kprobes.txt: standardize document format
Each text file under Documentation follows a different format. Some doesn't even have titles! Change its representation to follow the adopted standard, using ReST markups for it to be parseable by Sphinx: - comment the contents; - add proper markups for titles; - mark literal blocks as such; - use :Author: for authorship; - use the right markups for footnotes; - escape some literals that would otherwise cause problems; - fix identation and add blank lines where needed. Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
7472723305
commit
a1dac76762
|
@ -1,30 +1,36 @@
|
|||
Title : Kernel Probes (Kprobes)
|
||||
Authors : Jim Keniston <jkenisto@us.ibm.com>
|
||||
: Prasanna S Panchamukhi <prasanna.panchamukhi@gmail.com>
|
||||
: Masami Hiramatsu <mhiramat@redhat.com>
|
||||
=======================
|
||||
Kernel Probes (Kprobes)
|
||||
=======================
|
||||
|
||||
CONTENTS
|
||||
:Author: Jim Keniston <jkenisto@us.ibm.com>
|
||||
:Author: Prasanna S Panchamukhi <prasanna.panchamukhi@gmail.com>
|
||||
:Author: Masami Hiramatsu <mhiramat@redhat.com>
|
||||
|
||||
1. Concepts: Kprobes, Jprobes, Return Probes
|
||||
2. Architectures Supported
|
||||
3. Configuring Kprobes
|
||||
4. API Reference
|
||||
5. Kprobes Features and Limitations
|
||||
6. Probe Overhead
|
||||
7. TODO
|
||||
8. Kprobes Example
|
||||
9. Jprobes Example
|
||||
10. Kretprobes Example
|
||||
Appendix A: The kprobes debugfs interface
|
||||
Appendix B: The kprobes sysctl interface
|
||||
.. CONTENTS
|
||||
|
||||
1. Concepts: Kprobes, Jprobes, Return Probes
|
||||
1. Concepts: Kprobes, Jprobes, Return Probes
|
||||
2. Architectures Supported
|
||||
3. Configuring Kprobes
|
||||
4. API Reference
|
||||
5. Kprobes Features and Limitations
|
||||
6. Probe Overhead
|
||||
7. TODO
|
||||
8. Kprobes Example
|
||||
9. Jprobes Example
|
||||
10. Kretprobes Example
|
||||
Appendix A: The kprobes debugfs interface
|
||||
Appendix B: The kprobes sysctl interface
|
||||
|
||||
Concepts: Kprobes, Jprobes, Return Probes
|
||||
=========================================
|
||||
|
||||
Kprobes enables you to dynamically break into any kernel routine and
|
||||
collect debugging and performance information non-disruptively. You
|
||||
can trap at almost any kernel code address(*), specifying a handler
|
||||
can trap at almost any kernel code address [1]_, specifying a handler
|
||||
routine to be invoked when the breakpoint is hit.
|
||||
(*: some parts of the kernel code can not be trapped, see 1.5 Blacklist)
|
||||
|
||||
.. [1] some parts of the kernel code can not be trapped, see
|
||||
:ref:`kprobes_blacklist`)
|
||||
|
||||
There are currently three types of probes: kprobes, jprobes, and
|
||||
kretprobes (also called return probes). A kprobe can be inserted
|
||||
|
@ -40,8 +46,8 @@ registration function such as register_kprobe() specifies where
|
|||
the probe is to be inserted and what handler is to be called when
|
||||
the probe is hit.
|
||||
|
||||
There are also register_/unregister_*probes() functions for batch
|
||||
registration/unregistration of a group of *probes. These functions
|
||||
There are also ``register_/unregister_*probes()`` functions for batch
|
||||
registration/unregistration of a group of ``*probes``. These functions
|
||||
can speed up unregistration process when you have to unregister
|
||||
a lot of probes at once.
|
||||
|
||||
|
@ -51,9 +57,10 @@ things that you'll need to know in order to make the best use of
|
|||
Kprobes -- e.g., the difference between a pre_handler and
|
||||
a post_handler, and how to use the maxactive and nmissed fields of
|
||||
a kretprobe. But if you're in a hurry to start using Kprobes, you
|
||||
can skip ahead to section 2.
|
||||
can skip ahead to :ref:`kprobes_archs_supported`.
|
||||
|
||||
1.1 How Does a Kprobe Work?
|
||||
How Does a Kprobe Work?
|
||||
-----------------------
|
||||
|
||||
When a kprobe is registered, Kprobes makes a copy of the probed
|
||||
instruction and replaces the first byte(s) of the probed instruction
|
||||
|
@ -75,7 +82,8 @@ After the instruction is single-stepped, Kprobes executes the
|
|||
"post_handler," if any, that is associated with the kprobe.
|
||||
Execution then continues with the instruction following the probepoint.
|
||||
|
||||
1.2 How Does a Jprobe Work?
|
||||
How Does a Jprobe Work?
|
||||
-----------------------
|
||||
|
||||
A jprobe is implemented using a kprobe that is placed on a function's
|
||||
entry point. It employs a simple mirroring principle to allow
|
||||
|
@ -113,9 +121,11 @@ more than eight function arguments, an argument of more than sixteen
|
|||
bytes, or more than 64 bytes of argument data, depending on
|
||||
architecture).
|
||||
|
||||
1.3 Return Probes
|
||||
Return Probes
|
||||
-------------
|
||||
|
||||
1.3.1 How Does a Return Probe Work?
|
||||
How Does a Return Probe Work?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
When you call register_kretprobe(), Kprobes establishes a kprobe at
|
||||
the entry to the function. When the probed function is called and this
|
||||
|
@ -150,7 +160,8 @@ zero when the return probe is registered, and is incremented every
|
|||
time the probed function is entered but there is no kretprobe_instance
|
||||
object available for establishing the return probe.
|
||||
|
||||
1.3.2 Kretprobe entry-handler
|
||||
Kretprobe entry-handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Kretprobes also provides an optional user-specified handler which runs
|
||||
on function entry. This handler is specified by setting the entry_handler
|
||||
|
@ -174,7 +185,10 @@ In case probed function is entered but there is no kretprobe_instance
|
|||
object available, then in addition to incrementing the nmissed count,
|
||||
the user entry_handler invocation is also skipped.
|
||||
|
||||
1.4 How Does Jump Optimization Work?
|
||||
.. _kprobes_jump_optimization:
|
||||
|
||||
How Does Jump Optimization Work?
|
||||
--------------------------------
|
||||
|
||||
If your kernel is built with CONFIG_OPTPROBES=y (currently this flag
|
||||
is automatically set 'y' on x86/x86-64, non-preemptive kernel) and
|
||||
|
@ -182,53 +196,60 @@ the "debug.kprobes_optimization" kernel parameter is set to 1 (see
|
|||
sysctl(8)), Kprobes tries to reduce probe-hit overhead by using a jump
|
||||
instruction instead of a breakpoint instruction at each probepoint.
|
||||
|
||||
1.4.1 Init a Kprobe
|
||||
Init a Kprobe
|
||||
^^^^^^^^^^^^^
|
||||
|
||||
When a probe is registered, before attempting this optimization,
|
||||
Kprobes inserts an ordinary, breakpoint-based kprobe at the specified
|
||||
address. So, even if it's not possible to optimize this particular
|
||||
probepoint, there'll be a probe there.
|
||||
|
||||
1.4.2 Safety Check
|
||||
Safety Check
|
||||
^^^^^^^^^^^^
|
||||
|
||||
Before optimizing a probe, Kprobes performs the following safety checks:
|
||||
|
||||
- Kprobes verifies that the region that will be replaced by the jump
|
||||
instruction (the "optimized region") lies entirely within one function.
|
||||
(A jump instruction is multiple bytes, and so may overlay multiple
|
||||
instructions.)
|
||||
instruction (the "optimized region") lies entirely within one function.
|
||||
(A jump instruction is multiple bytes, and so may overlay multiple
|
||||
instructions.)
|
||||
|
||||
- Kprobes analyzes the entire function and verifies that there is no
|
||||
jump into the optimized region. Specifically:
|
||||
jump into the optimized region. Specifically:
|
||||
|
||||
- the function contains no indirect jump;
|
||||
- the function contains no instruction that causes an exception (since
|
||||
the fixup code triggered by the exception could jump back into the
|
||||
optimized region -- Kprobes checks the exception tables to verify this);
|
||||
and
|
||||
the fixup code triggered by the exception could jump back into the
|
||||
optimized region -- Kprobes checks the exception tables to verify this);
|
||||
- there is no near jump to the optimized region (other than to the first
|
||||
byte).
|
||||
byte).
|
||||
|
||||
- For each instruction in the optimized region, Kprobes verifies that
|
||||
the instruction can be executed out of line.
|
||||
the instruction can be executed out of line.
|
||||
|
||||
1.4.3 Preparing Detour Buffer
|
||||
Preparing Detour Buffer
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Next, Kprobes prepares a "detour" buffer, which contains the following
|
||||
instruction sequence:
|
||||
|
||||
- code to push the CPU's registers (emulating a breakpoint trap)
|
||||
- a call to the trampoline code which calls user's probe handlers.
|
||||
- code to restore registers
|
||||
- the instructions from the optimized region
|
||||
- a jump back to the original execution path.
|
||||
|
||||
1.4.4 Pre-optimization
|
||||
Pre-optimization
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
After preparing the detour buffer, Kprobes verifies that none of the
|
||||
following situations exist:
|
||||
|
||||
- The probe has either a break_handler (i.e., it's a jprobe) or a
|
||||
post_handler.
|
||||
post_handler.
|
||||
- Other instructions in the optimized region are probed.
|
||||
- The probe is disabled.
|
||||
|
||||
In any of the above cases, Kprobes won't start optimizing the probe.
|
||||
Since these are temporary situations, Kprobes tries to start
|
||||
optimizing it again if the situation is changed.
|
||||
|
@ -240,21 +261,23 @@ Kprobes returns control to the original instruction path by setting
|
|||
the CPU's instruction pointer to the copied code in the detour buffer
|
||||
-- thus at least avoiding the single-step.
|
||||
|
||||
1.4.5 Optimization
|
||||
Optimization
|
||||
^^^^^^^^^^^^
|
||||
|
||||
The Kprobe-optimizer doesn't insert the jump instruction immediately;
|
||||
rather, it calls synchronize_sched() for safety first, because it's
|
||||
possible for a CPU to be interrupted in the middle of executing the
|
||||
optimized region(*). As you know, synchronize_sched() can ensure
|
||||
optimized region [3]_. As you know, synchronize_sched() can ensure
|
||||
that all interruptions that were active when synchronize_sched()
|
||||
was called are done, but only if CONFIG_PREEMPT=n. So, this version
|
||||
of kprobe optimization supports only kernels with CONFIG_PREEMPT=n.(**)
|
||||
of kprobe optimization supports only kernels with CONFIG_PREEMPT=n [4]_.
|
||||
|
||||
After that, the Kprobe-optimizer calls stop_machine() to replace
|
||||
the optimized region with a jump instruction to the detour buffer,
|
||||
using text_poke_smp().
|
||||
|
||||
1.4.6 Unoptimization
|
||||
Unoptimization
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
When an optimized kprobe is unregistered, disabled, or blocked by
|
||||
another kprobe, it will be unoptimized. If this happens before
|
||||
|
@ -263,15 +286,15 @@ optimized list. If the optimization has been done, the jump is
|
|||
replaced with the original code (except for an int3 breakpoint in
|
||||
the first byte) by using text_poke_smp().
|
||||
|
||||
(*)Please imagine that the 2nd instruction is interrupted and then
|
||||
the optimizer replaces the 2nd instruction with the jump *address*
|
||||
while the interrupt handler is running. When the interrupt
|
||||
returns to original address, there is no valid instruction,
|
||||
and it causes an unexpected result.
|
||||
.. [3] Please imagine that the 2nd instruction is interrupted and then
|
||||
the optimizer replaces the 2nd instruction with the jump *address*
|
||||
while the interrupt handler is running. When the interrupt
|
||||
returns to original address, there is no valid instruction,
|
||||
and it causes an unexpected result.
|
||||
|
||||
(**)This optimization-safety checking may be replaced with the
|
||||
stop-machine method that ksplice uses for supporting a CONFIG_PREEMPT=y
|
||||
kernel.
|
||||
.. [4] This optimization-safety checking may be replaced with the
|
||||
stop-machine method that ksplice uses for supporting a CONFIG_PREEMPT=y
|
||||
kernel.
|
||||
|
||||
NOTE for geeks:
|
||||
The jump optimization changes the kprobe's pre_handler behavior.
|
||||
|
@ -280,11 +303,17 @@ path by changing regs->ip and returning 1. However, when the probe
|
|||
is optimized, that modification is ignored. Thus, if you want to
|
||||
tweak the kernel's execution path, you need to suppress optimization,
|
||||
using one of the following techniques:
|
||||
|
||||
- Specify an empty function for the kprobe's post_handler or break_handler.
|
||||
or
|
||||
|
||||
or
|
||||
|
||||
- Execute 'sysctl -w debug.kprobes_optimization=n'
|
||||
|
||||
1.5 Blacklist
|
||||
.. _kprobes_blacklist:
|
||||
|
||||
Blacklist
|
||||
---------
|
||||
|
||||
Kprobes can probe most of the kernel except itself. This means
|
||||
that there are some functions where kprobes cannot probe. Probing
|
||||
|
@ -297,7 +326,10 @@ to specify a blacklisted function.
|
|||
Kprobes checks the given probe address against the blacklist and
|
||||
rejects registering it, if the given address is in the blacklist.
|
||||
|
||||
2. Architectures Supported
|
||||
.. _kprobes_archs_supported:
|
||||
|
||||
Architectures Supported
|
||||
=======================
|
||||
|
||||
Kprobes, jprobes, and return probes are implemented on the following
|
||||
architectures:
|
||||
|
@ -312,7 +344,8 @@ architectures:
|
|||
- mips
|
||||
- s390
|
||||
|
||||
3. Configuring Kprobes
|
||||
Configuring Kprobes
|
||||
===================
|
||||
|
||||
When configuring the kernel using make menuconfig/xconfig/oldconfig,
|
||||
ensure that CONFIG_KPROBES is set to "y". Under "General setup", look
|
||||
|
@ -331,7 +364,8 @@ it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
|
|||
so you can use "objdump -d -l vmlinux" to see the source-to-object
|
||||
code mapping.
|
||||
|
||||
4. API Reference
|
||||
API Reference
|
||||
=============
|
||||
|
||||
The Kprobes API includes a "register" function and an "unregister"
|
||||
function for each type of probe. The API also includes "register_*probes"
|
||||
|
@ -340,10 +374,13 @@ Here are terse, mini-man-page specifications for these functions and
|
|||
the associated probe handlers that you'll write. See the files in the
|
||||
samples/kprobes/ sub-directory for examples.
|
||||
|
||||
4.1 register_kprobe
|
||||
register_kprobe
|
||||
---------------
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kprobe(struct kprobe *kp);
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kprobe(struct kprobe *kp);
|
||||
|
||||
Sets a breakpoint at the address kp->addr. When the breakpoint is
|
||||
hit, Kprobes calls kp->pre_handler. After the probed instruction
|
||||
|
@ -354,61 +391,68 @@ kp->fault_handler. Any or all handlers can be NULL. If kp->flags
|
|||
is set KPROBE_FLAG_DISABLED, that kp will be registered but disabled,
|
||||
so, its handlers aren't hit until calling enable_kprobe(kp).
|
||||
|
||||
NOTE:
|
||||
1. With the introduction of the "symbol_name" field to struct kprobe,
|
||||
the probepoint address resolution will now be taken care of by the kernel.
|
||||
The following will now work:
|
||||
.. note::
|
||||
|
||||
1. With the introduction of the "symbol_name" field to struct kprobe,
|
||||
the probepoint address resolution will now be taken care of by the kernel.
|
||||
The following will now work::
|
||||
|
||||
kp.symbol_name = "symbol_name";
|
||||
|
||||
(64-bit powerpc intricacies such as function descriptors are handled
|
||||
transparently)
|
||||
(64-bit powerpc intricacies such as function descriptors are handled
|
||||
transparently)
|
||||
|
||||
2. Use the "offset" field of struct kprobe if the offset into the symbol
|
||||
to install a probepoint is known. This field is used to calculate the
|
||||
probepoint.
|
||||
2. Use the "offset" field of struct kprobe if the offset into the symbol
|
||||
to install a probepoint is known. This field is used to calculate the
|
||||
probepoint.
|
||||
|
||||
3. Specify either the kprobe "symbol_name" OR the "addr". If both are
|
||||
specified, kprobe registration will fail with -EINVAL.
|
||||
3. Specify either the kprobe "symbol_name" OR the "addr". If both are
|
||||
specified, kprobe registration will fail with -EINVAL.
|
||||
|
||||
4. With CISC architectures (such as i386 and x86_64), the kprobes code
|
||||
does not validate if the kprobe.addr is at an instruction boundary.
|
||||
Use "offset" with caution.
|
||||
4. With CISC architectures (such as i386 and x86_64), the kprobes code
|
||||
does not validate if the kprobe.addr is at an instruction boundary.
|
||||
Use "offset" with caution.
|
||||
|
||||
register_kprobe() returns 0 on success, or a negative errno otherwise.
|
||||
|
||||
User's pre-handler (kp->pre_handler):
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int pre_handler(struct kprobe *p, struct pt_regs *regs);
|
||||
User's pre-handler (kp->pre_handler)::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int pre_handler(struct kprobe *p, struct pt_regs *regs);
|
||||
|
||||
Called with p pointing to the kprobe associated with the breakpoint,
|
||||
and regs pointing to the struct containing the registers saved when
|
||||
the breakpoint was hit. Return 0 here unless you're a Kprobes geek.
|
||||
|
||||
User's post-handler (kp->post_handler):
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
void post_handler(struct kprobe *p, struct pt_regs *regs,
|
||||
unsigned long flags);
|
||||
User's post-handler (kp->post_handler)::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
void post_handler(struct kprobe *p, struct pt_regs *regs,
|
||||
unsigned long flags);
|
||||
|
||||
p and regs are as described for the pre_handler. flags always seems
|
||||
to be zero.
|
||||
|
||||
User's fault-handler (kp->fault_handler):
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
|
||||
User's fault-handler (kp->fault_handler)::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
|
||||
|
||||
p and regs are as described for the pre_handler. trapnr is the
|
||||
architecture-specific trap number associated with the fault (e.g.,
|
||||
on i386, 13 for a general protection fault or 14 for a page fault).
|
||||
Returns 1 if it successfully handled the exception.
|
||||
|
||||
4.2 register_jprobe
|
||||
register_jprobe
|
||||
---------------
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_jprobe(struct jprobe *jp)
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_jprobe(struct jprobe *jp)
|
||||
|
||||
Sets a breakpoint at the address jp->kp.addr, which must be the address
|
||||
of the first instruction of a function. When the breakpoint is hit,
|
||||
|
@ -423,10 +467,13 @@ declaration must match.
|
|||
|
||||
register_jprobe() returns 0 on success, or a negative errno otherwise.
|
||||
|
||||
4.3 register_kretprobe
|
||||
register_kretprobe
|
||||
------------------
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kretprobe(struct kretprobe *rp);
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kretprobe(struct kretprobe *rp);
|
||||
|
||||
Establishes a return probe for the function whose address is
|
||||
rp->kp.addr. When that function returns, Kprobes calls rp->handler.
|
||||
|
@ -436,14 +483,17 @@ register_kretprobe(); see "How Does a Return Probe Work?" for details.
|
|||
register_kretprobe() returns 0 on success, or a negative errno
|
||||
otherwise.
|
||||
|
||||
User's return-probe handler (rp->handler):
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs);
|
||||
User's return-probe handler (rp->handler)::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ptrace.h>
|
||||
int kretprobe_handler(struct kretprobe_instance *ri,
|
||||
struct pt_regs *regs);
|
||||
|
||||
regs is as described for kprobe.pre_handler. ri points to the
|
||||
kretprobe_instance object, of which the following fields may be
|
||||
of interest:
|
||||
|
||||
- ret_addr: the return address
|
||||
- rp: points to the corresponding kretprobe object
|
||||
- task: points to the corresponding task struct
|
||||
|
@ -456,74 +506,94 @@ the architecture's ABI.
|
|||
|
||||
The handler's return value is currently ignored.
|
||||
|
||||
4.4 unregister_*probe
|
||||
unregister_*probe
|
||||
------------------
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
void unregister_kprobe(struct kprobe *kp);
|
||||
void unregister_jprobe(struct jprobe *jp);
|
||||
void unregister_kretprobe(struct kretprobe *rp);
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
void unregister_kprobe(struct kprobe *kp);
|
||||
void unregister_jprobe(struct jprobe *jp);
|
||||
void unregister_kretprobe(struct kretprobe *rp);
|
||||
|
||||
Removes the specified probe. The unregister function can be called
|
||||
at any time after the probe has been registered.
|
||||
|
||||
NOTE:
|
||||
If the functions find an incorrect probe (ex. an unregistered probe),
|
||||
they clear the addr field of the probe.
|
||||
.. note::
|
||||
|
||||
4.5 register_*probes
|
||||
If the functions find an incorrect probe (ex. an unregistered probe),
|
||||
they clear the addr field of the probe.
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kprobes(struct kprobe **kps, int num);
|
||||
int register_kretprobes(struct kretprobe **rps, int num);
|
||||
int register_jprobes(struct jprobe **jps, int num);
|
||||
register_*probes
|
||||
----------------
|
||||
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int register_kprobes(struct kprobe **kps, int num);
|
||||
int register_kretprobes(struct kretprobe **rps, int num);
|
||||
int register_jprobes(struct jprobe **jps, int num);
|
||||
|
||||
Registers each of the num probes in the specified array. If any
|
||||
error occurs during registration, all probes in the array, up to
|
||||
the bad probe, are safely unregistered before the register_*probes
|
||||
function returns.
|
||||
- kps/rps/jps: an array of pointers to *probe data structures
|
||||
|
||||
- kps/rps/jps: an array of pointers to ``*probe`` data structures
|
||||
- num: the number of the array entries.
|
||||
|
||||
NOTE:
|
||||
You have to allocate(or define) an array of pointers and set all
|
||||
of the array entries before using these functions.
|
||||
.. note::
|
||||
|
||||
4.6 unregister_*probes
|
||||
You have to allocate(or define) an array of pointers and set all
|
||||
of the array entries before using these functions.
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
void unregister_kprobes(struct kprobe **kps, int num);
|
||||
void unregister_kretprobes(struct kretprobe **rps, int num);
|
||||
void unregister_jprobes(struct jprobe **jps, int num);
|
||||
unregister_*probes
|
||||
------------------
|
||||
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
void unregister_kprobes(struct kprobe **kps, int num);
|
||||
void unregister_kretprobes(struct kretprobe **rps, int num);
|
||||
void unregister_jprobes(struct jprobe **jps, int num);
|
||||
|
||||
Removes each of the num probes in the specified array at once.
|
||||
|
||||
NOTE:
|
||||
If the functions find some incorrect probes (ex. unregistered
|
||||
probes) in the specified array, they clear the addr field of those
|
||||
incorrect probes. However, other probes in the array are
|
||||
unregistered correctly.
|
||||
.. note::
|
||||
|
||||
4.7 disable_*probe
|
||||
If the functions find some incorrect probes (ex. unregistered
|
||||
probes) in the specified array, they clear the addr field of those
|
||||
incorrect probes. However, other probes in the array are
|
||||
unregistered correctly.
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int disable_kprobe(struct kprobe *kp);
|
||||
int disable_kretprobe(struct kretprobe *rp);
|
||||
int disable_jprobe(struct jprobe *jp);
|
||||
disable_*probe
|
||||
--------------
|
||||
|
||||
Temporarily disables the specified *probe. You can enable it again by using
|
||||
::
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int disable_kprobe(struct kprobe *kp);
|
||||
int disable_kretprobe(struct kretprobe *rp);
|
||||
int disable_jprobe(struct jprobe *jp);
|
||||
|
||||
Temporarily disables the specified ``*probe``. You can enable it again by using
|
||||
enable_*probe(). You must specify the probe which has been registered.
|
||||
|
||||
4.8 enable_*probe
|
||||
enable_*probe
|
||||
-------------
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
int enable_kprobe(struct kprobe *kp);
|
||||
int enable_kretprobe(struct kretprobe *rp);
|
||||
int enable_jprobe(struct jprobe *jp);
|
||||
::
|
||||
|
||||
Enables *probe which has been disabled by disable_*probe(). You must specify
|
||||
#include <linux/kprobes.h>
|
||||
int enable_kprobe(struct kprobe *kp);
|
||||
int enable_kretprobe(struct kretprobe *rp);
|
||||
int enable_jprobe(struct jprobe *jp);
|
||||
|
||||
Enables ``*probe`` which has been disabled by disable_*probe(). You must specify
|
||||
the probe which has been registered.
|
||||
|
||||
5. Kprobes Features and Limitations
|
||||
Kprobes Features and Limitations
|
||||
================================
|
||||
|
||||
Kprobes allows multiple probes at the same address. Currently,
|
||||
however, there cannot be multiple jprobes on the same function at
|
||||
|
@ -538,7 +608,7 @@ are discussed in this section.
|
|||
|
||||
The register_*probe functions will return -EINVAL if you attempt
|
||||
to install a probe in the code that implements Kprobes (mostly
|
||||
kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
|
||||
kernel/kprobes.c and ``arch/*/kernel/kprobes.c``, but also functions such
|
||||
as do_page_fault and notifier_call_chain).
|
||||
|
||||
If you install a probe in an inline-able function, Kprobes makes
|
||||
|
@ -602,19 +672,21 @@ explain it, we introduce some terminology. Imagine a 3-instruction
|
|||
sequence consisting of a two 2-byte instructions and one 3-byte
|
||||
instruction.
|
||||
|
||||
IA
|
||||
|
|
||||
[-2][-1][0][1][2][3][4][5][6][7]
|
||||
[ins1][ins2][ ins3 ]
|
||||
[<- DCR ->]
|
||||
[<- JTPR ->]
|
||||
::
|
||||
|
||||
ins1: 1st Instruction
|
||||
ins2: 2nd Instruction
|
||||
ins3: 3rd Instruction
|
||||
IA: Insertion Address
|
||||
JTPR: Jump Target Prohibition Region
|
||||
DCR: Detoured Code Region
|
||||
IA
|
||||
|
|
||||
[-2][-1][0][1][2][3][4][5][6][7]
|
||||
[ins1][ins2][ ins3 ]
|
||||
[<- DCR ->]
|
||||
[<- JTPR ->]
|
||||
|
||||
ins1: 1st Instruction
|
||||
ins2: 2nd Instruction
|
||||
ins3: 3rd Instruction
|
||||
IA: Insertion Address
|
||||
JTPR: Jump Target Prohibition Region
|
||||
DCR: Detoured Code Region
|
||||
|
||||
The instructions in DCR are copied to the out-of-line buffer
|
||||
of the kprobe, because the bytes in DCR are replaced by
|
||||
|
@ -628,7 +700,8 @@ d) DCR must not straddle the border between functions.
|
|||
Anyway, these limitations are checked by the in-kernel instruction
|
||||
decoder, so you don't need to worry about that.
|
||||
|
||||
6. Probe Overhead
|
||||
Probe Overhead
|
||||
==============
|
||||
|
||||
On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
|
||||
microseconds to process. Specifically, a benchmark that hits the same
|
||||
|
@ -638,70 +711,80 @@ return-probe hit typically takes 50-75% longer than a kprobe hit.
|
|||
When you have a return probe set on a function, adding a kprobe at
|
||||
the entry to that function adds essentially no overhead.
|
||||
|
||||
Here are sample overhead figures (in usec) for different architectures.
|
||||
k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
|
||||
on same function; jr = jprobe + return probe on same function
|
||||
Here are sample overhead figures (in usec) for different architectures::
|
||||
|
||||
i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
|
||||
k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
|
||||
k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
|
||||
on same function; jr = jprobe + return probe on same function::
|
||||
|
||||
x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
|
||||
k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
|
||||
i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
|
||||
k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
|
||||
|
||||
ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
|
||||
k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
|
||||
x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
|
||||
k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
|
||||
|
||||
6.1 Optimized Probe Overhead
|
||||
ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
|
||||
k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
|
||||
|
||||
Optimized Probe Overhead
|
||||
------------------------
|
||||
|
||||
Typically, an optimized kprobe hit takes 0.07 to 0.1 microseconds to
|
||||
process. Here are sample overhead figures (in usec) for x86 architectures.
|
||||
k = unoptimized kprobe, b = boosted (single-step skipped), o = optimized kprobe,
|
||||
r = unoptimized kretprobe, rb = boosted kretprobe, ro = optimized kretprobe.
|
||||
process. Here are sample overhead figures (in usec) for x86 architectures::
|
||||
|
||||
i386: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
|
||||
k = 0.80 usec; b = 0.33; o = 0.05; r = 1.10; rb = 0.61; ro = 0.33
|
||||
k = unoptimized kprobe, b = boosted (single-step skipped), o = optimized kprobe,
|
||||
r = unoptimized kretprobe, rb = boosted kretprobe, ro = optimized kretprobe.
|
||||
|
||||
x86-64: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
|
||||
k = 0.99 usec; b = 0.43; o = 0.06; r = 1.24; rb = 0.68; ro = 0.30
|
||||
i386: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
|
||||
k = 0.80 usec; b = 0.33; o = 0.05; r = 1.10; rb = 0.61; ro = 0.33
|
||||
|
||||
7. TODO
|
||||
x86-64: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
|
||||
k = 0.99 usec; b = 0.43; o = 0.06; r = 1.24; rb = 0.68; ro = 0.30
|
||||
|
||||
TODO
|
||||
====
|
||||
|
||||
a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
|
||||
programming interface for probe-based instrumentation. Try it out.
|
||||
programming interface for probe-based instrumentation. Try it out.
|
||||
b. Kernel return probes for sparc64.
|
||||
c. Support for other architectures.
|
||||
d. User-space probes.
|
||||
e. Watchpoint probes (which fire on data references).
|
||||
|
||||
8. Kprobes Example
|
||||
Kprobes Example
|
||||
===============
|
||||
|
||||
See samples/kprobes/kprobe_example.c
|
||||
|
||||
9. Jprobes Example
|
||||
Jprobes Example
|
||||
===============
|
||||
|
||||
See samples/kprobes/jprobe_example.c
|
||||
|
||||
10. Kretprobes Example
|
||||
Kretprobes Example
|
||||
==================
|
||||
|
||||
See samples/kprobes/kretprobe_example.c
|
||||
|
||||
For additional information on Kprobes, refer to the following URLs:
|
||||
http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
|
||||
http://www.redhat.com/magazine/005mar05/features/kprobes/
|
||||
http://www-users.cs.umn.edu/~boutcher/kprobes/
|
||||
http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)
|
||||
|
||||
- http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
|
||||
- http://www.redhat.com/magazine/005mar05/features/kprobes/
|
||||
- http://www-users.cs.umn.edu/~boutcher/kprobes/
|
||||
- http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)
|
||||
|
||||
|
||||
Appendix A: The kprobes debugfs interface
|
||||
The kprobes debugfs interface
|
||||
=============================
|
||||
|
||||
|
||||
With recent kernels (> 2.6.20) the list of registered kprobes is visible
|
||||
under the /sys/kernel/debug/kprobes/ directory (assuming debugfs is mounted at //sys/kernel/debug).
|
||||
|
||||
/sys/kernel/debug/kprobes/list: Lists all registered probes on the system
|
||||
/sys/kernel/debug/kprobes/list: Lists all registered probes on the system::
|
||||
|
||||
c015d71a k vfs_read+0x0
|
||||
c011a316 j do_fork+0x0
|
||||
c03dedc5 r tcp_v4_rcv+0x0
|
||||
c015d71a k vfs_read+0x0
|
||||
c011a316 j do_fork+0x0
|
||||
c03dedc5 r tcp_v4_rcv+0x0
|
||||
|
||||
The first column provides the kernel address where the probe is inserted.
|
||||
The second column identifies the type of probe (k - kprobe, r - kretprobe
|
||||
|
@ -725,17 +808,18 @@ change each probe's disabling state. This means that disabled kprobes (marked
|
|||
[DISABLED]) will be not enabled if you turn ON all kprobes by this knob.
|
||||
|
||||
|
||||
Appendix B: The kprobes sysctl interface
|
||||
The kprobes sysctl interface
|
||||
============================
|
||||
|
||||
/proc/sys/debug/kprobes-optimization: Turn kprobes optimization ON/OFF.
|
||||
|
||||
When CONFIG_OPTPROBES=y, this sysctl interface appears and it provides
|
||||
a knob to globally and forcibly turn jump optimization (see section
|
||||
1.4) ON or OFF. By default, jump optimization is allowed (ON).
|
||||
If you echo "0" to this file or set "debug.kprobes_optimization" to
|
||||
0 via sysctl, all optimized probes will be unoptimized, and any new
|
||||
probes registered after that will not be optimized. Note that this
|
||||
knob *changes* the optimized state. This means that optimized probes
|
||||
(marked [OPTIMIZED]) will be unoptimized ([OPTIMIZED] tag will be
|
||||
:ref:`kprobes_jump_optimization`) ON or OFF. By default, jump optimization
|
||||
is allowed (ON). If you echo "0" to this file or set
|
||||
"debug.kprobes_optimization" to 0 via sysctl, all optimized probes will be
|
||||
unoptimized, and any new probes registered after that will not be optimized.
|
||||
Note that this knob *changes* the optimized state. This means that optimized
|
||||
probes (marked [OPTIMIZED]) will be unoptimized ([OPTIMIZED] tag will be
|
||||
removed). If the knob is turned on, they will be optimized again.
|
||||
|
||||
|
|
Loading…
Reference in New Issue