL)) &
~(DSIM_SUB_STANDY_MASK);
writel(reg, dsim->reg_base + EXYNOS_DSIM_SDRESOL);
reg &= ~(DSIM_SUB_VRESOL_MASK) | ~(DSIM_SUB_HRESOL_MASK);
reg |= (DSIM_SUB_VRESOL_SHIFT(vert & 0x7ff) |
DSIM_SUB_HRESOL_SHIFT(hori & 0x7ff));
writel(reg, dsim->reg_base + EXYNOS_DSIM_SDRESOL);
reg |= DSIM_SUB_STANDY_SHIFT(1);
writel(reg, dsim->reg_base + EXYNOS_DSIM_SDRESOL);
}
void exynos_mipi_dsi_init_config(struct mipi_dsim_device *dsim)
{
struct mipi_dsim_config *dsim_config = dsim->dsim_config;
unsigned int cfg = (readl(dsim->reg_base + EXYNOS_DSIM_CONFIG)) &
~((1 << 28) | (0x1f << 20) | (0x3 << 5));
cfg = ((DSIM_AUTO_FLUSH(dsim_config->auto_flush)) |
(DSIM_EOT_DISABLE(dsim_config->eot_disable)) |
(DSIM_AUTO_MODE_SHIFT(dsim_config->auto_vertical_cnt)) |
(DSIM_HSE_MODE_SHIFT(dsim_config->hse)) |
(DSIM_HFP_MODE_SHIFT(dsim_config->hfp)) |
(DSIM_HBP_MODE_SHIFT(dsim_config->hbp)) |
(DSIM_HSA_MODE_SHIFT(dsim_config->hsa)) |
(DSIM_NUM_OF_DATALANE_SHIFT(dsim_config->e_no_data_lane)));
writel(cfg, dsim->reg_base + EXYNOS_DSIM_CONFIG);
}
void exynos_mipi_dsi_display_config(struct mipi_dsim_device *dsim,
struct mipi_dsim_config *dsim_config)
{
u32 reg = (readl(dsim->reg_base + EXYNOS_DSIM_CONFIG)) &
~((0x3 << 26) | (1 << 25) | (0x3 << 18) | (0x7 << 12) |
(0x3 << 16) | (0x7 << 8));
if (dsim_config->e_interface == DSIM_VIDEO)
reg |= (1 << 25);
else if (dsim_config->e_interface == DSIM_COMMAND)
reg &= ~(1 << 25);
else {
dev_err(dsim->dev, "unknown lcd type.\n");
return;
}
/* main lcd */
reg |= ((u8) (dsim_config->e_burst_mode) & 0x3) << 26 |
((u8) (dsim_config->e_virtual_ch) & 0x3) << 18 |
((u8) (dsim_config->e_pixel_format) & 0x7) << 12;
writel(reg, dsim->reg_base + EXYNOS_DSIM_CONFIG);
}
void exynos_mipi_dsi_enable_lane(struct mipi_dsim_device *dsim, unsigned int lane,
unsigned int enable)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_CONFIG);
if (enable)
reg |= DSIM_LANE_ENx(lane);
else
reg &= ~DSIM_LANE_ENx(lane);
writel(reg, dsim->reg_base + EXYNOS_DSIM_CONFIG);
}
void exynos_mipi_dsi_set_data_lane_number(struct mipi_dsim_device *dsim,
unsigned int count)
{
unsigned int cfg;
/* get the data lane number. */
cfg = DSIM_NUM_OF_DATALANE_SHIFT(count);
writel(cfg, dsim->reg_base + EXYNOS_DSIM_CONFIG);
}
void exynos_mipi_dsi_enable_afc(struct mipi_dsim_device *dsim, unsigned int enable,
unsigned int afc_code)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_PHYACCHR);
if (enable) {
reg |= (1 << 14);
reg &= ~(0x7 << 5);
reg |= (afc_code & 0x7) << 5;
} else
reg &= ~(1 << 14);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PHYACCHR);
}
void exynos_mipi_dsi_enable_pll_bypass(struct mipi_dsim_device *dsim,
unsigned int enable)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL)) &
~(DSIM_PLL_BYPASS_SHIFT(0x1));
reg |= DSIM_PLL_BYPASS_SHIFT(enable);
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_set_pll_pms(struct mipi_dsim_device *dsim, unsigned int p,
unsigned int m, unsigned int s)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
reg |= ((p & 0x3f) << 13) | ((m & 0x1ff) << 4) | ((s & 0x7) << 1);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
void exynos_mipi_dsi_pll_freq_band(struct mipi_dsim_device *dsim,
unsigned int freq_band)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL)) &
~(DSIM_FREQ_BAND_SHIFT(0x1f));
reg |= DSIM_FREQ_BAND_SHIFT(freq_band & 0x1f);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
void exynos_mipi_dsi_pll_freq(struct mipi_dsim_device *dsim,
unsigned int pre_divider, unsigned int main_divider,
unsigned int scaler)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL)) &
~(0x7ffff << 1);
reg |= (pre_divider & 0x3f) << 13 | (main_divider & 0x1ff) << 4 |
(scaler & 0x7) << 1;
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
void exynos_mipi_dsi_pll_stable_time(struct mipi_dsim_device *dsim,
unsigned int lock_time)
{
writel(lock_time, dsim->reg_base + EXYNOS_DSIM_PLLTMR);
}
void exynos_mipi_dsi_enable_pll(struct mipi_dsim_device *dsim, unsigned int enable)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL)) &
~(DSIM_PLL_EN_SHIFT(0x1));
reg |= DSIM_PLL_EN_SHIFT(enable & 0x1);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
void exynos_mipi_dsi_set_byte_clock_src(struct mipi_dsim_device *dsim,
unsigned int src)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL)) &
~(DSIM_BYTE_CLK_SRC_SHIFT(0x3));
reg |= (DSIM_BYTE_CLK_SRC_SHIFT(src));
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_enable_byte_clock(struct mipi_dsim_device *dsim,
unsigned int enable)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL)) &
~(DSIM_BYTE_CLKEN_SHIFT(0x1));
reg |= DSIM_BYTE_CLKEN_SHIFT(enable);
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_set_esc_clk_prs(struct mipi_dsim_device *dsim,
unsigned int enable, unsigned int prs_val)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL)) &
~(DSIM_ESC_CLKEN_SHIFT(0x1) | 0xffff);
reg |= DSIM_ESC_CLKEN_SHIFT(enable);
if (enable)
reg |= prs_val;
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_enable_esc_clk_on_lane(struct mipi_dsim_device *dsim,
unsigned int lane_sel, unsigned int enable)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
if (enable)
reg |= DSIM_LANE_ESC_CLKEN(lane_sel);
else
reg &= ~DSIM_LANE_ESC_CLKEN(lane_sel);
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_force_dphy_stop_state(struct mipi_dsim_device *dsim,
unsigned int enable)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_ESCMODE)) &
~(DSIM_FORCE_STOP_STATE_SHIFT(0x1));
reg |= (DSIM_FORCE_STOP_STATE_SHIFT(enable & 0x1));
writel(reg, dsim->reg_base + EXYNOS_DSIM_ESCMODE);
}
unsigned int exynos_mipi_dsi_is_lane_state(struct mipi_dsim_device *dsim)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_STATUS);
/**
* check clock and data lane states.
* if MIPI-DSI controller was enabled at bootloader then
* TX_READY_HS_CLK is enabled otherwise STOP_STATE_CLK.
* so it should be checked for two case.
*/
if ((reg & DSIM_STOP_STATE_DAT(0xf)) &&
((reg & DSIM_STOP_STATE_CLK) ||
(reg & DSIM_TX_READY_HS_CLK)))
return 1;
return 0;
}
void exynos_mipi_dsi_set_stop_state_counter(struct mipi_dsim_device *dsim,
unsigned int cnt_val)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_ESCMODE)) &
~(DSIM_STOP_STATE_CNT_SHIFT(0x7ff));
reg |= (DSIM_STOP_STATE_CNT_SHIFT(cnt_val & 0x7ff));
writel(reg, dsim->reg_base + EXYNOS_DSIM_ESCMODE);
}
void exynos_mipi_dsi_set_bta_timeout(struct mipi_dsim_device *dsim,
unsigned int timeout)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_TIMEOUT)) &
~(DSIM_BTA_TOUT_SHIFT(0xff));
reg |= (DSIM_BTA_TOUT_SHIFT(timeout));
writel(reg, dsim->reg_base + EXYNOS_DSIM_TIMEOUT);
}
void exynos_mipi_dsi_set_lpdr_timeout(struct mipi_dsim_device *dsim,
unsigned int timeout)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_TIMEOUT)) &
~(DSIM_LPDR_TOUT_SHIFT(0xffff));
reg |= (DSIM_LPDR_TOUT_SHIFT(timeout));
writel(reg, dsim->reg_base + EXYNOS_DSIM_TIMEOUT);
}
void exynos_mipi_dsi_set_cpu_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int lp)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_ESCMODE);
reg &= ~DSIM_CMD_LPDT_LP;
if (lp)
reg |= DSIM_CMD_LPDT_LP;
writel(reg, dsim->reg_base + EXYNOS_DSIM_ESCMODE);
}
void exynos_mipi_dsi_set_lcdc_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int lp)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_ESCMODE);
reg &= ~DSIM_TX_LPDT_LP;
if (lp)
reg |= DSIM_TX_LPDT_LP;
writel(reg, dsim->reg_base + EXYNOS_DSIM_ESCMODE);
}
void exynos_mipi_dsi_enable_hs_clock(struct mipi_dsim_device *dsim,
unsigned int enable)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_CLKCTRL)) &
~(DSIM_TX_REQUEST_HSCLK_SHIFT(0x1));
reg |= DSIM_TX_REQUEST_HSCLK_SHIFT(enable);
writel(reg, dsim->reg_base + EXYNOS_DSIM_CLKCTRL);
}
void exynos_mipi_dsi_dp_dn_swap(struct mipi_dsim_device *dsim,
unsigned int swap_en)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_PHYACCHR1);
reg &= ~(0x3 << 0);
reg |= (swap_en & 0x3) << 0;
writel(reg, dsim->reg_base + EXYNOS_DSIM_PHYACCHR1);
}
void exynos_mipi_dsi_hs_zero_ctrl(struct mipi_dsim_device *dsim,
unsigned int hs_zero)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL)) &
~(0xf << 28);
reg |= ((hs_zero & 0xf) << 28);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
void exynos_mipi_dsi_prep_ctrl(struct mipi_dsim_device *dsim, unsigned int prep)
{
unsigned int reg = (readl(dsim->reg_base + EXYNOS_DSIM_PLLCTRL)) &
~(0x7 << 20);
reg |= ((prep & 0x7) << 20);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PLLCTRL);
}
unsigned int exynos_mipi_dsi_read_interrupt(struct mipi_dsim_device *dsim)
{
return readl(dsim->reg_base + EXYNOS_DSIM_INTSRC);
}
void exynos_mipi_dsi_clear_interrupt(struct mipi_dsim_device *dsim,
unsigned int src)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_INTSRC);
reg |= src;
writel(reg, dsim->reg_base + EXYNOS_DSIM_INTSRC);
}
void exynos_mipi_dsi_set_interrupt(struct mipi_dsim_device *dsim,
unsigned int src, unsigned int enable)
{
unsigned int reg = 0;
if (enable)
reg |= src;
else
reg &= ~src;
writel(reg, dsim->reg_base + EXYNOS_DSIM_INTSRC);
}
unsigned int exynos_mipi_dsi_is_pll_stable(struct mipi_dsim_device *dsim)
{
unsigned int reg;
reg = readl(dsim->reg_base + EXYNOS_DSIM_STATUS);
return reg & (1 << 31) ? 1 : 0;
}
unsigned int exynos_mipi_dsi_get_fifo_state(struct mipi_dsim_device *dsim)
{
return readl(dsim->reg_base + EXYNOS_DSIM_FIFOCTRL) & ~(0x1f);
}
void exynos_mipi_dsi_wr_tx_header(struct mipi_dsim_device *dsim,
unsigned int di, unsigned int data0, unsigned int data1)
{
unsigned int reg = (data1 << 16) | (data0 << 8) | ((di & 0x3f) << 0);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PKTHDR);
}
void exynos_mipi_dsi_rd_tx_header(struct mipi_dsim_device *dsim,
unsigned int di, unsigned int data0)
{
unsigned int reg = (data0 << 8) | (di << 0);
writel(reg, dsim->reg_base + EXYNOS_DSIM_PKTHDR);
}
unsigned int exynos_mipi_dsi_rd_rx_fifo(struct mipi_dsim_device *dsim)
{
return readl(dsim->reg_base + EXYNOS_DSIM_RXFIFO);
}
unsigned int _exynos_mipi_dsi_get_frame_done_status(struct mipi_dsim_device *dsim)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_INTSRC);
return (reg & INTSRC_FRAME_DONE) ? 1 : 0;
}
void _exynos_mipi_dsi_clear_frame_done(struct mipi_dsim_device *dsim)
{
unsigned int reg = readl(dsim->reg_base + EXYNOS_DSIM_INTSRC);
writel(reg | INTSRC_FRAME_DONE, dsim->reg_base +
EXYNOS_DSIM_INTSRC);
}
void exynos_mipi_dsi_wr_tx_data(struct mipi_dsim_device *dsim,
unsigned int tx_data)
{
writel(tx_data, dsim->reg_base + EXYNOS_DSIM_PAYLOAD);
}

View File

@ -1,112 +0,0 @@
/* linux/drivers/video/exynos/exynos_mipi_dsi_lowlevel.h
*
* Header file for Samsung SoC MIPI-DSI lowlevel driver.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae <inki.dae@samsung.com>
* Donghwa Lee <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _EXYNOS_MIPI_DSI_LOWLEVEL_H
#define _EXYNOS_MIPI_DSI_LOWLEVEL_H
void exynos_mipi_dsi_func_reset(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_sw_reset(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_sw_reset_release(struct mipi_dsim_device *dsim);
int exynos_mipi_dsi_get_sw_reset_release(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_set_interrupt_mask(struct mipi_dsim_device *dsim,
unsigned int mode, unsigned int mask);
void exynos_mipi_dsi_set_data_lane_number(struct mipi_dsim_device *dsim,
unsigned int count);
void exynos_mipi_dsi_init_fifo_pointer(struct mipi_dsim_device *dsim,
unsigned int cfg);
void exynos_mipi_dsi_set_phy_tunning(struct mipi_dsim_device *dsim,
unsigned int value);
void exynos_mipi_dsi_set_phy_tunning(struct mipi_dsim_device *dsim,
unsigned int value);
void exynos_mipi_dsi_set_main_stand_by(struct mipi_dsim_device *dsim,
unsigned int enable);
void exynos_mipi_dsi_set_main_disp_resol(struct mipi_dsim_device *dsim,
unsigned int width_resol, unsigned int height_resol);
void exynos_mipi_dsi_set_main_disp_vporch(struct mipi_dsim_device *dsim,
unsigned int cmd_allow, unsigned int vfront, unsigned int vback);
void exynos_mipi_dsi_set_main_disp_hporch(struct mipi_dsim_device *dsim,
unsigned int front, unsigned int back);
void exynos_mipi_dsi_set_main_disp_sync_area(struct mipi_dsim_device *dsim,
unsigned int vert, unsigned int hori);
void exynos_mipi_dsi_set_sub_disp_resol(struct mipi_dsim_device *dsim,
unsigned int vert, unsigned int hori);
void exynos_mipi_dsi_init_config(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_display_config(struct mipi_dsim_device *dsim,
struct mipi_dsim_config *dsim_config);
void exynos_mipi_dsi_set_data_lane_number(struct mipi_dsim_device *dsim,
unsigned int count);
void exynos_mipi_dsi_enable_lane(struct mipi_dsim_device *dsim, unsigned int lane,
unsigned int enable);
void exynos_mipi_dsi_enable_afc(struct mipi_dsim_device *dsim, unsigned int enable,
unsigned int afc_code);
void exynos_mipi_dsi_enable_pll_bypass(struct mipi_dsim_device *dsim,
unsigned int enable);
void exynos_mipi_dsi_set_pll_pms(struct mipi_dsim_device *dsim, unsigned int p,
unsigned int m, unsigned int s);
void exynos_mipi_dsi_pll_freq_band(struct mipi_dsim_device *dsim,
unsigned int freq_band);
void exynos_mipi_dsi_pll_freq(struct mipi_dsim_device *dsim,
unsigned int pre_divider, unsigned int main_divider,
unsigned int scaler);
void exynos_mipi_dsi_pll_stable_time(struct mipi_dsim_device *dsim,
unsigned int lock_time);
void exynos_mipi_dsi_enable_pll(struct mipi_dsim_device *dsim,
unsigned int enable);
void exynos_mipi_dsi_set_byte_clock_src(struct mipi_dsim_device *dsim,
unsigned int src);
void exynos_mipi_dsi_enable_byte_clock(struct mipi_dsim_device *dsim,
unsigned int enable);
void exynos_mipi_dsi_set_esc_clk_prs(struct mipi_dsim_device *dsim,
unsigned int enable, unsigned int prs_val);
void exynos_mipi_dsi_enable_esc_clk_on_lane(struct mipi_dsim_device *dsim,
unsigned int lane_sel, unsigned int enable);
void exynos_mipi_dsi_force_dphy_stop_state(struct mipi_dsim_device *dsim,
unsigned int enable);
unsigned int exynos_mipi_dsi_is_lane_state(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_set_stop_state_counter(struct mipi_dsim_device *dsim,
unsigned int cnt_val);
void exynos_mipi_dsi_set_bta_timeout(struct mipi_dsim_device *dsim,
unsigned int timeout);
void exynos_mipi_dsi_set_lpdr_timeout(struct mipi_dsim_device *dsim,
unsigned int timeout);
void exynos_mipi_dsi_set_lcdc_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int lp);
void exynos_mipi_dsi_set_cpu_transfer_mode(struct mipi_dsim_device *dsim,
unsigned int lp);
void exynos_mipi_dsi_enable_hs_clock(struct mipi_dsim_device *dsim,
unsigned int enable);
void exynos_mipi_dsi_dp_dn_swap(struct mipi_dsim_device *dsim,
unsigned int swap_en);
void exynos_mipi_dsi_hs_zero_ctrl(struct mipi_dsim_device *dsim,
unsigned int hs_zero);
void exynos_mipi_dsi_prep_ctrl(struct mipi_dsim_device *dsim, unsigned int prep);
unsigned int exynos_mipi_dsi_read_interrupt(struct mipi_dsim_device *dsim);
unsigned int exynos_mipi_dsi_read_interrupt_mask(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_clear_interrupt(struct mipi_dsim_device *dsim,
unsigned int src);
void exynos_mipi_dsi_set_interrupt(struct mipi_dsim_device *dsim,
unsigned int src, unsigned int enable);
unsigned int exynos_mipi_dsi_is_pll_stable(struct mipi_dsim_device *dsim);
unsigned int exynos_mipi_dsi_get_fifo_state(struct mipi_dsim_device *dsim);
unsigned int _exynos_mipi_dsi_get_frame_done_status(struct mipi_dsim_device *dsim);
void _exynos_mipi_dsi_clear_frame_done(struct mipi_dsim_device *dsim);
void exynos_mipi_dsi_wr_tx_header(struct mipi_dsim_device *dsim, unsigned int di,
unsigned int data0, unsigned int data1);
void exynos_mipi_dsi_wr_tx_data(struct mipi_dsim_device *dsim,
unsigned int tx_data);
void exynos_mipi_dsi_rd_tx_header(struct mipi_dsim_device *dsim,
unsigned int data0, unsigned int data1);
unsigned int exynos_mipi_dsi_rd_rx_fifo(struct mipi_dsim_device *dsim);
#endif /* _EXYNOS_MIPI_DSI_LOWLEVEL_H */

View File

@ -1,149 +0,0 @@
/* linux/driver/video/exynos/exynos_mipi_dsi_regs.h
*
* Register definition file for Samsung MIPI-DSIM driver
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae <inki.dae@samsung.com>
* Donghwa Lee <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _EXYNOS_MIPI_DSI_REGS_H
#define _EXYNOS_MIPI_DSI_REGS_H
#define EXYNOS_DSIM_STATUS 0x0 /* Status register */
#define EXYNOS_DSIM_SWRST 0x4 /* Software reset register */
#define EXYNOS_DSIM_CLKCTRL 0x8 /* Clock control register */
#define EXYNOS_DSIM_TIMEOUT 0xc /* Time out register */
#define EXYNOS_DSIM_CONFIG 0x10 /* Configuration register */
#define EXYNOS_DSIM_ESCMODE 0x14 /* Escape mode register */
/* Main display image resolution register */
#define EXYNOS_DSIM_MDRESOL 0x18
#define EXYNOS_DSIM_MVPORCH 0x1c /* Main display Vporch register */
#define EXYNOS_DSIM_MHPORCH 0x20 /* Main display Hporch register */
#define EXYNOS_DSIM_MSYNC 0x24 /* Main display sync area register */
/* Sub display image resolution register */
#define EXYNOS_DSIM_SDRESOL 0x28
#define EXYNOS_DSIM_INTSRC 0x2c /* Interrupt source register */
#define EXYNOS_DSIM_INTMSK 0x30 /* Interrupt mask register */
#define EXYNOS_DSIM_PKTHDR 0x34 /* Packet Header FIFO register */
#define EXYNOS_DSIM_PAYLOAD 0x38 /* Payload FIFO register */
#define EXYNOS_DSIM_RXFIFO 0x3c /* Read FIFO register */
#define EXYNOS_DSIM_FIFOTHLD 0x40 /* FIFO threshold level register */
#define EXYNOS_DSIM_FIFOCTRL 0x44 /* FIFO status and control register */
/* FIFO memory AC characteristic register */
#define EXYNOS_DSIM_PLLCTRL 0x4c /* PLL control register */
#define EXYNOS_DSIM_PLLTMR 0x50 /* PLL timer register */
#define EXYNOS_DSIM_PHYACCHR 0x54 /* D-PHY AC characteristic register */
#define EXYNOS_DSIM_PHYACCHR1 0x58 /* D-PHY AC characteristic register1 */
/* DSIM_STATUS */
#define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
#define DSIM_STOP_STATE_CLK (1 << 8)
#define DSIM_TX_READY_HS_CLK (1 << 10)
/* DSIM_SWRST */
#define DSIM_FUNCRST (1 << 16)
#define DSIM_SWRST (1 << 0)
/* EXYNOS_DSIM_TIMEOUT */
#define DSIM_LPDR_TOUT_SHIFT(x) ((x) << 0)
#define DSIM_BTA_TOUT_SHIFT(x) ((x) << 16)
/* EXYNOS_DSIM_CLKCTRL */
#define DSIM_LANE_ESC_CLKEN(x) (((x) & 0x1f) << 19)
#define DSIM_BYTE_CLKEN_SHIFT(x) ((x) << 24)
#define DSIM_BYTE_CLK_SRC_SHIFT(x) ((x) << 25)
#define DSIM_PLL_BYPASS_SHIFT(x) ((x) << 27)
#define DSIM_ESC_CLKEN_SHIFT(x) ((x) << 28)
#define DSIM_TX_REQUEST_HSCLK_SHIFT(x) ((x) << 31)
/* EXYNOS_DSIM_CONFIG */
#define DSIM_LANE_ENx(x) (((x) & 0x1f) << 0)
#define DSIM_NUM_OF_DATALANE_SHIFT(x) ((x) << 5)
#define DSIM_HSA_MODE_SHIFT(x) ((x) << 20)
#define DSIM_HBP_MODE_SHIFT(x) ((x) << 21)
#define DSIM_HFP_MODE_SHIFT(x) ((x) << 22)
#define DSIM_HSE_MODE_SHIFT(x) ((x) << 23)
#define DSIM_AUTO_MODE_SHIFT(x) ((x) << 24)
#define DSIM_EOT_DISABLE(x) ((x) << 28)
#define DSIM_AUTO_FLUSH(x) ((x) << 29)
#define DSIM_NUM_OF_DATA_LANE(x) ((x) << DSIM_NUM_OF_DATALANE_SHIFT)
/* EXYNOS_DSIM_ESCMODE */
#define DSIM_TX_LPDT_LP (1 << 6)
#define DSIM_CMD_LPDT_LP (1 << 7)
#define DSIM_FORCE_STOP_STATE_SHIFT(x) ((x) << 20)
#define DSIM_STOP_STATE_CNT_SHIFT(x) ((x) << 21)
/* EXYNOS_DSIM_MDRESOL */
#define DSIM_MAIN_STAND_BY (1 << 31)
#define DSIM_MAIN_VRESOL(x) (((x) & 0x7ff) << 16)
#define DSIM_MAIN_HRESOL(x) (((x) & 0X7ff) << 0)
/* EXYNOS_DSIM_MVPORCH */
#define DSIM_CMD_ALLOW_SHIFT(x) ((x) << 28)
#define DSIM_STABLE_VFP_SHIFT(x) ((x) << 16)
#define DSIM_MAIN_VBP_SHIFT(x) ((x) << 0)
#define DSIM_CMD_ALLOW_MASK (0xf << 28)
#define DSIM_STABLE_VFP_MASK (0x7ff << 16)
#define DSIM_MAIN_VBP_MASK (0x7ff << 0)
/* EXYNOS_DSIM_MHPORCH */
#define DSIM_MAIN_HFP_SHIFT(x) ((x) << 16)
#define DSIM_MAIN_HBP_SHIFT(x) ((x) << 0)
#define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
#define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
/* EXYNOS_DSIM_MSYNC */
#define DSIM_MAIN_VSA_SHIFT(x) ((x) << 22)
#define DSIM_MAIN_HSA_SHIFT(x) ((x) << 0)
#define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
#define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
/* EXYNOS_DSIM_SDRESOL */
#define DSIM_SUB_STANDY_SHIFT(x) ((x) << 31)
#define DSIM_SUB_VRESOL_SHIFT(x) ((x) << 16)
#define DSIM_SUB_HRESOL_SHIFT(x) ((x) << 0)
#define DSIM_SUB_STANDY_MASK ((0x1) << 31)
#define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
#define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
/* EXYNOS_DSIM_INTSRC */
#define INTSRC_PLL_STABLE (1 << 31)
#define INTSRC_SW_RST_RELEASE (1 << 30)
#define INTSRC_SFR_FIFO_EMPTY (1 << 29)
#define INTSRC_FRAME_DONE (1 << 24)
#define INTSRC_RX_DATA_DONE (1 << 18)
/* EXYNOS_DSIM_INTMSK */
#define INTMSK_FIFO_EMPTY (1 << 29)
#define INTMSK_BTA (1 << 25)
#define INTMSK_FRAME_DONE (1 << 24)
#define INTMSK_RX_TIMEOUT (1 << 21)
#define INTMSK_BTA_TIMEOUT (1 << 20)
#define INTMSK_RX_DONE (1 << 18)
#define INTMSK_RX_TE (1 << 17)
#define INTMSK_RX_ACK (1 << 16)
#define INTMSK_RX_ECC_ERR (1 << 15)
#define INTMSK_RX_CRC_ERR (1 << 14)
/* EXYNOS_DSIM_FIFOCTRL */
#define SFR_HEADER_EMPTY (1 << 22)
/* EXYNOS_DSIM_PHYACCHR */
#define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
/* EXYNOS_DSIM_PLLCTRL */
#define DSIM_PLL_EN_SHIFT(x) ((x) << 23)
#define DSIM_FREQ_BAND_SHIFT(x) ((x) << 24)
#endif /* _EXYNOS_MIPI_DSI_REGS_H */

View File

@ -1,887 +0,0 @@
/* linux/drivers/video/exynos/s6e8ax0.c
*
* MIPI-DSI based s6e8ax0 AMOLED lcd 4.65 inch panel driver.
*
* Inki Dae, <inki.dae@samsung.com>
* Donghwa Lee, <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/lcd.h>
#include <linux/fb.h>
#include <linux/backlight.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <video/exynos_mipi_dsim.h>
#define LDI_MTP_LENGTH 24
#define DSIM_PM_STABLE_TIME 10
#define MIN_BRIGHTNESS 0
#define MAX_BRIGHTNESS 24
#define GAMMA_TABLE_COUNT 26
#define POWER_IS_ON(pwr) ((pwr) == FB_BLANK_UNBLANK)
#define POWER_IS_OFF(pwr) ((pwr) == FB_BLANK_POWERDOWN)
#define POWER_IS_NRM(pwr) ((pwr) == FB_BLANK_NORMAL)
#define lcd_to_master(a) (a->dsim_dev->master)
#define lcd_to_master_ops(a) ((lcd_to_master(a))->master_ops)
enum {
DSIM_NONE_STATE = 0,
DSIM_RESUME_COMPLETE = 1,
DSIM_FRAME_DONE = 2,
};
struct s6e8ax0 {
struct device *dev;
unsigned int power;
unsigned int id;
unsigned int gamma;
unsigned int acl_enable;
unsigned int cur_acl;
struct lcd_device *ld;
struct backlight_device *bd;
struct mipi_dsim_lcd_device *dsim_dev;
struct lcd_platform_data *ddi_pd;
struct mutex lock;
bool enabled;
};
static struct regulator_bulk_data supplies[] = {
{ .supply = "vdd3", },
{ .supply = "vci", },
};
static void s6e8ax0_regulator_enable(struct s6e8ax0 *lcd)
{
int ret = 0;
struct lcd_platform_data *pd = NULL;
pd = lcd->ddi_pd;
mutex_lock(&lcd->lock);
if (!lcd->enabled) {
ret = regulator_bulk_enable(ARRAY_SIZE(supplies), supplies);
if (ret)
goto out;
lcd->enabled = true;
}
msleep(pd->power_on_delay);
out:
mutex_unlock(&lcd->lock);
}
static void s6e8ax0_regulator_disable(struct s6e8ax0 *lcd)
{
int ret = 0;
mutex_lock(&lcd->lock);
if (lcd->enabled) {
ret = regulator_bulk_disable(ARRAY_SIZE(supplies), supplies);
if (ret)
goto out;
lcd->enabled = false;
}
out:
mutex_unlock(&lcd->lock);
}
static const unsigned char s6e8ax0_22_gamma_30[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xf5, 0x00, 0xff, 0xad, 0xaf,
0xbA, 0xc3, 0xd8, 0xc5, 0x9f, 0xc6, 0x9e, 0xc1, 0xdc, 0xc0,
0x00, 0x61, 0x00, 0x5a, 0x00, 0x74,
};
static const unsigned char s6e8ax0_22_gamma_50[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xe8, 0x1f, 0xf7, 0xad, 0xc0,
0xb5, 0xc4, 0xdc, 0xc4, 0x9e, 0xc6, 0x9c, 0xbb, 0xd8, 0xbb,
0x00, 0x70, 0x00, 0x68, 0x00, 0x86,
};
static const unsigned char s6e8ax0_22_gamma_60[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xde, 0x1f, 0xef, 0xad, 0xc4,
0xb3, 0xc3, 0xdd, 0xc4, 0x9e, 0xc6, 0x9c, 0xbc, 0xd6, 0xba,
0x00, 0x75, 0x00, 0x6e, 0x00, 0x8d,
};
static const unsigned char s6e8ax0_22_gamma_70[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xd8, 0x1f, 0xe7, 0xaf, 0xc8,
0xb4, 0xc4, 0xdd, 0xc3, 0x9d, 0xc6, 0x9c, 0xbb, 0xd6, 0xb9,
0x00, 0x7a, 0x00, 0x72, 0x00, 0x93,
};
static const unsigned char s6e8ax0_22_gamma_80[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xc9, 0x1f, 0xde, 0xae, 0xc9,
0xb1, 0xc3, 0xdd, 0xc2, 0x9d, 0xc5, 0x9b, 0xbc, 0xd6, 0xbb,
0x00, 0x7f, 0x00, 0x77, 0x00, 0x99,
};
static const unsigned char s6e8ax0_22_gamma_90[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xc7, 0x1f, 0xd9, 0xb0, 0xcc,
0xb2, 0xc3, 0xdc, 0xc1, 0x9c, 0xc6, 0x9c, 0xbc, 0xd4, 0xb9,
0x00, 0x83, 0x00, 0x7b, 0x00, 0x9e,
};
static const unsigned char s6e8ax0_22_gamma_100[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xbd, 0x80, 0xcd, 0xba, 0xce,
0xb3, 0xc4, 0xde, 0xc3, 0x9c, 0xc4, 0x9, 0xb8, 0xd3, 0xb6,
0x00, 0x88, 0x00, 0x80, 0x00, 0xa5,
};
static const unsigned char s6e8ax0_22_gamma_120[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb9, 0x95, 0xc8, 0xb1, 0xcf,
0xb2, 0xc6, 0xdf, 0xc5, 0x9b, 0xc3, 0x99, 0xb6, 0xd2, 0xb6,
0x00, 0x8f, 0x00, 0x86, 0x00, 0xac,
};
static const unsigned char s6e8ax0_22_gamma_130[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb7, 0xa0, 0xc7, 0xb1, 0xd0,
0xb2, 0xc4, 0xdd, 0xc3, 0x9a, 0xc3, 0x98, 0xb6, 0xd0, 0xb4,
0x00, 0x92, 0x00, 0x8a, 0x00, 0xb1,
};
static const unsigned char s6e8ax0_22_gamma_140[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb7, 0xa0, 0xc5, 0xb2, 0xd0,
0xb3, 0xc3, 0xde, 0xc3, 0x9b, 0xc2, 0x98, 0xb6, 0xd0, 0xb4,
0x00, 0x95, 0x00, 0x8d, 0x00, 0xb5,
};
static const unsigned char s6e8ax0_22_gamma_150[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb3, 0xa0, 0xc2, 0xb2, 0xd0,
0xb2, 0xc1, 0xdd, 0xc2, 0x9b, 0xc2, 0x98, 0xb4, 0xcf, 0xb1,
0x00, 0x99, 0x00, 0x90, 0x00, 0xba,
};
static const unsigned char s6e8ax0_22_gamma_160[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xaf, 0xa5, 0xbf, 0xb0, 0xd0,
0xb1, 0xc3, 0xde, 0xc2, 0x99, 0xc1, 0x97, 0xb4, 0xce, 0xb1,
0x00, 0x9c, 0x00, 0x93, 0x00, 0xbe,
};
static const unsigned char s6e8ax0_22_gamma_170[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xaf, 0xb5, 0xbf, 0xb1, 0xd1,
0xb1, 0xc3, 0xde, 0xc3, 0x99, 0xc0, 0x96, 0xb4, 0xce, 0xb1,
0x00, 0x9f, 0x00, 0x96, 0x00, 0xc2,
};
static const unsigned char s6e8ax0_22_gamma_180[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xaf, 0xb7, 0xbe, 0xb3, 0xd2,
0xb3, 0xc3, 0xde, 0xc2, 0x97, 0xbf, 0x95, 0xb4, 0xcd, 0xb1,
0x00, 0xa2, 0x00, 0x99, 0x00, 0xc5,
};
static const unsigned char s6e8ax0_22_gamma_190[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xaf, 0xb9, 0xbe, 0xb2, 0xd2,
0xb2, 0xc3, 0xdd, 0xc3, 0x98, 0xbf, 0x95, 0xb2, 0xcc, 0xaf,
0x00, 0xa5, 0x00, 0x9c, 0x00, 0xc9,
};
static const unsigned char s6e8ax0_22_gamma_200[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xaf, 0xb9, 0xbc, 0xb2, 0xd2,
0xb1, 0xc4, 0xdd, 0xc3, 0x97, 0xbe, 0x95, 0xb1, 0xcb, 0xae,
0x00, 0xa8, 0x00, 0x9f, 0x00, 0xcd,
};
static const unsigned char s6e8ax0_22_gamma_210[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb1, 0xc1, 0xbd, 0xb1, 0xd1,
0xb1, 0xc2, 0xde, 0xc2, 0x97, 0xbe, 0x94, 0xB0, 0xc9, 0xad,
0x00, 0xae, 0x00, 0xa4, 0x00, 0xd4,
};
static const unsigned char s6e8ax0_22_gamma_220[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb1, 0xc7, 0xbd, 0xb1, 0xd1,
0xb1, 0xc2, 0xdd, 0xc2, 0x97, 0xbd, 0x94, 0xb0, 0xc9, 0xad,
0x00, 0xad, 0x00, 0xa2, 0x00, 0xd3,
};
static const unsigned char s6e8ax0_22_gamma_230[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb1, 0xc3, 0xbd, 0xb2, 0xd1,
0xb1, 0xc3, 0xdd, 0xc1, 0x96, 0xbd, 0x94, 0xb0, 0xc9, 0xad,
0x00, 0xb0, 0x00, 0xa7, 0x00, 0xd7,
};
static const unsigned char s6e8ax0_22_gamma_240[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb1, 0xcb, 0xbd, 0xb1, 0xd2,
0xb1, 0xc3, 0xdD, 0xc2, 0x95, 0xbd, 0x93, 0xaf, 0xc8, 0xab,
0x00, 0xb3, 0x00, 0xa9, 0x00, 0xdb,
};
static const unsigned char s6e8ax0_22_gamma_250[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb3, 0xcc, 0xbe, 0xb0, 0xd2,
0xb0, 0xc3, 0xdD, 0xc2, 0x94, 0xbc, 0x92, 0xae, 0xc8, 0xab,
0x00, 0xb6, 0x00, 0xab, 0x00, 0xde,
};
static const unsigned char s6e8ax0_22_gamma_260[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb3, 0xd0, 0xbe, 0xaf, 0xd1,
0xaf, 0xc2, 0xdd, 0xc1, 0x96, 0xbc, 0x93, 0xaf, 0xc8, 0xac,
0x00, 0xb7, 0x00, 0xad, 0x00, 0xe0,
};
static const unsigned char s6e8ax0_22_gamma_270[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb2, 0xcF, 0xbd, 0xb0, 0xd2,
0xaf, 0xc2, 0xdc, 0xc1, 0x95, 0xbd, 0x93, 0xae, 0xc6, 0xaa,
0x00, 0xba, 0x00, 0xb0, 0x00, 0xe4,
};
static const unsigned char s6e8ax0_22_gamma_280[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb2, 0xd0, 0xbd, 0xaf, 0xd0,
0xad, 0xc4, 0xdd, 0xc3, 0x95, 0xbd, 0x93, 0xac, 0xc5, 0xa9,
0x00, 0xbd, 0x00, 0xb2, 0x00, 0xe7,
};
static const unsigned char s6e8ax0_22_gamma_300[] = {
0xfa, 0x01, 0x60, 0x10, 0x60, 0xb5, 0xd3, 0xbd, 0xb1, 0xd2,
0xb0, 0xc0, 0xdc, 0xc0, 0x94, 0xba, 0x91, 0xac, 0xc5, 0xa9,
0x00, 0xc2, 0x00, 0xb7, 0x00, 0xed,
};
static const unsigned char *s6e8ax0_22_gamma_table[] = {
s6e8ax0_22_gamma_30,
s6e8ax0_22_gamma_50,
s6e8ax0_22_gamma_60,
s6e8ax0_22_gamma_70,
s6e8ax0_22_gamma_80,
s6e8ax0_22_gamma_90,
s6e8ax0_22_gamma_100,
s6e8ax0_22_gamma_120,
s6e8ax0_22_gamma_130,
s6e8ax0_22_gamma_140,
s6e8ax0_22_gamma_150,
s6e8ax0_22_gamma_160,
s6e8ax0_22_gamma_170,
s6e8ax0_22_gamma_180,
s6e8ax0_22_gamma_190,
s6e8ax0_22_gamma_200,
s6e8ax0_22_gamma_210,
s6e8ax0_22_gamma_220,
s6e8ax0_22_gamma_230,
s6e8ax0_22_gamma_240,
s6e8ax0_22_gamma_250,
s6e8ax0_22_gamma_260,
s6e8ax0_22_gamma_270,
s6e8ax0_22_gamma_280,
s6e8ax0_22_gamma_300,
};
static void s6e8ax0_panel_cond(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xf8, 0x3d, 0x35, 0x00, 0x00, 0x00, 0x93, 0x00, 0x3c, 0x7d,
0x08, 0x27, 0x7d, 0x3f, 0x00, 0x00, 0x00, 0x20, 0x04, 0x08,
0x6e, 0x00, 0x00, 0x00, 0x02, 0x08, 0x08, 0x23, 0x23, 0xc0,
0xc8, 0x08, 0x48, 0xc1, 0x00, 0xc1, 0xff, 0xff, 0xc8
};
static const unsigned char data_to_send_panel_reverse[] = {
0xf8, 0x19, 0x35, 0x00, 0x00, 0x00, 0x93, 0x00, 0x3c, 0x7d,
0x08, 0x27, 0x7d, 0x3f, 0x00, 0x00, 0x00, 0x20, 0x04, 0x08,
0x6e, 0x00, 0x00, 0x00, 0x02, 0x08, 0x08, 0x23, 0x23, 0xc0,
0xc1, 0x01, 0x41, 0xc1, 0x00, 0xc1, 0xf6, 0xf6, 0xc1
};
if (lcd->dsim_dev->panel_reverse)
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send_panel_reverse,
ARRAY_SIZE(data_to_send_panel_reverse));
else
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_display_cond(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xf2, 0x80, 0x03, 0x0d
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
/* Gamma 2.2 Setting (200cd, 7500K, 10MPCD) */
static void s6e8ax0_gamma_cond(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
unsigned int gamma = lcd->bd->props.brightness;
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
s6e8ax0_22_gamma_table[gamma],
GAMMA_TABLE_COUNT);
}
static void s6e8ax0_gamma_update(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xf7, 0x03
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE_PARAM, data_to_send,
ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond1(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xd1, 0xfe, 0x80, 0x00, 0x01, 0x0b, 0x00, 0x00, 0x40,
0x0d, 0x00, 0x00
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond2(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xb6, 0x0c, 0x02, 0x03, 0x32, 0xff, 0x44, 0x44, 0xc0,
0x00
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond3(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xe1, 0x10, 0x1c, 0x17, 0x08, 0x1d
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond4(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xe2, 0xed, 0x07, 0xc3, 0x13, 0x0d, 0x03
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond5(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xf4, 0xcf, 0x0a, 0x12, 0x10, 0x19, 0x33, 0x02
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond6(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xe3, 0x40
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE_PARAM,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_etc_cond7(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xe4, 0x00, 0x00, 0x14, 0x80, 0x00, 0x00, 0x00
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_elvss_set(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xb1, 0x04, 0x00
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_elvss_nvm_set(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xd9, 0x5c, 0x20, 0x0c, 0x0f, 0x41, 0x00, 0x10, 0x11,
0x12, 0xd1, 0x00, 0x00, 0x00, 0x00, 0x80, 0xcb, 0xed,
0x64, 0xaf
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_sleep_in(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0x10, 0x00
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_sleep_out(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0x11, 0x00
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_display_on(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0x29, 0x00
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_display_off(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0x28, 0x00
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_apply_level2_key(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xf0, 0x5a, 0x5a
};
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_acl_on(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xc0, 0x01
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
static void s6e8ax0_acl_off(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
static const unsigned char data_to_send[] = {
0xc0, 0x00
};
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_SHORT_WRITE,
data_to_send, ARRAY_SIZE(data_to_send));
}
/* Full white 50% reducing setting */
static void s6e8ax0_acl_ctrl_set(struct s6e8ax0 *lcd)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
/* Full white 50% reducing setting */
static const unsigned char cutoff_50[] = {
0xc1, 0x47, 0x53, 0x13, 0x53, 0x00, 0x00, 0x02, 0xcf,
0x00, 0x00, 0x04, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x08, 0x0f, 0x16, 0x1d, 0x24, 0x2a, 0x31, 0x38,
0x3f, 0x46
};
/* Full white 45% reducing setting */
static const unsigned char cutoff_45[] = {
0xc1, 0x47, 0x53, 0x13, 0x53, 0x00, 0x00, 0x02, 0xcf,
0x00, 0x00, 0x04, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x07, 0x0d, 0x13, 0x19, 0x1f, 0x25, 0x2b, 0x31,
0x37, 0x3d
};
/* Full white 40% reducing setting */
static const unsigned char cutoff_40[] = {
0xc1, 0x47, 0x53, 0x13, 0x53, 0x00, 0x00, 0x02, 0xcf,
0x00, 0x00, 0x04, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x06, 0x0c, 0x11, 0x16, 0x1c, 0x21, 0x26, 0x2b,
0x31, 0x36
};
if (lcd->acl_enable) {
if (lcd->cur_acl == 0) {
if (lcd->gamma == 0 || lcd->gamma == 1) {
s6e8ax0_acl_off(lcd);
dev_dbg(&lcd->ld->dev,
"cur_acl=%d\n", lcd->cur_acl);
} else
s6e8ax0_acl_on(lcd);
}
switch (lcd->gamma) {
case 0: /* 30cd */
s6e8ax0_acl_off(lcd);
lcd->cur_acl = 0;
break;
case 1 ... 3: /* 50cd ~ 90cd */
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_LONG_WRITE,
cutoff_40,
ARRAY_SIZE(cutoff_40));
lcd->cur_acl = 40;
break;
case 4 ... 7: /* 120cd ~ 210cd */
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_LONG_WRITE,
cutoff_45,
ARRAY_SIZE(cutoff_45));
lcd->cur_acl = 45;
break;
case 8 ... 10: /* 220cd ~ 300cd */
ops->cmd_write(lcd_to_master(lcd),
MIPI_DSI_DCS_LONG_WRITE,
cutoff_50,
ARRAY_SIZE(cutoff_50));
lcd->cur_acl = 50;
break;
default:
break;
}
} else {
s6e8ax0_acl_off(lcd);
lcd->cur_acl = 0;
dev_dbg(&lcd->ld->dev, "cur_acl = %d\n", lcd->cur_acl);
}
}
static void s6e8ax0_read_id(struct s6e8ax0 *lcd, u8 *mtp_id)
{
unsigned int ret;
unsigned int addr = 0xd1; /* MTP ID */
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
ret = ops->cmd_read(lcd_to_master(lcd),
MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM,
addr, 3, mtp_id);
}
static int s6e8ax0_panel_init(struct s6e8ax0 *lcd)
{
s6e8ax0_apply_level2_key(lcd);
s6e8ax0_sleep_out(lcd);
msleep(1);
s6e8ax0_panel_cond(lcd);
s6e8ax0_display_cond(lcd);
s6e8ax0_gamma_cond(lcd);
s6e8ax0_gamma_update(lcd);
s6e8ax0_etc_cond1(lcd);
s6e8ax0_etc_cond2(lcd);
s6e8ax0_etc_cond3(lcd);
s6e8ax0_etc_cond4(lcd);
s6e8ax0_etc_cond5(lcd);
s6e8ax0_etc_cond6(lcd);
s6e8ax0_etc_cond7(lcd);
s6e8ax0_elvss_nvm_set(lcd);
s6e8ax0_elvss_set(lcd);
s6e8ax0_acl_ctrl_set(lcd);
s6e8ax0_acl_on(lcd);
/* if ID3 value is not 33h, branch private elvss mode */
msleep(lcd->ddi_pd->power_on_delay);
return 0;
}
static int s6e8ax0_update_gamma_ctrl(struct s6e8ax0 *lcd, int brightness)
{
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
ops->cmd_write(lcd_to_master(lcd), MIPI_DSI_DCS_LONG_WRITE,
s6e8ax0_22_gamma_table[brightness],
ARRAY_SIZE(s6e8ax0_22_gamma_table));
/* update gamma table. */
s6e8ax0_gamma_update(lcd);
lcd->gamma = brightness;
return 0;
}
static int s6e8ax0_gamma_ctrl(struct s6e8ax0 *lcd, int gamma)
{
s6e8ax0_update_gamma_ctrl(lcd, gamma);
return 0;
}
static int s6e8ax0_set_power(struct lcd_device *ld, int power)
{
struct s6e8ax0 *lcd = lcd_get_data(ld);
struct mipi_dsim_master_ops *ops = lcd_to_master_ops(lcd);
int ret = 0;
if (power != FB_BLANK_UNBLANK && power != FB_BLANK_POWERDOWN &&
power != FB_BLANK_NORMAL) {
dev_err(lcd->dev, "power value should be 0, 1 or 4.\n");
return -EINVAL;
}
if ((power == FB_BLANK_UNBLANK) && ops->set_blank_mode) {
/* LCD power on */
if ((POWER_IS_ON(power) && POWER_IS_OFF(lcd->power))
|| (POWER_IS_ON(power) && POWER_IS_NRM(lcd->power))) {
ret = ops->set_blank_mode(lcd_to_master(lcd), power);
if (!ret && lcd->power != power)
lcd->power = power;
}
} else if ((power == FB_BLANK_POWERDOWN) && ops->set_early_blank_mode) {
/* LCD power off */
if ((POWER_IS_OFF(power) && POWER_IS_ON(lcd->power)) ||
(POWER_IS_ON(lcd->power) && POWER_IS_NRM(power))) {
ret = ops->set_early_blank_mode(lcd_to_master(lcd),
power);
if (!ret && lcd->power != power)
lcd->power = power;
}
}
return ret;
}
static int s6e8ax0_get_power(struct lcd_device *ld)
{
struct s6e8ax0 *lcd = lcd_get_data(ld);
return lcd->power;
}
static int s6e8ax0_set_brightness(struct backlight_device *bd)
{
int ret = 0, brightness = bd->props.brightness;
struct s6e8ax0 *lcd = bl_get_data(bd);
if (brightness < MIN_BRIGHTNESS ||
brightness > bd->props.max_brightness) {
dev_err(lcd->dev, "lcd brightness should be %d to %d.\n",
MIN_BRIGHTNESS, MAX_BRIGHTNESS);
return -EINVAL;
}
ret = s6e8ax0_gamma_ctrl(lcd, brightness);
if (ret) {
dev_err(&bd->dev, "lcd brightness setting failed.\n");
return -EIO;
}
return ret;
}
static struct lcd_ops s6e8ax0_lcd_ops = {
.set_power = s6e8ax0_set_power,
.get_power = s6e8ax0_get_power,
};
static const struct backlight_ops s6e8ax0_backlight_ops = {
.update_status = s6e8ax0_set_brightness,
};
static void s6e8ax0_power_on(struct mipi_dsim_lcd_device *dsim_dev, int power)
{
struct s6e8ax0 *lcd = dev_get_drvdata(&dsim_dev->dev);
msleep(lcd->ddi_pd->power_on_delay);
/* lcd power on */
if (power)
s6e8ax0_regulator_enable(lcd);
else
s6e8ax0_regulator_disable(lcd);
msleep(lcd->ddi_pd->reset_delay);
/* lcd reset */
if (lcd->ddi_pd->reset)
lcd->ddi_pd->reset(lcd->ld);
msleep(5);
}
static void s6e8ax0_set_sequence(struct mipi_dsim_lcd_device *dsim_dev)
{
struct s6e8ax0 *lcd = dev_get_drvdata(&dsim_dev->dev);
s6e8ax0_panel_init(lcd);
s6e8ax0_display_on(lcd);
lcd->power = FB_BLANK_UNBLANK;
}
static int s6e8ax0_probe(struct mipi_dsim_lcd_device *dsim_dev)
{
struct s6e8ax0 *lcd;
int ret;
u8 mtp_id[3] = {0, };
lcd = devm_kzalloc(&dsim_dev->dev, sizeof(struct s6e8ax0), GFP_KERNEL);
if (!lcd) {
dev_err(&dsim_dev->dev, "failed to allocate s6e8ax0 structure.\n");
return -ENOMEM;
}
lcd->dsim_dev = dsim_dev;
lcd->ddi_pd = (struct lcd_platform_data *)dsim_dev->platform_data;
lcd->dev = &dsim_dev->dev;
mutex_init(&lcd->lock);
ret = devm_regulator_bulk_get(lcd->dev, ARRAY_SIZE(supplies), supplies);
if (ret) {
dev_err(lcd->dev, "Failed to get regulators: %d\n", ret);
return ret;
}
lcd->ld = devm_lcd_device_register(lcd->dev, "s6e8ax0", lcd->dev, lcd,
&s6e8ax0_lcd_ops);
if (IS_ERR(lcd->ld)) {
dev_err(lcd->dev, "failed to register lcd ops.\n");
return PTR_ERR(lcd->ld);
}
lcd->bd = devm_backlight_device_register(lcd->dev, "s6e8ax0-bl",
lcd->dev, lcd, &s6e8ax0_backlight_ops, NULL);
if (IS_ERR(lcd->bd)) {
dev_err(lcd->dev, "failed to register backlight ops.\n");
return PTR_ERR(lcd->bd);
}
lcd->bd->props.max_brightness = MAX_BRIGHTNESS;
lcd->bd->props.brightness = MAX_BRIGHTNESS;
s6e8ax0_read_id(lcd, mtp_id);
if (mtp_id[0] == 0x00)
dev_err(lcd->dev, "read id failed\n");
dev_info(lcd->dev, "Read ID : %x, %x, %x\n",
mtp_id[0], mtp_id[1], mtp_id[2]);
if (mtp_id[2] == 0x33)
dev_info(lcd->dev,
"ID-3 is 0xff does not support dynamic elvss\n");
else
dev_info(lcd->dev,
"ID-3 is 0x%x support dynamic elvss\n", mtp_id[2]);
lcd->acl_enable = 1;
lcd->cur_acl = 0;
dev_set_drvdata(&dsim_dev->dev, lcd);
dev_dbg(lcd->dev, "probed s6e8ax0 panel driver.\n");
return 0;
}
static int __maybe_unused s6e8ax0_suspend(struct mipi_dsim_lcd_device *dsim_dev)
{
struct s6e8ax0 *lcd = dev_get_drvdata(&dsim_dev->dev);
s6e8ax0_sleep_in(lcd);
msleep(lcd->ddi_pd->power_off_delay);
s6e8ax0_display_off(lcd);
s6e8ax0_regulator_disable(lcd);
return 0;
}
static int __maybe_unused s6e8ax0_resume(struct mipi_dsim_lcd_device *dsim_dev)
{
struct s6e8ax0 *lcd = dev_get_drvdata(&dsim_dev->dev);
s6e8ax0_sleep_out(lcd);
msleep(lcd->ddi_pd->power_on_delay);
s6e8ax0_regulator_enable(lcd);
s6e8ax0_set_sequence(dsim_dev);
return 0;
}
static struct mipi_dsim_lcd_driver s6e8ax0_dsim_ddi_driver = {
.name = "s6e8ax0",
.id = -1,
.power_on = s6e8ax0_power_on,
.set_sequence = s6e8ax0_set_sequence,
.probe = s6e8ax0_probe,
.suspend = IS_ENABLED(CONFIG_PM) ? s6e8ax0_suspend : NULL,
.resume = IS_ENABLED(CONFIG_PM) ? s6e8ax0_resume : NULL,
};
static int s6e8ax0_init(void)
{
exynos_mipi_dsi_register_lcd_driver(&s6e8ax0_dsim_ddi_driver);
return 0;
}
static void s6e8ax0_exit(void)
{
return;
}
module_init(s6e8ax0_init);
module_exit(s6e8ax0_exit);
MODULE_AUTHOR("Donghwa Lee <dh09.lee@samsung.com>");
MODULE_AUTHOR("Inki Dae <inki.dae@samsung.com>");
MODULE_DESCRIPTION("MIPI-DSI based s6e8ax0 AMOLED LCD Panel Driver");
MODULE_LICENSE("GPL");

View File

@ -1,358 +0,0 @@
/* include/video/exynos_mipi_dsim.h
*
* Platform data header for Samsung SoC MIPI-DSIM.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd
*
* InKi Dae <inki.dae@samsung.com>
* Donghwa Lee <dh09.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _EXYNOS_MIPI_DSIM_H
#define _EXYNOS_MIPI_DSIM_H
#include <linux/device.h>
#include <linux/fb.h>
#define PANEL_NAME_SIZE (32)
/*
* Enumerate display interface type.
*
* DSIM_COMMAND means cpu interface and rgb interface for DSIM_VIDEO.
*
* P.S. MIPI DSI Master has two display controller intefaces, RGB Interface
* for main display and CPU Interface(same as I80 Interface) for main
* and sub display.
*/
enum mipi_dsim_interface_type {
DSIM_COMMAND,
DSIM_VIDEO
};
enum mipi_dsim_virtual_ch_no {
DSIM_VIRTUAL_CH_0,
DSIM_VIRTUAL_CH_1,
DSIM_VIRTUAL_CH_2,
DSIM_VIRTUAL_CH_3
};
enum mipi_dsim_burst_mode_type {
DSIM_NON_BURST_SYNC_EVENT,
DSIM_BURST_SYNC_EVENT,
DSIM_NON_BURST_SYNC_PULSE,
DSIM_BURST,
DSIM_NON_VIDEO_MODE
};
enum mipi_dsim_no_of_data_lane {
DSIM_DATA_LANE_1,
DSIM_DATA_LANE_2,
DSIM_DATA_LANE_3,
DSIM_DATA_LANE_4
};
enum mipi_dsim_byte_clk_src {
DSIM_PLL_OUT_DIV8,
DSIM_EXT_CLK_DIV8,
DSIM_EXT_CLK_BYPASS
};
enum mipi_dsim_pixel_format {
DSIM_CMD_3BPP,
DSIM_CMD_8BPP,
DSIM_CMD_12BPP,
DSIM_CMD_16BPP,
DSIM_VID_16BPP_565,
DSIM_VID_18BPP_666PACKED,
DSIM_18BPP_666LOOSELYPACKED,
DSIM_24BPP_888
};
/*
* struct mipi_dsim_config - interface for configuring mipi-dsi controller.
*
* @auto_flush: enable or disable Auto flush of MD FIFO using VSYNC pulse.
* @eot_disable: enable or disable EoT packet in HS mode.
* @auto_vertical_cnt: specifies auto vertical count mode.
* in Video mode, the vertical line transition uses line counter
* configured by VSA, VBP, and Vertical resolution.
* If this bit is set to '1', the line counter does not use VSA and VBP
* registers.(in command mode, this variable is ignored)
* @hse: set horizontal sync event mode.
* In VSYNC pulse and Vporch area, MIPI DSI master transfers only HSYNC
* start packet to MIPI DSI slave at MIPI DSI spec1.1r02.
* this bit transfers HSYNC end packet in VSYNC pulse and Vporch area
* (in mommand mode, this variable is ignored)
* @hfp: specifies HFP disable mode.
* if this variable is set, DSI master ignores HFP area in VIDEO mode.
* (in command mode, this variable is ignored)
* @hbp: specifies HBP disable mode.
* if this variable is set, DSI master ignores HBP area in VIDEO mode.
* (in command mode, this variable is ignored)
* @hsa: specifies HSA disable mode.
* if this variable is set, DSI master ignores HSA area in VIDEO mode.
* (in command mode, this variable is ignored)
* @cma_allow: specifies the number of horizontal lines, where command packet
* transmission is allowed after Stable VFP period.
* @e_interface: specifies interface to be used.(CPU or RGB interface)
* @e_virtual_ch: specifies virtual channel number that main or
* sub diaplsy uses.
* @e_pixel_format: specifies pixel stream format for main or sub display.
* @e_burst_mode: selects Burst mode in Video mode.
* in Non-burst mode, RGB data area is filled with RGB data and NULL
* packets, according to input bandwidth of RGB interface.
* In Burst mode, RGB data area is filled with RGB data only.
* @e_no_data_lane: specifies data lane count to be used by Master.
* @e_byte_clk: select byte clock source. (it must be DSIM_PLL_OUT_DIV8)
* DSIM_EXT_CLK_DIV8 and DSIM_EXT_CLK_BYPASSS are not supported.
* @pll_stable_time: specifies the PLL Timer for stability of the ganerated
* clock(System clock cycle base)
* if the timer value goes to 0x00000000, the clock stable bit of status
* and interrupt register is set.
* @esc_clk: specifies escape clock frequency for getting the escape clock
* prescaler value.
* @stop_holding_cnt: specifies the interval value between transmitting
* read packet(or write "set_tear_on" command) and BTA request.
* after transmitting read packet or write "set_tear_on" command,
* BTA requests to D-PHY automatically. this counter value specifies
* the interval between them.
* @bta_timeout: specifies the timer for BTA.
* this register specifies time out from BTA request to change
* the direction with respect to Tx escape clock.
* @rx_timeout: specifies the timer for LP Rx mode timeout.
* this register specifies time out on how long RxValid deasserts,
* after RxLpdt asserts with respect to Tx escape clock.
* - RxValid specifies Rx data valid indicator.
* - RxLpdt specifies an indicator that D-PHY is under RxLpdt mode.
* - RxValid and RxLpdt specifies signal from D-PHY.
*/
struct mipi_dsim_config {
unsigned char auto_flush;
unsigned char eot_disable;
unsigned char auto_vertical_cnt;
unsigned char hse;
unsigned char hfp;
unsigned char hbp;
unsigned char hsa;
unsigned char cmd_allow;
enum mipi_dsim_interface_type e_interface;
enum mipi_dsim_virtual_ch_no e_virtual_ch;
enum mipi_dsim_pixel_format e_pixel_format;
enum mipi_dsim_burst_mode_type e_burst_mode;
enum mipi_dsim_no_of_data_lane e_no_data_lane;
enum mipi_dsim_byte_clk_src e_byte_clk;
/*
* ===========================================
* | P | M | S | MHz |
* -------------------------------------------
* | 3 | 100 | 3 | 100 |
* | 3 | 100 | 2 | 200 |
* | 3 | 63 | 1 | 252 |
* | 4 | 100 | 1 | 300 |
* | 4 | 110 | 1 | 330 |
* | 12 | 350 | 1 | 350 |
* | 3 | 100 | 1 | 400 |
* | 4 | 150 | 1 | 450 |
* | 6 | 118 | 1 | 472 |
* | 3 | 120 | 1 | 480 |
* | 12 | 250 | 0 | 500 |
* | 4 | 100 | 0 | 600 |
* | 3 | 81 | 0 | 648 |
* | 3 | 88 | 0 | 704 |
* | 3 | 90 | 0 | 720 |
* | 3 | 100 | 0 | 800 |
* | 12 | 425 | 0 | 850 |
* | 4 | 150 | 0 | 900 |
* | 12 | 475 | 0 | 950 |
* | 6 | 250 | 0 | 1000 |
* -------------------------------------------
*/
/*
* pms could be calculated as the following.
* M * 24 / P * 2 ^ S = MHz
*/
unsigned char p;
unsigned short m;
unsigned char s;
unsigned int pll_stable_time;
unsigned long esc_clk;
unsigned short stop_holding_cnt;
unsigned char bta_timeout;
unsigned short rx_timeout;
};
/*
* struct mipi_dsim_device - global interface for mipi-dsi driver.
*
* @dev: driver model representation of the device.
* @id: unique device id.
* @clock: pointer to MIPI-DSI clock of clock framework.
* @irq: interrupt number to MIPI-DSI controller.
* @reg_base: base address to memory mapped SRF of MIPI-DSI controller.
* (virtual address)
* @lock: the mutex protecting this data structure.
* @dsim_info: infomation for configuring mipi-dsi controller.
* @master_ops: callbacks to mipi-dsi operations.
* @dsim_lcd_dev: pointer to activated ddi device.
* (it would be registered by mipi-dsi driver.)
* @dsim_lcd_drv: pointer to activated_ddi driver.
* (it would be registered by mipi-dsi driver.)
* @lcd_info: pointer to mipi_lcd_info structure.
* @state: specifies status of MIPI-DSI controller.
* the status could be RESET, INIT, STOP, HSCLKEN and ULPS.
* @data_lane: specifiec enabled data lane number.
* this variable would be set by driver according to e_no_data_lane
* automatically.
* @e_clk_src: select byte clock source.
* @pd: pointer to MIPI-DSI driver platform data.
* @phy: pointer to the MIPI-DSI PHY
*/
struct mipi_dsim_device {
struct device *dev;
int id;
struct clk *clock;
unsigned int irq;
void __iomem *reg_base;
struct mutex lock;
struct mipi_dsim_config *dsim_config;
struct mipi_dsim_master_ops *master_ops;
struct mipi_dsim_lcd_device *dsim_lcd_dev;
struct mipi_dsim_lcd_driver *dsim_lcd_drv;
unsigned int state;
unsigned int data_lane;
unsigned int e_clk_src;
bool suspended;
struct mipi_dsim_platform_data *pd;
struct phy *phy;
};
/*
* struct mipi_dsim_platform_data - interface to platform data
* for mipi-dsi driver.
*
* @lcd_panel_name: specifies lcd panel name registered to mipi-dsi driver.
* lcd panel driver searched would be actived.
* @dsim_config: pointer of structure for configuring mipi-dsi controller.
* @enabled: indicate whether mipi controller got enabled or not.
* @lcd_panel_info: pointer for lcd panel specific structure.
* this structure specifies width, height, timing and polarity and so on.
*/
struct mipi_dsim_platform_data {
char lcd_panel_name[PANEL_NAME_SIZE];
struct mipi_dsim_config *dsim_config;
unsigned int enabled;
void *lcd_panel_info;
};
/*
* struct mipi_dsim_master_ops - callbacks to mipi-dsi operations.
*
* @cmd_write: transfer command to lcd panel at LP mode.
* @cmd_read: read command from rx register.
* @get_dsim_frame_done: get the status that all screen data have been
* transferred to mipi-dsi.
* @clear_dsim_frame_done: clear frame done status.
* @get_fb_frame_done: get frame done status of display controller.
* @trigger: trigger display controller.
* - this one would be used only in case of CPU mode.
* @set_early_blank_mode: set framebuffer blank mode.
* - this callback should be called prior to fb_blank() by a client driver
* only if needing.
* @set_blank_mode: set framebuffer blank mode.
* - this callback should be called after fb_blank() by a client driver
* only if needing.
*/
struct mipi_dsim_master_ops {
int (*cmd_write)(struct mipi_dsim_device *dsim, unsigned int data_id,
const unsigned char *data0, unsigned int data1);
int (*cmd_read)(struct mipi_dsim_device *dsim, unsigned int data_id,
unsigned int data0, unsigned int req_size, u8 *rx_buf);
int (*get_dsim_frame_done)(struct mipi_dsim_device *dsim);
int (*clear_dsim_frame_done)(struct mipi_dsim_device *dsim);
int (*get_fb_frame_done)(struct fb_info *info);
void (*trigger)(struct fb_info *info);
int (*set_early_blank_mode)(struct mipi_dsim_device *dsim, int power);
int (*set_blank_mode)(struct mipi_dsim_device *dsim, int power);
};
/*
* device structure for mipi-dsi based lcd panel.
*
* @name: name of the device to use with this device, or an
* alias for that name.
* @dev: driver model representation of the device.
* @id: id of device to be registered.
* @bus_id: bus id for identifing connected bus
* and this bus id should be same as id of mipi_dsim_device.
* @irq: irq number for signaling when framebuffer transfer of
* lcd panel module is completed.
* this irq would be used only for MIPI-DSI based CPU mode lcd panel.
* @master: pointer to mipi-dsi master device object.
* @platform_data: lcd panel specific platform data.
*/
struct mipi_dsim_lcd_device {
char *name;
struct device dev;
int id;
int bus_id;
int irq;
int panel_reverse;
struct mipi_dsim_device *master;
void *platform_data;
};
/*
* driver structure for mipi-dsi based lcd panel.
*
* this structure should be registered by lcd panel driver.
* mipi-dsi driver seeks lcd panel registered through name field
* and calls these callback functions in appropriate time.
*
* @name: name of the driver to use with this device, or an
* alias for that name.
* @id: id of driver to be registered.
* this id would be used for finding device object registered.
*/
struct mipi_dsim_lcd_driver {
char *name;
int id;
void (*power_on)(struct mipi_dsim_lcd_device *dsim_dev, int enable);
void (*set_sequence)(struct mipi_dsim_lcd_device *dsim_dev);
int (*probe)(struct mipi_dsim_lcd_device *dsim_dev);
int (*remove)(struct mipi_dsim_lcd_device *dsim_dev);
void (*shutdown)(struct mipi_dsim_lcd_device *dsim_dev);
int (*suspend)(struct mipi_dsim_lcd_device *dsim_dev);
int (*resume)(struct mipi_dsim_lcd_device *dsim_dev);
};
/*
* register mipi_dsim_lcd_device to mipi-dsi master.
*/
int exynos_mipi_dsi_register_lcd_device(struct mipi_dsim_lcd_device
*lcd_dev);
/**
* register mipi_dsim_lcd_driver object defined by lcd panel driver
* to mipi-dsi driver.
*/
int exynos_mipi_dsi_register_lcd_driver(struct mipi_dsim_lcd_driver
*lcd_drv);
#endif /* _EXYNOS_MIPI_DSIM_H */