sched: Track the runnable average on a per-task entity basis
Instead of tracking averaging the load parented by a cfs_rq, we can track entity load directly. With the load for a given cfs_rq then being the sum of its children. To do this we represent the historical contribution to runnable average within each trailing 1024us of execution as the coefficients of a geometric series. We can express this for a given task t as: runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t) Where: u_i is the usage in the last i`th 1024us period (approximately 1ms) ~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which roughly translates to about a sched period. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.372695337@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
0e9e3e306c
commit
9d85f21c94
|
@ -1095,6 +1095,16 @@ struct load_weight {
|
|||
unsigned long weight, inv_weight;
|
||||
};
|
||||
|
||||
struct sched_avg {
|
||||
/*
|
||||
* These sums represent an infinite geometric series and so are bound
|
||||
* above by 1024/(1-y). Thus we only need a u32 to store them for for all
|
||||
* choices of y < 1-2^(-32)*1024.
|
||||
*/
|
||||
u32 runnable_avg_sum, runnable_avg_period;
|
||||
u64 last_runnable_update;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
struct sched_statistics {
|
||||
u64 wait_start;
|
||||
|
@ -1155,6 +1165,9 @@ struct sched_entity {
|
|||
/* rq "owned" by this entity/group: */
|
||||
struct cfs_rq *my_q;
|
||||
#endif
|
||||
#ifdef CONFIG_SMP
|
||||
struct sched_avg avg;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct sched_rt_entity {
|
||||
|
|
|
@ -1524,6 +1524,11 @@ static void __sched_fork(struct task_struct *p)
|
|||
p->se.vruntime = 0;
|
||||
INIT_LIST_HEAD(&p->se.group_node);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
p->se.avg.runnable_avg_period = 0;
|
||||
p->se.avg.runnable_avg_sum = 0;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
|
||||
#endif
|
||||
|
|
|
@ -85,6 +85,10 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
|
|||
P(se->statistics.wait_count);
|
||||
#endif
|
||||
P(se->load.weight);
|
||||
#ifdef CONFIG_SMP
|
||||
P(se->avg.runnable_avg_sum);
|
||||
P(se->avg.runnable_avg_period);
|
||||
#endif
|
||||
#undef PN
|
||||
#undef P
|
||||
}
|
||||
|
|
|
@ -971,6 +971,126 @@ static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
|
|||
}
|
||||
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Approximate:
|
||||
* val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
|
||||
*/
|
||||
static __always_inline u64 decay_load(u64 val, u64 n)
|
||||
{
|
||||
for (; n && val; n--) {
|
||||
val *= 4008;
|
||||
val >>= 12;
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
/*
|
||||
* We can represent the historical contribution to runnable average as the
|
||||
* coefficients of a geometric series. To do this we sub-divide our runnable
|
||||
* history into segments of approximately 1ms (1024us); label the segment that
|
||||
* occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
|
||||
*
|
||||
* [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
|
||||
* p0 p1 p2
|
||||
* (now) (~1ms ago) (~2ms ago)
|
||||
*
|
||||
* Let u_i denote the fraction of p_i that the entity was runnable.
|
||||
*
|
||||
* We then designate the fractions u_i as our co-efficients, yielding the
|
||||
* following representation of historical load:
|
||||
* u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
|
||||
*
|
||||
* We choose y based on the with of a reasonably scheduling period, fixing:
|
||||
* y^32 = 0.5
|
||||
*
|
||||
* This means that the contribution to load ~32ms ago (u_32) will be weighted
|
||||
* approximately half as much as the contribution to load within the last ms
|
||||
* (u_0).
|
||||
*
|
||||
* When a period "rolls over" and we have new u_0`, multiplying the previous
|
||||
* sum again by y is sufficient to update:
|
||||
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
|
||||
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
|
||||
*/
|
||||
static __always_inline int __update_entity_runnable_avg(u64 now,
|
||||
struct sched_avg *sa,
|
||||
int runnable)
|
||||
{
|
||||
u64 delta;
|
||||
int delta_w, decayed = 0;
|
||||
|
||||
delta = now - sa->last_runnable_update;
|
||||
/*
|
||||
* This should only happen when time goes backwards, which it
|
||||
* unfortunately does during sched clock init when we swap over to TSC.
|
||||
*/
|
||||
if ((s64)delta < 0) {
|
||||
sa->last_runnable_update = now;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Use 1024ns as the unit of measurement since it's a reasonable
|
||||
* approximation of 1us and fast to compute.
|
||||
*/
|
||||
delta >>= 10;
|
||||
if (!delta)
|
||||
return 0;
|
||||
sa->last_runnable_update = now;
|
||||
|
||||
/* delta_w is the amount already accumulated against our next period */
|
||||
delta_w = sa->runnable_avg_period % 1024;
|
||||
if (delta + delta_w >= 1024) {
|
||||
/* period roll-over */
|
||||
decayed = 1;
|
||||
|
||||
/*
|
||||
* Now that we know we're crossing a period boundary, figure
|
||||
* out how much from delta we need to complete the current
|
||||
* period and accrue it.
|
||||
*/
|
||||
delta_w = 1024 - delta_w;
|
||||
BUG_ON(delta_w > delta);
|
||||
do {
|
||||
if (runnable)
|
||||
sa->runnable_avg_sum += delta_w;
|
||||
sa->runnable_avg_period += delta_w;
|
||||
|
||||
/*
|
||||
* Remainder of delta initiates a new period, roll over
|
||||
* the previous.
|
||||
*/
|
||||
sa->runnable_avg_sum =
|
||||
decay_load(sa->runnable_avg_sum, 1);
|
||||
sa->runnable_avg_period =
|
||||
decay_load(sa->runnable_avg_period, 1);
|
||||
|
||||
delta -= delta_w;
|
||||
/* New period is empty */
|
||||
delta_w = 1024;
|
||||
} while (delta >= 1024);
|
||||
}
|
||||
|
||||
/* Remainder of delta accrued against u_0` */
|
||||
if (runnable)
|
||||
sa->runnable_avg_sum += delta;
|
||||
sa->runnable_avg_period += delta;
|
||||
|
||||
return decayed;
|
||||
}
|
||||
|
||||
/* Update a sched_entity's runnable average */
|
||||
static inline void update_entity_load_avg(struct sched_entity *se)
|
||||
{
|
||||
__update_entity_runnable_avg(rq_of(cfs_rq_of(se))->clock_task, &se->avg,
|
||||
se->on_rq);
|
||||
}
|
||||
#else
|
||||
static inline void update_entity_load_avg(struct sched_entity *se) {}
|
||||
#endif
|
||||
|
||||
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
|
@ -1097,6 +1217,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|||
*/
|
||||
update_curr(cfs_rq);
|
||||
update_cfs_load(cfs_rq, 0);
|
||||
update_entity_load_avg(se);
|
||||
account_entity_enqueue(cfs_rq, se);
|
||||
update_cfs_shares(cfs_rq);
|
||||
|
||||
|
@ -1171,6 +1292,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|||
* Update run-time statistics of the 'current'.
|
||||
*/
|
||||
update_curr(cfs_rq);
|
||||
update_entity_load_avg(se);
|
||||
|
||||
update_stats_dequeue(cfs_rq, se);
|
||||
if (flags & DEQUEUE_SLEEP) {
|
||||
|
@ -1340,6 +1462,8 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
|||
update_stats_wait_start(cfs_rq, prev);
|
||||
/* Put 'current' back into the tree. */
|
||||
__enqueue_entity(cfs_rq, prev);
|
||||
/* in !on_rq case, update occurred at dequeue */
|
||||
update_entity_load_avg(prev);
|
||||
}
|
||||
cfs_rq->curr = NULL;
|
||||
}
|
||||
|
@ -1352,6 +1476,11 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
|
|||
*/
|
||||
update_curr(cfs_rq);
|
||||
|
||||
/*
|
||||
* Ensure that runnable average is periodically updated.
|
||||
*/
|
||||
update_entity_load_avg(curr);
|
||||
|
||||
/*
|
||||
* Update share accounting for long-running entities.
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue