Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband:
  IB/core: Use kmemdup() instead of kmalloc()+memcpy()
  IB/iser: Fix error flow in iser_create_ib_conn_res()
  IB/iser: Enhance disconnection logic for multi-pathing
  IB/iser: Remove buggy back-pointer setting
  IB/iser: Add asynchronous event handler
  MAINTAINERS: Add cxgb4 and iw_cxgb4 entries
  RDMA/cxgb3: Shrink .text with compile-time init of handlers arrays
  IPoIB: Allow disabling/enabling TSO on the fly through ethtool
  IB/mlx4: Add support for masked atomic operations
  IB/core: Add support for masked atomic operations
  RDMA/cma: Randomize local port allocation
  RDMA/nes: Make unnecessarily global functions static
  RDMA/nes: Make nesadapter->phy_lock usage consistent
  RDMA/cxgb4: Add driver for Chelsio T4 RNIC
  IB/mthca: Use the dma state API instead of pci equivalents
  RDMA/amso1100: Use the dma state API instead of pci equivalents
  RDMA/cxgb3: Don't free skbs on NET_XMIT_* indications from LLD
  RDMA/cxgb3: Use the dma state API instead of pci equivalents
  IB: Explicitly rule out llseek to avoid BKL in default_llseek()
This commit is contained in:
Linus Torvalds 2010-05-20 09:00:34 -07:00
commit 9d35bc1ec6
51 changed files with 9838 additions and 251 deletions

View File

@ -1749,6 +1749,20 @@ W: http://www.openfabrics.org
S: Supported S: Supported
F: drivers/infiniband/hw/cxgb3/ F: drivers/infiniband/hw/cxgb3/
CXGB4 ETHERNET DRIVER (CXGB4)
M: Dimitris Michailidis <dm@chelsio.com>
L: netdev@vger.kernel.org
W: http://www.chelsio.com
S: Supported
F: drivers/net/cxgb4/
CXGB4 IWARP RNIC DRIVER (IW_CXGB4)
M: Steve Wise <swise@chelsio.com>
L: linux-rdma@vger.kernel.org
W: http://www.openfabrics.org
S: Supported
F: drivers/infiniband/hw/cxgb4/
CYBERPRO FB DRIVER CYBERPRO FB DRIVER
M: Russell King <linux@arm.linux.org.uk> M: Russell King <linux@arm.linux.org.uk>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers) L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)

View File

@ -46,6 +46,7 @@ source "drivers/infiniband/hw/ipath/Kconfig"
source "drivers/infiniband/hw/ehca/Kconfig" source "drivers/infiniband/hw/ehca/Kconfig"
source "drivers/infiniband/hw/amso1100/Kconfig" source "drivers/infiniband/hw/amso1100/Kconfig"
source "drivers/infiniband/hw/cxgb3/Kconfig" source "drivers/infiniband/hw/cxgb3/Kconfig"
source "drivers/infiniband/hw/cxgb4/Kconfig"
source "drivers/infiniband/hw/mlx4/Kconfig" source "drivers/infiniband/hw/mlx4/Kconfig"
source "drivers/infiniband/hw/nes/Kconfig" source "drivers/infiniband/hw/nes/Kconfig"

View File

@ -4,6 +4,7 @@ obj-$(CONFIG_INFINIBAND_IPATH) += hw/ipath/
obj-$(CONFIG_INFINIBAND_EHCA) += hw/ehca/ obj-$(CONFIG_INFINIBAND_EHCA) += hw/ehca/
obj-$(CONFIG_INFINIBAND_AMSO1100) += hw/amso1100/ obj-$(CONFIG_INFINIBAND_AMSO1100) += hw/amso1100/
obj-$(CONFIG_INFINIBAND_CXGB3) += hw/cxgb3/ obj-$(CONFIG_INFINIBAND_CXGB3) += hw/cxgb3/
obj-$(CONFIG_INFINIBAND_CXGB4) += hw/cxgb4/
obj-$(CONFIG_MLX4_INFINIBAND) += hw/mlx4/ obj-$(CONFIG_MLX4_INFINIBAND) += hw/mlx4/
obj-$(CONFIG_INFINIBAND_NES) += hw/nes/ obj-$(CONFIG_INFINIBAND_NES) += hw/nes/
obj-$(CONFIG_INFINIBAND_IPOIB) += ulp/ipoib/ obj-$(CONFIG_INFINIBAND_IPOIB) += ulp/ipoib/

View File

@ -79,7 +79,6 @@ static DEFINE_IDR(sdp_ps);
static DEFINE_IDR(tcp_ps); static DEFINE_IDR(tcp_ps);
static DEFINE_IDR(udp_ps); static DEFINE_IDR(udp_ps);
static DEFINE_IDR(ipoib_ps); static DEFINE_IDR(ipoib_ps);
static int next_port;
struct cma_device { struct cma_device {
struct list_head list; struct list_head list;
@ -1677,13 +1676,13 @@ int rdma_set_ib_paths(struct rdma_cm_id *id,
if (!cma_comp_exch(id_priv, CMA_ADDR_RESOLVED, CMA_ROUTE_RESOLVED)) if (!cma_comp_exch(id_priv, CMA_ADDR_RESOLVED, CMA_ROUTE_RESOLVED))
return -EINVAL; return -EINVAL;
id->route.path_rec = kmalloc(sizeof *path_rec * num_paths, GFP_KERNEL); id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths,
GFP_KERNEL);
if (!id->route.path_rec) { if (!id->route.path_rec) {
ret = -ENOMEM; ret = -ENOMEM;
goto err; goto err;
} }
memcpy(id->route.path_rec, path_rec, sizeof *path_rec * num_paths);
id->route.num_paths = num_paths; id->route.num_paths = num_paths;
return 0; return 0;
err: err:
@ -1970,47 +1969,33 @@ err1:
static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv) static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv)
{ {
struct rdma_bind_list *bind_list; static unsigned int last_used_port;
int port, ret, low, high; int low, high, remaining;
unsigned int rover;
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
retry:
/* FIXME: add proper port randomization per like inet_csk_get_port */
do {
ret = idr_get_new_above(ps, bind_list, next_port, &port);
} while ((ret == -EAGAIN) && idr_pre_get(ps, GFP_KERNEL));
if (ret)
goto err1;
inet_get_local_port_range(&low, &high); inet_get_local_port_range(&low, &high);
if (port > high) { remaining = (high - low) + 1;
if (next_port != low) { rover = net_random() % remaining + low;
idr_remove(ps, port); retry:
next_port = low; if (last_used_port != rover &&
!idr_find(ps, (unsigned short) rover)) {
int ret = cma_alloc_port(ps, id_priv, rover);
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry; goto retry;
} }
ret = -EADDRNOTAVAIL; return -EADDRNOTAVAIL;
goto err2;
}
if (port == high)
next_port = low;
else
next_port = port + 1;
bind_list->ps = ps;
bind_list->port = (unsigned short) port;
cma_bind_port(bind_list, id_priv);
return 0;
err2:
idr_remove(ps, port);
err1:
kfree(bind_list);
return ret;
} }
static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv) static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv)
@ -2995,12 +2980,7 @@ static void cma_remove_one(struct ib_device *device)
static int __init cma_init(void) static int __init cma_init(void)
{ {
int ret, low, high, remaining; int ret;
get_random_bytes(&next_port, sizeof next_port);
inet_get_local_port_range(&low, &high);
remaining = (high - low) + 1;
next_port = ((unsigned int) next_port % remaining) + low;
cma_wq = create_singlethread_workqueue("rdma_cm"); cma_wq = create_singlethread_workqueue("rdma_cm");
if (!cma_wq) if (!cma_wq)

View File

@ -291,13 +291,11 @@ struct ib_mad_agent *ib_register_mad_agent(struct ib_device *device,
} }
if (mad_reg_req) { if (mad_reg_req) {
reg_req = kmalloc(sizeof *reg_req, GFP_KERNEL); reg_req = kmemdup(mad_reg_req, sizeof *reg_req, GFP_KERNEL);
if (!reg_req) { if (!reg_req) {
ret = ERR_PTR(-ENOMEM); ret = ERR_PTR(-ENOMEM);
goto error3; goto error3;
} }
/* Make a copy of the MAD registration request */
memcpy(reg_req, mad_reg_req, sizeof *reg_req);
} }
/* Now, fill in the various structures */ /* Now, fill in the various structures */

View File

@ -1181,7 +1181,7 @@ static int ib_ucm_open(struct inode *inode, struct file *filp)
file->filp = filp; file->filp = filp;
file->device = container_of(inode->i_cdev, struct ib_ucm_device, cdev); file->device = container_of(inode->i_cdev, struct ib_ucm_device, cdev);
return 0; return nonseekable_open(inode, filp);
} }
static int ib_ucm_close(struct inode *inode, struct file *filp) static int ib_ucm_close(struct inode *inode, struct file *filp)
@ -1229,6 +1229,7 @@ static const struct file_operations ucm_fops = {
.release = ib_ucm_close, .release = ib_ucm_close,
.write = ib_ucm_write, .write = ib_ucm_write,
.poll = ib_ucm_poll, .poll = ib_ucm_poll,
.llseek = no_llseek,
}; };
static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,

View File

@ -1220,7 +1220,8 @@ static int ucma_open(struct inode *inode, struct file *filp)
filp->private_data = file; filp->private_data = file;
file->filp = filp; file->filp = filp;
return 0;
return nonseekable_open(inode, filp);
} }
static int ucma_close(struct inode *inode, struct file *filp) static int ucma_close(struct inode *inode, struct file *filp)
@ -1250,6 +1251,7 @@ static const struct file_operations ucma_fops = {
.release = ucma_close, .release = ucma_close,
.write = ucma_write, .write = ucma_write,
.poll = ucma_poll, .poll = ucma_poll,
.llseek = no_llseek,
}; };
static struct miscdevice ucma_misc = { static struct miscdevice ucma_misc = {

View File

@ -781,7 +781,7 @@ static int ib_umad_open(struct inode *inode, struct file *filp)
{ {
struct ib_umad_port *port; struct ib_umad_port *port;
struct ib_umad_file *file; struct ib_umad_file *file;
int ret = 0; int ret;
port = container_of(inode->i_cdev, struct ib_umad_port, cdev); port = container_of(inode->i_cdev, struct ib_umad_port, cdev);
if (port) if (port)
@ -814,6 +814,8 @@ static int ib_umad_open(struct inode *inode, struct file *filp)
list_add_tail(&file->port_list, &port->file_list); list_add_tail(&file->port_list, &port->file_list);
ret = nonseekable_open(inode, filp);
out: out:
mutex_unlock(&port->file_mutex); mutex_unlock(&port->file_mutex);
return ret; return ret;
@ -866,7 +868,8 @@ static const struct file_operations umad_fops = {
.compat_ioctl = ib_umad_compat_ioctl, .compat_ioctl = ib_umad_compat_ioctl,
#endif #endif
.open = ib_umad_open, .open = ib_umad_open,
.release = ib_umad_close .release = ib_umad_close,
.llseek = no_llseek,
}; };
static int ib_umad_sm_open(struct inode *inode, struct file *filp) static int ib_umad_sm_open(struct inode *inode, struct file *filp)
@ -903,7 +906,7 @@ static int ib_umad_sm_open(struct inode *inode, struct file *filp)
filp->private_data = port; filp->private_data = port;
return 0; return nonseekable_open(inode, filp);
fail: fail:
kref_put(&port->umad_dev->ref, ib_umad_release_dev); kref_put(&port->umad_dev->ref, ib_umad_release_dev);
@ -933,7 +936,8 @@ static int ib_umad_sm_close(struct inode *inode, struct file *filp)
static const struct file_operations umad_sm_fops = { static const struct file_operations umad_sm_fops = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.open = ib_umad_sm_open, .open = ib_umad_sm_open,
.release = ib_umad_sm_close .release = ib_umad_sm_close,
.llseek = no_llseek,
}; };
static struct ib_client umad_client = { static struct ib_client umad_client = {

View File

@ -369,7 +369,8 @@ static const struct file_operations uverbs_event_fops = {
.read = ib_uverbs_event_read, .read = ib_uverbs_event_read,
.poll = ib_uverbs_event_poll, .poll = ib_uverbs_event_poll,
.release = ib_uverbs_event_close, .release = ib_uverbs_event_close,
.fasync = ib_uverbs_event_fasync .fasync = ib_uverbs_event_fasync,
.llseek = no_llseek,
}; };
void ib_uverbs_comp_handler(struct ib_cq *cq, void *cq_context) void ib_uverbs_comp_handler(struct ib_cq *cq, void *cq_context)
@ -623,7 +624,7 @@ static int ib_uverbs_open(struct inode *inode, struct file *filp)
filp->private_data = file; filp->private_data = file;
return 0; return nonseekable_open(inode, filp);
err_module: err_module:
module_put(dev->ib_dev->owner); module_put(dev->ib_dev->owner);
@ -651,7 +652,8 @@ static const struct file_operations uverbs_fops = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.write = ib_uverbs_write, .write = ib_uverbs_write,
.open = ib_uverbs_open, .open = ib_uverbs_open,
.release = ib_uverbs_close .release = ib_uverbs_close,
.llseek = no_llseek,
}; };
static const struct file_operations uverbs_mmap_fops = { static const struct file_operations uverbs_mmap_fops = {
@ -659,7 +661,8 @@ static const struct file_operations uverbs_mmap_fops = {
.write = ib_uverbs_write, .write = ib_uverbs_write,
.mmap = ib_uverbs_mmap, .mmap = ib_uverbs_mmap,
.open = ib_uverbs_open, .open = ib_uverbs_open,
.release = ib_uverbs_close .release = ib_uverbs_close,
.llseek = no_llseek,
}; };
static struct ib_client uverbs_client = { static struct ib_client uverbs_client = {

View File

@ -250,7 +250,7 @@ struct c2_array {
struct sp_chunk { struct sp_chunk {
struct sp_chunk *next; struct sp_chunk *next;
dma_addr_t dma_addr; dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping); DEFINE_DMA_UNMAP_ADDR(mapping);
u16 head; u16 head;
u16 shared_ptr[0]; u16 shared_ptr[0];
}; };

View File

@ -49,7 +49,7 @@ static int c2_alloc_mqsp_chunk(struct c2_dev *c2dev, gfp_t gfp_mask,
return -ENOMEM; return -ENOMEM;
new_head->dma_addr = dma_addr; new_head->dma_addr = dma_addr;
pci_unmap_addr_set(new_head, mapping, new_head->dma_addr); dma_unmap_addr_set(new_head, mapping, new_head->dma_addr);
new_head->next = NULL; new_head->next = NULL;
new_head->head = 0; new_head->head = 0;
@ -81,7 +81,7 @@ void c2_free_mqsp_pool(struct c2_dev *c2dev, struct sp_chunk *root)
while (root) { while (root) {
next = root->next; next = root->next;
dma_free_coherent(&c2dev->pcidev->dev, PAGE_SIZE, root, dma_free_coherent(&c2dev->pcidev->dev, PAGE_SIZE, root,
pci_unmap_addr(root, mapping)); dma_unmap_addr(root, mapping));
root = next; root = next;
} }
} }

View File

@ -257,7 +257,7 @@ int c2_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags)
static void c2_free_cq_buf(struct c2_dev *c2dev, struct c2_mq *mq) static void c2_free_cq_buf(struct c2_dev *c2dev, struct c2_mq *mq)
{ {
dma_free_coherent(&c2dev->pcidev->dev, mq->q_size * mq->msg_size, dma_free_coherent(&c2dev->pcidev->dev, mq->q_size * mq->msg_size,
mq->msg_pool.host, pci_unmap_addr(mq, mapping)); mq->msg_pool.host, dma_unmap_addr(mq, mapping));
} }
static int c2_alloc_cq_buf(struct c2_dev *c2dev, struct c2_mq *mq, int q_size, static int c2_alloc_cq_buf(struct c2_dev *c2dev, struct c2_mq *mq, int q_size,
@ -278,7 +278,7 @@ static int c2_alloc_cq_buf(struct c2_dev *c2dev, struct c2_mq *mq, int q_size,
NULL, /* peer (currently unknown) */ NULL, /* peer (currently unknown) */
C2_MQ_HOST_TARGET); C2_MQ_HOST_TARGET);
pci_unmap_addr_set(mq, mapping, mq->host_dma); dma_unmap_addr_set(mq, mapping, mq->host_dma);
return 0; return 0;
} }

View File

@ -71,7 +71,7 @@ struct c2_mq {
u8 __iomem *adapter; u8 __iomem *adapter;
} msg_pool; } msg_pool;
dma_addr_t host_dma; dma_addr_t host_dma;
DECLARE_PCI_UNMAP_ADDR(mapping); DEFINE_DMA_UNMAP_ADDR(mapping);
u16 hint_count; u16 hint_count;
u16 priv; u16 priv;
struct c2_mq_shared __iomem *peer; struct c2_mq_shared __iomem *peer;

View File

@ -50,7 +50,7 @@
struct c2_buf_list { struct c2_buf_list {
void *buf; void *buf;
DECLARE_PCI_UNMAP_ADDR(mapping) DEFINE_DMA_UNMAP_ADDR(mapping);
}; };

View File

@ -524,7 +524,7 @@ int __devinit c2_rnic_init(struct c2_dev *c2dev)
err = -ENOMEM; err = -ENOMEM;
goto bail1; goto bail1;
} }
pci_unmap_addr_set(&c2dev->rep_vq, mapping, c2dev->rep_vq.host_dma); dma_unmap_addr_set(&c2dev->rep_vq, mapping, c2dev->rep_vq.host_dma);
pr_debug("%s rep_vq va %p dma %llx\n", __func__, q1_pages, pr_debug("%s rep_vq va %p dma %llx\n", __func__, q1_pages,
(unsigned long long) c2dev->rep_vq.host_dma); (unsigned long long) c2dev->rep_vq.host_dma);
c2_mq_rep_init(&c2dev->rep_vq, c2_mq_rep_init(&c2dev->rep_vq,
@ -545,7 +545,7 @@ int __devinit c2_rnic_init(struct c2_dev *c2dev)
err = -ENOMEM; err = -ENOMEM;
goto bail2; goto bail2;
} }
pci_unmap_addr_set(&c2dev->aeq, mapping, c2dev->aeq.host_dma); dma_unmap_addr_set(&c2dev->aeq, mapping, c2dev->aeq.host_dma);
pr_debug("%s aeq va %p dma %llx\n", __func__, q2_pages, pr_debug("%s aeq va %p dma %llx\n", __func__, q2_pages,
(unsigned long long) c2dev->aeq.host_dma); (unsigned long long) c2dev->aeq.host_dma);
c2_mq_rep_init(&c2dev->aeq, c2_mq_rep_init(&c2dev->aeq,
@ -596,11 +596,11 @@ int __devinit c2_rnic_init(struct c2_dev *c2dev)
bail3: bail3:
dma_free_coherent(&c2dev->pcidev->dev, dma_free_coherent(&c2dev->pcidev->dev,
c2dev->aeq.q_size * c2dev->aeq.msg_size, c2dev->aeq.q_size * c2dev->aeq.msg_size,
q2_pages, pci_unmap_addr(&c2dev->aeq, mapping)); q2_pages, dma_unmap_addr(&c2dev->aeq, mapping));
bail2: bail2:
dma_free_coherent(&c2dev->pcidev->dev, dma_free_coherent(&c2dev->pcidev->dev,
c2dev->rep_vq.q_size * c2dev->rep_vq.msg_size, c2dev->rep_vq.q_size * c2dev->rep_vq.msg_size,
q1_pages, pci_unmap_addr(&c2dev->rep_vq, mapping)); q1_pages, dma_unmap_addr(&c2dev->rep_vq, mapping));
bail1: bail1:
c2_free_mqsp_pool(c2dev, c2dev->kern_mqsp_pool); c2_free_mqsp_pool(c2dev, c2dev->kern_mqsp_pool);
bail0: bail0:
@ -637,13 +637,13 @@ void __devexit c2_rnic_term(struct c2_dev *c2dev)
dma_free_coherent(&c2dev->pcidev->dev, dma_free_coherent(&c2dev->pcidev->dev,
c2dev->aeq.q_size * c2dev->aeq.msg_size, c2dev->aeq.q_size * c2dev->aeq.msg_size,
c2dev->aeq.msg_pool.host, c2dev->aeq.msg_pool.host,
pci_unmap_addr(&c2dev->aeq, mapping)); dma_unmap_addr(&c2dev->aeq, mapping));
/* Free the verbs reply queue */ /* Free the verbs reply queue */
dma_free_coherent(&c2dev->pcidev->dev, dma_free_coherent(&c2dev->pcidev->dev,
c2dev->rep_vq.q_size * c2dev->rep_vq.msg_size, c2dev->rep_vq.q_size * c2dev->rep_vq.msg_size,
c2dev->rep_vq.msg_pool.host, c2dev->rep_vq.msg_pool.host,
pci_unmap_addr(&c2dev->rep_vq, mapping)); dma_unmap_addr(&c2dev->rep_vq, mapping));
/* Free the MQ shared pointer pool */ /* Free the MQ shared pointer pool */
c2_free_mqsp_pool(c2dev, c2dev->kern_mqsp_pool); c2_free_mqsp_pool(c2dev, c2dev->kern_mqsp_pool);

View File

@ -174,7 +174,7 @@ int cxio_create_cq(struct cxio_rdev *rdev_p, struct t3_cq *cq, int kernel)
kfree(cq->sw_queue); kfree(cq->sw_queue);
return -ENOMEM; return -ENOMEM;
} }
pci_unmap_addr_set(cq, mapping, cq->dma_addr); dma_unmap_addr_set(cq, mapping, cq->dma_addr);
memset(cq->queue, 0, size); memset(cq->queue, 0, size);
setup.id = cq->cqid; setup.id = cq->cqid;
setup.base_addr = (u64) (cq->dma_addr); setup.base_addr = (u64) (cq->dma_addr);
@ -297,7 +297,7 @@ int cxio_create_qp(struct cxio_rdev *rdev_p, u32 kernel_domain,
goto err4; goto err4;
memset(wq->queue, 0, depth * sizeof(union t3_wr)); memset(wq->queue, 0, depth * sizeof(union t3_wr));
pci_unmap_addr_set(wq, mapping, wq->dma_addr); dma_unmap_addr_set(wq, mapping, wq->dma_addr);
wq->doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr; wq->doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr;
if (!kernel_domain) if (!kernel_domain)
wq->udb = (u64)rdev_p->rnic_info.udbell_physbase + wq->udb = (u64)rdev_p->rnic_info.udbell_physbase +
@ -325,7 +325,7 @@ int cxio_destroy_cq(struct cxio_rdev *rdev_p, struct t3_cq *cq)
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev), dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << (cq->size_log2)) (1UL << (cq->size_log2))
* sizeof(struct t3_cqe), cq->queue, * sizeof(struct t3_cqe), cq->queue,
pci_unmap_addr(cq, mapping)); dma_unmap_addr(cq, mapping));
cxio_hal_put_cqid(rdev_p->rscp, cq->cqid); cxio_hal_put_cqid(rdev_p->rscp, cq->cqid);
return err; return err;
} }
@ -336,7 +336,7 @@ int cxio_destroy_qp(struct cxio_rdev *rdev_p, struct t3_wq *wq,
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev), dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << (wq->size_log2)) (1UL << (wq->size_log2))
* sizeof(union t3_wr), wq->queue, * sizeof(union t3_wr), wq->queue,
pci_unmap_addr(wq, mapping)); dma_unmap_addr(wq, mapping));
kfree(wq->sq); kfree(wq->sq);
cxio_hal_rqtpool_free(rdev_p, wq->rq_addr, (1UL << wq->rq_size_log2)); cxio_hal_rqtpool_free(rdev_p, wq->rq_addr, (1UL << wq->rq_size_log2));
kfree(wq->rq); kfree(wq->rq);
@ -537,7 +537,7 @@ static int cxio_hal_init_ctrl_qp(struct cxio_rdev *rdev_p)
err = -ENOMEM; err = -ENOMEM;
goto err; goto err;
} }
pci_unmap_addr_set(&rdev_p->ctrl_qp, mapping, dma_unmap_addr_set(&rdev_p->ctrl_qp, mapping,
rdev_p->ctrl_qp.dma_addr); rdev_p->ctrl_qp.dma_addr);
rdev_p->ctrl_qp.doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr; rdev_p->ctrl_qp.doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr;
memset(rdev_p->ctrl_qp.workq, 0, memset(rdev_p->ctrl_qp.workq, 0,
@ -583,7 +583,7 @@ static int cxio_hal_destroy_ctrl_qp(struct cxio_rdev *rdev_p)
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev), dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << T3_CTRL_QP_SIZE_LOG2) (1UL << T3_CTRL_QP_SIZE_LOG2)
* sizeof(union t3_wr), rdev_p->ctrl_qp.workq, * sizeof(union t3_wr), rdev_p->ctrl_qp.workq,
pci_unmap_addr(&rdev_p->ctrl_qp, mapping)); dma_unmap_addr(&rdev_p->ctrl_qp, mapping));
return cxio_hal_clear_qp_ctx(rdev_p, T3_CTRL_QP_ID); return cxio_hal_clear_qp_ctx(rdev_p, T3_CTRL_QP_ID);
} }

View File

@ -71,7 +71,7 @@ struct cxio_hal_ctrl_qp {
wait_queue_head_t waitq;/* wait for RspQ/CQE msg */ wait_queue_head_t waitq;/* wait for RspQ/CQE msg */
union t3_wr *workq; /* the work request queue */ union t3_wr *workq; /* the work request queue */
dma_addr_t dma_addr; /* pci bus address of the workq */ dma_addr_t dma_addr; /* pci bus address of the workq */
DECLARE_PCI_UNMAP_ADDR(mapping) DEFINE_DMA_UNMAP_ADDR(mapping);
void __iomem *doorbell; void __iomem *doorbell;
}; };

View File

@ -691,7 +691,7 @@ struct t3_swrq {
struct t3_wq { struct t3_wq {
union t3_wr *queue; /* DMA accessable memory */ union t3_wr *queue; /* DMA accessable memory */
dma_addr_t dma_addr; /* DMA address for HW */ dma_addr_t dma_addr; /* DMA address for HW */
DECLARE_PCI_UNMAP_ADDR(mapping) /* unmap kruft */ DEFINE_DMA_UNMAP_ADDR(mapping); /* unmap kruft */
u32 error; /* 1 once we go to ERROR */ u32 error; /* 1 once we go to ERROR */
u32 qpid; u32 qpid;
u32 wptr; /* idx to next available WR slot */ u32 wptr; /* idx to next available WR slot */
@ -718,7 +718,7 @@ struct t3_cq {
u32 wptr; u32 wptr;
u32 size_log2; u32 size_log2;
dma_addr_t dma_addr; dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping) DEFINE_DMA_UNMAP_ADDR(mapping);
struct t3_cqe *queue; struct t3_cqe *queue;
struct t3_cqe *sw_queue; struct t3_cqe *sw_queue;
u32 sw_rptr; u32 sw_rptr;

View File

@ -47,8 +47,6 @@ MODULE_DESCRIPTION("Chelsio T3 RDMA Driver");
MODULE_LICENSE("Dual BSD/GPL"); MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION); MODULE_VERSION(DRV_VERSION);
cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS];
static void open_rnic_dev(struct t3cdev *); static void open_rnic_dev(struct t3cdev *);
static void close_rnic_dev(struct t3cdev *); static void close_rnic_dev(struct t3cdev *);
static void iwch_event_handler(struct t3cdev *, u32, u32); static void iwch_event_handler(struct t3cdev *, u32, u32);

View File

@ -102,12 +102,9 @@ static unsigned int cong_flavor = 1;
module_param(cong_flavor, uint, 0644); module_param(cong_flavor, uint, 0644);
MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)"); MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
static void process_work(struct work_struct *work);
static struct workqueue_struct *workq; static struct workqueue_struct *workq;
static DECLARE_WORK(skb_work, process_work);
static struct sk_buff_head rxq; static struct sk_buff_head rxq;
static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
static void ep_timeout(unsigned long arg); static void ep_timeout(unsigned long arg);
@ -151,7 +148,7 @@ int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2
return -EIO; return -EIO;
} }
error = l2t_send(tdev, skb, l2e); error = l2t_send(tdev, skb, l2e);
if (error) if (error < 0)
kfree_skb(skb); kfree_skb(skb);
return error; return error;
} }
@ -167,7 +164,7 @@ int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
return -EIO; return -EIO;
} }
error = cxgb3_ofld_send(tdev, skb); error = cxgb3_ofld_send(tdev, skb);
if (error) if (error < 0)
kfree_skb(skb); kfree_skb(skb);
return error; return error;
} }
@ -302,27 +299,6 @@ static void release_ep_resources(struct iwch_ep *ep)
put_ep(&ep->com); put_ep(&ep->com);
} }
static void process_work(struct work_struct *work)
{
struct sk_buff *skb = NULL;
void *ep;
struct t3cdev *tdev;
int ret;
while ((skb = skb_dequeue(&rxq))) {
ep = *((void **) (skb->cb));
tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
/*
* ep was referenced in sched(), and is freed here.
*/
put_ep((struct iwch_ep_common *)ep);
}
}
static int status2errno(int status) static int status2errno(int status)
{ {
switch (status) { switch (status) {
@ -2157,7 +2133,49 @@ int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
/* /*
* All the CM events are handled on a work queue to have a safe context. * All the CM events are handled on a work queue to have a safe context.
* These are the real handlers that are called from the work queue.
*/ */
static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
[CPL_ACT_ESTABLISH] = act_establish,
[CPL_ACT_OPEN_RPL] = act_open_rpl,
[CPL_RX_DATA] = rx_data,
[CPL_TX_DMA_ACK] = tx_ack,
[CPL_ABORT_RPL_RSS] = abort_rpl,
[CPL_ABORT_RPL] = abort_rpl,
[CPL_PASS_OPEN_RPL] = pass_open_rpl,
[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
[CPL_PASS_ESTABLISH] = pass_establish,
[CPL_PEER_CLOSE] = peer_close,
[CPL_ABORT_REQ_RSS] = peer_abort,
[CPL_CLOSE_CON_RPL] = close_con_rpl,
[CPL_RDMA_TERMINATE] = terminate,
[CPL_RDMA_EC_STATUS] = ec_status,
};
static void process_work(struct work_struct *work)
{
struct sk_buff *skb = NULL;
void *ep;
struct t3cdev *tdev;
int ret;
while ((skb = skb_dequeue(&rxq))) {
ep = *((void **) (skb->cb));
tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
/*
* ep was referenced in sched(), and is freed here.
*/
put_ep((struct iwch_ep_common *)ep);
}
}
static DECLARE_WORK(skb_work, process_work);
static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{ {
struct iwch_ep_common *epc = ctx; struct iwch_ep_common *epc = ctx;
@ -2189,6 +2207,29 @@ static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
return CPL_RET_BUF_DONE; return CPL_RET_BUF_DONE;
} }
/*
* All upcalls from the T3 Core go to sched() to schedule the
* processing on a work queue.
*/
cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
[CPL_ACT_ESTABLISH] = sched,
[CPL_ACT_OPEN_RPL] = sched,
[CPL_RX_DATA] = sched,
[CPL_TX_DMA_ACK] = sched,
[CPL_ABORT_RPL_RSS] = sched,
[CPL_ABORT_RPL] = sched,
[CPL_PASS_OPEN_RPL] = sched,
[CPL_CLOSE_LISTSRV_RPL] = sched,
[CPL_PASS_ACCEPT_REQ] = sched,
[CPL_PASS_ESTABLISH] = sched,
[CPL_PEER_CLOSE] = sched,
[CPL_CLOSE_CON_RPL] = sched,
[CPL_ABORT_REQ_RSS] = sched,
[CPL_RDMA_TERMINATE] = sched,
[CPL_RDMA_EC_STATUS] = sched,
[CPL_SET_TCB_RPL] = set_tcb_rpl,
};
int __init iwch_cm_init(void) int __init iwch_cm_init(void)
{ {
skb_queue_head_init(&rxq); skb_queue_head_init(&rxq);
@ -2197,46 +2238,6 @@ int __init iwch_cm_init(void)
if (!workq) if (!workq)
return -ENOMEM; return -ENOMEM;
/*
* All upcalls from the T3 Core go to sched() to
* schedule the processing on a work queue.
*/
t3c_handlers[CPL_ACT_ESTABLISH] = sched;
t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
t3c_handlers[CPL_RX_DATA] = sched;
t3c_handlers[CPL_TX_DMA_ACK] = sched;
t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
t3c_handlers[CPL_ABORT_RPL] = sched;
t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
t3c_handlers[CPL_PASS_ESTABLISH] = sched;
t3c_handlers[CPL_PEER_CLOSE] = sched;
t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
t3c_handlers[CPL_RDMA_TERMINATE] = sched;
t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl;
/*
* These are the real handlers that are called from a
* work queue.
*/
work_handlers[CPL_ACT_ESTABLISH] = act_establish;
work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
work_handlers[CPL_RX_DATA] = rx_data;
work_handlers[CPL_TX_DMA_ACK] = tx_ack;
work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
work_handlers[CPL_ABORT_RPL] = abort_rpl;
work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
work_handlers[CPL_PEER_CLOSE] = peer_close;
work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
work_handlers[CPL_RDMA_TERMINATE] = terminate;
work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
return 0; return 0;
} }

View File

@ -0,0 +1,18 @@
config INFINIBAND_CXGB4
tristate "Chelsio T4 RDMA Driver"
depends on CHELSIO_T4 && INET
select GENERIC_ALLOCATOR
---help---
This is an iWARP/RDMA driver for the Chelsio T4 1GbE and
10GbE adapters.
For general information about Chelsio and our products, visit
our website at <http://www.chelsio.com>.
For customer support, please visit our customer support page at
<http://www.chelsio.com/support.htm>.
Please send feedback to <linux-bugs@chelsio.com>.
To compile this driver as a module, choose M here: the module
will be called iw_cxgb4.

View File

@ -0,0 +1,5 @@
EXTRA_CFLAGS += -Idrivers/net/cxgb4
obj-$(CONFIG_INFINIBAND_CXGB4) += iw_cxgb4.o
iw_cxgb4-y := device.o cm.o provider.o mem.o cq.o qp.o resource.o ev.o

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,882 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "iw_cxgb4.h"
static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
struct c4iw_wr_wait wr_wait;
struct sk_buff *skb;
int ret;
wr_len = sizeof *res_wr + sizeof *res;
skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
if (!skb)
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
memset(res_wr, 0, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP(FW_RI_RES_WR) |
V_FW_RI_RES_WR_NRES(1) |
FW_WR_COMPL(1));
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (u64)&wr_wait;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_RESET;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
c4iw_init_wr_wait(&wr_wait);
ret = c4iw_ofld_send(rdev, skb);
if (!ret) {
wait_event_timeout(wr_wait.wait, wr_wait.done, C4IW_WR_TO);
if (!wr_wait.done) {
printk(KERN_ERR MOD "Device %s not responding!\n",
pci_name(rdev->lldi.pdev));
rdev->flags = T4_FATAL_ERROR;
ret = -EIO;
} else
ret = wr_wait.ret;
}
kfree(cq->sw_queue);
dma_free_coherent(&(rdev->lldi.pdev->dev),
cq->memsize, cq->queue,
pci_unmap_addr(cq, mapping));
c4iw_put_cqid(rdev, cq->cqid, uctx);
return ret;
}
static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
int user = (uctx != &rdev->uctx);
struct c4iw_wr_wait wr_wait;
int ret;
struct sk_buff *skb;
cq->cqid = c4iw_get_cqid(rdev, uctx);
if (!cq->cqid) {
ret = -ENOMEM;
goto err1;
}
if (!user) {
cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
if (!cq->sw_queue) {
ret = -ENOMEM;
goto err2;
}
}
cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
&cq->dma_addr, GFP_KERNEL);
if (!cq->queue) {
ret = -ENOMEM;
goto err3;
}
pci_unmap_addr_set(cq, mapping, cq->dma_addr);
memset(cq->queue, 0, cq->memsize);
/* build fw_ri_res_wr */
wr_len = sizeof *res_wr + sizeof *res;
skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
if (!skb) {
ret = -ENOMEM;
goto err4;
}
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
memset(res_wr, 0, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP(FW_RI_RES_WR) |
V_FW_RI_RES_WR_NRES(1) |
FW_WR_COMPL(1));
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (u64)&wr_wait;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_WRITE;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
V_FW_RI_RES_WR_IQANUS(0) |
V_FW_RI_RES_WR_IQANUD(1) |
F_FW_RI_RES_WR_IQANDST |
V_FW_RI_RES_WR_IQANDSTINDEX(*rdev->lldi.rxq_ids));
res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
F_FW_RI_RES_WR_IQDROPRSS |
V_FW_RI_RES_WR_IQPCIECH(2) |
V_FW_RI_RES_WR_IQINTCNTTHRESH(0) |
F_FW_RI_RES_WR_IQO |
V_FW_RI_RES_WR_IQESIZE(1));
res->u.cq.iqsize = cpu_to_be16(cq->size);
res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
c4iw_init_wr_wait(&wr_wait);
ret = c4iw_ofld_send(rdev, skb);
if (ret)
goto err4;
PDBG("%s wait_event wr_wait %p\n", __func__, &wr_wait);
wait_event_timeout(wr_wait.wait, wr_wait.done, C4IW_WR_TO);
if (!wr_wait.done) {
printk(KERN_ERR MOD "Device %s not responding!\n",
pci_name(rdev->lldi.pdev));
rdev->flags = T4_FATAL_ERROR;
ret = -EIO;
} else
ret = wr_wait.ret;
if (ret)
goto err4;
cq->gen = 1;
cq->gts = rdev->lldi.gts_reg;
cq->rdev = rdev;
if (user) {
cq->ugts = (u64)pci_resource_start(rdev->lldi.pdev, 2) +
(cq->cqid << rdev->cqshift);
cq->ugts &= PAGE_MASK;
}
return 0;
err4:
dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
pci_unmap_addr(cq, mapping));
err3:
kfree(cq->sw_queue);
err2:
c4iw_put_cqid(rdev, cq->cqid, uctx);
err1:
return ret;
}
static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
{
struct t4_cqe cqe;
PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
V_CQE_OPCODE(FW_RI_SEND) |
V_CQE_TYPE(0) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->rq.qid));
cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
{
int flushed = 0;
int in_use = wq->rq.in_use - count;
BUG_ON(in_use < 0);
PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__,
wq, cq, wq->rq.in_use, count);
while (in_use--) {
insert_recv_cqe(wq, cq);
flushed++;
}
return flushed;
}
static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
struct t4_swsqe *swcqe)
{
struct t4_cqe cqe;
PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
V_CQE_OPCODE(swcqe->opcode) |
V_CQE_TYPE(1) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->sq.qid));
CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
int c4iw_flush_sq(struct t4_wq *wq, struct t4_cq *cq, int count)
{
int flushed = 0;
struct t4_swsqe *swsqe = &wq->sq.sw_sq[wq->sq.cidx + count];
int in_use = wq->sq.in_use - count;
BUG_ON(in_use < 0);
while (in_use--) {
swsqe->signaled = 0;
insert_sq_cqe(wq, cq, swsqe);
swsqe++;
if (swsqe == (wq->sq.sw_sq + wq->sq.size))
swsqe = wq->sq.sw_sq;
flushed++;
}
return flushed;
}
/*
* Move all CQEs from the HWCQ into the SWCQ.
*/
void c4iw_flush_hw_cq(struct t4_cq *cq)
{
struct t4_cqe *cqe = NULL, *swcqe;
int ret;
PDBG("%s cq %p cqid 0x%x\n", __func__, cq, cq->cqid);
ret = t4_next_hw_cqe(cq, &cqe);
while (!ret) {
PDBG("%s flushing hwcq cidx 0x%x swcq pidx 0x%x\n",
__func__, cq->cidx, cq->sw_pidx);
swcqe = &cq->sw_queue[cq->sw_pidx];
*swcqe = *cqe;
swcqe->header |= cpu_to_be32(V_CQE_SWCQE(1));
t4_swcq_produce(cq);
t4_hwcq_consume(cq);
ret = t4_next_hw_cqe(cq, &cqe);
}
}
static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
{
if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
return 0;
if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
return 0;
return 1;
}
void c4iw_count_scqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
{
struct t4_cqe *cqe;
u32 ptr;
*count = 0;
ptr = cq->sw_cidx;
while (ptr != cq->sw_pidx) {
cqe = &cq->sw_queue[ptr];
if ((SQ_TYPE(cqe) || ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) &&
wq->sq.oldest_read)) &&
(CQE_QPID(cqe) == wq->sq.qid))
(*count)++;
if (++ptr == cq->size)
ptr = 0;
}
PDBG("%s cq %p count %d\n", __func__, cq, *count);
}
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
{
struct t4_cqe *cqe;
u32 ptr;
*count = 0;
PDBG("%s count zero %d\n", __func__, *count);
ptr = cq->sw_cidx;
while (ptr != cq->sw_pidx) {
cqe = &cq->sw_queue[ptr];
if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
(CQE_QPID(cqe) == wq->rq.qid) && cqe_completes_wr(cqe, wq))
(*count)++;
if (++ptr == cq->size)
ptr = 0;
}
PDBG("%s cq %p count %d\n", __func__, cq, *count);
}
static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
{
struct t4_swsqe *swsqe;
u16 ptr = wq->sq.cidx;
int count = wq->sq.in_use;
int unsignaled = 0;
swsqe = &wq->sq.sw_sq[ptr];
while (count--)
if (!swsqe->signaled) {
if (++ptr == wq->sq.size)
ptr = 0;
swsqe = &wq->sq.sw_sq[ptr];
unsignaled++;
} else if (swsqe->complete) {
/*
* Insert this completed cqe into the swcq.
*/
PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n",
__func__, ptr, cq->sw_pidx);
swsqe->cqe.header |= htonl(V_CQE_SWCQE(1));
cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
t4_swcq_produce(cq);
swsqe->signaled = 0;
wq->sq.in_use -= unsignaled;
break;
} else
break;
}
static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
struct t4_cqe *read_cqe)
{
read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
read_cqe->len = cpu_to_be32(wq->sq.oldest_read->read_len);
read_cqe->header = htonl(V_CQE_QPID(CQE_QPID(hw_cqe)) |
V_CQE_SWCQE(SW_CQE(hw_cqe)) |
V_CQE_OPCODE(FW_RI_READ_REQ) |
V_CQE_TYPE(1));
}
/*
* Return a ptr to the next read wr in the SWSQ or NULL.
*/
static void advance_oldest_read(struct t4_wq *wq)
{
u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
if (rptr == wq->sq.size)
rptr = 0;
while (rptr != wq->sq.pidx) {
wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
return;
if (++rptr == wq->sq.size)
rptr = 0;
}
wq->sq.oldest_read = NULL;
}
/*
* poll_cq
*
* Caller must:
* check the validity of the first CQE,
* supply the wq assicated with the qpid.
*
* credit: cq credit to return to sge.
* cqe_flushed: 1 iff the CQE is flushed.
* cqe: copy of the polled CQE.
*
* return value:
* 0 CQE returned ok.
* -EAGAIN CQE skipped, try again.
* -EOVERFLOW CQ overflow detected.
*/
static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
u8 *cqe_flushed, u64 *cookie, u32 *credit)
{
int ret = 0;
struct t4_cqe *hw_cqe, read_cqe;
*cqe_flushed = 0;
*credit = 0;
ret = t4_next_cqe(cq, &hw_cqe);
if (ret)
return ret;
PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x"
" opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
__func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
CQE_WRID_LOW(hw_cqe));
/*
* skip cqe's not affiliated with a QP.
*/
if (wq == NULL) {
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Gotta tweak READ completions:
* 1) the cqe doesn't contain the sq_wptr from the wr.
* 2) opcode not reflected from the wr.
* 3) read_len not reflected from the wr.
* 4) cq_type is RQ_TYPE not SQ_TYPE.
*/
if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
/*
* If this is an unsolicited read response, then the read
* was generated by the kernel driver as part of peer-2-peer
* connection setup. So ignore the completion.
*/
if (!wq->sq.oldest_read) {
if (CQE_STATUS(hw_cqe))
t4_set_wq_in_error(wq);
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Don't write to the HWCQ, so create a new read req CQE
* in local memory.
*/
create_read_req_cqe(wq, hw_cqe, &read_cqe);
hw_cqe = &read_cqe;
advance_oldest_read(wq);
}
if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
*cqe_flushed = t4_wq_in_error(wq);
t4_set_wq_in_error(wq);
goto proc_cqe;
}
/*
* RECV completion.
*/
if (RQ_TYPE(hw_cqe)) {
/*
* HW only validates 4 bits of MSN. So we must validate that
* the MSN in the SEND is the next expected MSN. If its not,
* then we complete this with T4_ERR_MSN and mark the wq in
* error.
*/
if (t4_rq_empty(wq)) {
t4_set_wq_in_error(wq);
ret = -EAGAIN;
goto skip_cqe;
}
if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) {
t4_set_wq_in_error(wq);
hw_cqe->header |= htonl(V_CQE_STATUS(T4_ERR_MSN));
goto proc_cqe;
}
goto proc_cqe;
}
/*
* If we get here its a send completion.
*
* Handle out of order completion. These get stuffed
* in the SW SQ. Then the SW SQ is walked to move any
* now in-order completions into the SW CQ. This handles
* 2 cases:
* 1) reaping unsignaled WRs when the first subsequent
* signaled WR is completed.
* 2) out of order read completions.
*/
if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
struct t4_swsqe *swsqe;
PDBG("%s out of order completion going in sw_sq at idx %u\n",
__func__, CQE_WRID_SQ_IDX(hw_cqe));
swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
swsqe->cqe = *hw_cqe;
swsqe->complete = 1;
ret = -EAGAIN;
goto flush_wq;
}
proc_cqe:
*cqe = *hw_cqe;
/*
* Reap the associated WR(s) that are freed up with this
* completion.
*/
if (SQ_TYPE(hw_cqe)) {
wq->sq.cidx = CQE_WRID_SQ_IDX(hw_cqe);
PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx);
*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
t4_sq_consume(wq);
} else {
PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx);
*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
BUG_ON(t4_rq_empty(wq));
t4_rq_consume(wq);
}
flush_wq:
/*
* Flush any completed cqes that are now in-order.
*/
flush_completed_wrs(wq, cq);
skip_cqe:
if (SW_CQE(hw_cqe)) {
PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
__func__, cq, cq->cqid, cq->sw_cidx);
t4_swcq_consume(cq);
} else {
PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
__func__, cq, cq->cqid, cq->cidx);
t4_hwcq_consume(cq);
}
return ret;
}
/*
* Get one cq entry from c4iw and map it to openib.
*
* Returns:
* 0 cqe returned
* -ENODATA EMPTY;
* -EAGAIN caller must try again
* any other -errno fatal error
*/
static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
{
struct c4iw_qp *qhp = NULL;
struct t4_cqe cqe = {0, 0}, *rd_cqe;
struct t4_wq *wq;
u32 credit = 0;
u8 cqe_flushed;
u64 cookie = 0;
int ret;
ret = t4_next_cqe(&chp->cq, &rd_cqe);
if (ret)
return ret;
qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
if (!qhp)
wq = NULL;
else {
spin_lock(&qhp->lock);
wq = &(qhp->wq);
}
ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
if (ret)
goto out;
wc->wr_id = cookie;
wc->qp = &qhp->ibqp;
wc->vendor_err = CQE_STATUS(&cqe);
wc->wc_flags = 0;
PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x "
"lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe),
CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe),
CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie);
if (CQE_TYPE(&cqe) == 0) {
if (!CQE_STATUS(&cqe))
wc->byte_len = CQE_LEN(&cqe);
else
wc->byte_len = 0;
wc->opcode = IB_WC_RECV;
if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
}
} else {
switch (CQE_OPCODE(&cqe)) {
case FW_RI_RDMA_WRITE:
wc->opcode = IB_WC_RDMA_WRITE;
break;
case FW_RI_READ_REQ:
wc->opcode = IB_WC_RDMA_READ;
wc->byte_len = CQE_LEN(&cqe);
break;
case FW_RI_SEND_WITH_INV:
case FW_RI_SEND_WITH_SE_INV:
wc->opcode = IB_WC_SEND;
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
break;
case FW_RI_SEND:
case FW_RI_SEND_WITH_SE:
wc->opcode = IB_WC_SEND;
break;
case FW_RI_BIND_MW:
wc->opcode = IB_WC_BIND_MW;
break;
case FW_RI_LOCAL_INV:
wc->opcode = IB_WC_LOCAL_INV;
break;
case FW_RI_FAST_REGISTER:
wc->opcode = IB_WC_FAST_REG_MR;
break;
default:
printk(KERN_ERR MOD "Unexpected opcode %d "
"in the CQE received for QPID=0x%0x\n",
CQE_OPCODE(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
goto out;
}
}
if (cqe_flushed)
wc->status = IB_WC_WR_FLUSH_ERR;
else {
switch (CQE_STATUS(&cqe)) {
case T4_ERR_SUCCESS:
wc->status = IB_WC_SUCCESS;
break;
case T4_ERR_STAG:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_PDID:
wc->status = IB_WC_LOC_PROT_ERR;
break;
case T4_ERR_QPID:
case T4_ERR_ACCESS:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_WRAP:
wc->status = IB_WC_GENERAL_ERR;
break;
case T4_ERR_BOUND:
wc->status = IB_WC_LOC_LEN_ERR;
break;
case T4_ERR_INVALIDATE_SHARED_MR:
case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
wc->status = IB_WC_MW_BIND_ERR;
break;
case T4_ERR_CRC:
case T4_ERR_MARKER:
case T4_ERR_PDU_LEN_ERR:
case T4_ERR_OUT_OF_RQE:
case T4_ERR_DDP_VERSION:
case T4_ERR_RDMA_VERSION:
case T4_ERR_DDP_QUEUE_NUM:
case T4_ERR_MSN:
case T4_ERR_TBIT:
case T4_ERR_MO:
case T4_ERR_MSN_RANGE:
case T4_ERR_IRD_OVERFLOW:
case T4_ERR_OPCODE:
wc->status = IB_WC_FATAL_ERR;
break;
case T4_ERR_SWFLUSH:
wc->status = IB_WC_WR_FLUSH_ERR;
break;
default:
printk(KERN_ERR MOD
"Unexpected cqe_status 0x%x for QPID=0x%0x\n",
CQE_STATUS(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
}
}
out:
if (wq)
spin_unlock(&qhp->lock);
return ret;
}
int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
{
struct c4iw_cq *chp;
unsigned long flags;
int npolled;
int err = 0;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flags);
for (npolled = 0; npolled < num_entries; ++npolled) {
do {
err = c4iw_poll_cq_one(chp, wc + npolled);
} while (err == -EAGAIN);
if (err)
break;
}
spin_unlock_irqrestore(&chp->lock, flags);
return !err || err == -ENODATA ? npolled : err;
}
int c4iw_destroy_cq(struct ib_cq *ib_cq)
{
struct c4iw_cq *chp;
struct c4iw_ucontext *ucontext;
PDBG("%s ib_cq %p\n", __func__, ib_cq);
chp = to_c4iw_cq(ib_cq);
remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
atomic_dec(&chp->refcnt);
wait_event(chp->wait, !atomic_read(&chp->refcnt));
ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
: NULL;
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx);
kfree(chp);
return 0;
}
struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
int vector, struct ib_ucontext *ib_context,
struct ib_udata *udata)
{
struct c4iw_dev *rhp;
struct c4iw_cq *chp;
struct c4iw_create_cq_resp uresp;
struct c4iw_ucontext *ucontext = NULL;
int ret;
size_t memsize;
struct c4iw_mm_entry *mm, *mm2;
PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
rhp = to_c4iw_dev(ibdev);
chp = kzalloc(sizeof(*chp), GFP_KERNEL);
if (!chp)
return ERR_PTR(-ENOMEM);
if (ib_context)
ucontext = to_c4iw_ucontext(ib_context);
/* account for the status page. */
entries++;
/*
* entries must be multiple of 16 for HW.
*/
entries = roundup(entries, 16);
memsize = entries * sizeof *chp->cq.queue;
/*
* memsize must be a multiple of the page size if its a user cq.
*/
if (ucontext)
memsize = roundup(memsize, PAGE_SIZE);
chp->cq.size = entries;
chp->cq.memsize = memsize;
ret = create_cq(&rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
if (ret)
goto err1;
chp->rhp = rhp;
chp->cq.size--; /* status page */
chp->ibcq.cqe = chp->cq.size;
spin_lock_init(&chp->lock);
atomic_set(&chp->refcnt, 1);
init_waitqueue_head(&chp->wait);
ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
if (ret)
goto err2;
if (ucontext) {
mm = kmalloc(sizeof *mm, GFP_KERNEL);
if (!mm)
goto err3;
mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
if (!mm2)
goto err4;
uresp.qid_mask = rhp->rdev.cqmask;
uresp.cqid = chp->cq.cqid;
uresp.size = chp->cq.size;
uresp.memsize = chp->cq.memsize;
spin_lock(&ucontext->mmap_lock);
uresp.key = ucontext->key;
ucontext->key += PAGE_SIZE;
uresp.gts_key = ucontext->key;
ucontext->key += PAGE_SIZE;
spin_unlock(&ucontext->mmap_lock);
ret = ib_copy_to_udata(udata, &uresp, sizeof uresp);
if (ret)
goto err5;
mm->key = uresp.key;
mm->addr = virt_to_phys(chp->cq.queue);
mm->len = chp->cq.memsize;
insert_mmap(ucontext, mm);
mm2->key = uresp.gts_key;
mm2->addr = chp->cq.ugts;
mm2->len = PAGE_SIZE;
insert_mmap(ucontext, mm2);
}
PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
__func__, chp->cq.cqid, chp, chp->cq.size,
chp->cq.memsize,
(unsigned long long) chp->cq.dma_addr);
return &chp->ibcq;
err5:
kfree(mm2);
err4:
kfree(mm);
err3:
remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
err2:
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
err1:
kfree(chp);
return ERR_PTR(ret);
}
int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
{
return -ENOSYS;
}
int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
{
struct c4iw_cq *chp;
int ret;
unsigned long flag;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flag);
ret = t4_arm_cq(&chp->cq,
(flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
spin_unlock_irqrestore(&chp->lock, flag);
if (ret && !(flags & IB_CQ_REPORT_MISSED_EVENTS))
ret = 0;
return ret;
}

View File

@ -0,0 +1,520 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/debugfs.h>
#include <rdma/ib_verbs.h>
#include "iw_cxgb4.h"
#define DRV_VERSION "0.1"
MODULE_AUTHOR("Steve Wise");
MODULE_DESCRIPTION("Chelsio T4 RDMA Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
static LIST_HEAD(dev_list);
static DEFINE_MUTEX(dev_mutex);
static struct dentry *c4iw_debugfs_root;
struct debugfs_qp_data {
struct c4iw_dev *devp;
char *buf;
int bufsize;
int pos;
};
static int count_qps(int id, void *p, void *data)
{
struct c4iw_qp *qp = p;
int *countp = data;
if (id != qp->wq.sq.qid)
return 0;
*countp = *countp + 1;
return 0;
}
static int dump_qps(int id, void *p, void *data)
{
struct c4iw_qp *qp = p;
struct debugfs_qp_data *qpd = data;
int space;
int cc;
if (id != qp->wq.sq.qid)
return 0;
space = qpd->bufsize - qpd->pos - 1;
if (space == 0)
return 1;
if (qp->ep)
cc = snprintf(qpd->buf + qpd->pos, space, "qp id %u state %u "
"ep tid %u state %u %pI4:%u->%pI4:%u\n",
qp->wq.sq.qid, (int)qp->attr.state,
qp->ep->hwtid, (int)qp->ep->com.state,
&qp->ep->com.local_addr.sin_addr.s_addr,
ntohs(qp->ep->com.local_addr.sin_port),
&qp->ep->com.remote_addr.sin_addr.s_addr,
ntohs(qp->ep->com.remote_addr.sin_port));
else
cc = snprintf(qpd->buf + qpd->pos, space, "qp id %u state %u\n",
qp->wq.sq.qid, (int)qp->attr.state);
if (cc < space)
qpd->pos += cc;
return 0;
}
static int qp_release(struct inode *inode, struct file *file)
{
struct debugfs_qp_data *qpd = file->private_data;
if (!qpd) {
printk(KERN_INFO "%s null qpd?\n", __func__);
return 0;
}
kfree(qpd->buf);
kfree(qpd);
return 0;
}
static int qp_open(struct inode *inode, struct file *file)
{
struct debugfs_qp_data *qpd;
int ret = 0;
int count = 1;
qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
if (!qpd) {
ret = -ENOMEM;
goto out;
}
qpd->devp = inode->i_private;
qpd->pos = 0;
spin_lock_irq(&qpd->devp->lock);
idr_for_each(&qpd->devp->qpidr, count_qps, &count);
spin_unlock_irq(&qpd->devp->lock);
qpd->bufsize = count * 128;
qpd->buf = kmalloc(qpd->bufsize, GFP_KERNEL);
if (!qpd->buf) {
ret = -ENOMEM;
goto err1;
}
spin_lock_irq(&qpd->devp->lock);
idr_for_each(&qpd->devp->qpidr, dump_qps, qpd);
spin_unlock_irq(&qpd->devp->lock);
qpd->buf[qpd->pos++] = 0;
file->private_data = qpd;
goto out;
err1:
kfree(qpd);
out:
return ret;
}
static ssize_t qp_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct debugfs_qp_data *qpd = file->private_data;
loff_t pos = *ppos;
loff_t avail = qpd->pos;
if (pos < 0)
return -EINVAL;
if (pos >= avail)
return 0;
if (count > avail - pos)
count = avail - pos;
while (count) {
size_t len = 0;
len = min((int)count, (int)qpd->pos - (int)pos);
if (copy_to_user(buf, qpd->buf + pos, len))
return -EFAULT;
if (len == 0)
return -EINVAL;
buf += len;
pos += len;
count -= len;
}
count = pos - *ppos;
*ppos = pos;
return count;
}
static const struct file_operations qp_debugfs_fops = {
.owner = THIS_MODULE,
.open = qp_open,
.release = qp_release,
.read = qp_read,
};
static int setup_debugfs(struct c4iw_dev *devp)
{
struct dentry *de;
if (!devp->debugfs_root)
return -1;
de = debugfs_create_file("qps", S_IWUSR, devp->debugfs_root,
(void *)devp, &qp_debugfs_fops);
if (de && de->d_inode)
de->d_inode->i_size = 4096;
return 0;
}
void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx)
{
struct list_head *pos, *nxt;
struct c4iw_qid_list *entry;
mutex_lock(&uctx->lock);
list_for_each_safe(pos, nxt, &uctx->qpids) {
entry = list_entry(pos, struct c4iw_qid_list, entry);
list_del_init(&entry->entry);
if (!(entry->qid & rdev->qpmask))
c4iw_put_resource(&rdev->resource.qid_fifo, entry->qid,
&rdev->resource.qid_fifo_lock);
kfree(entry);
}
list_for_each_safe(pos, nxt, &uctx->qpids) {
entry = list_entry(pos, struct c4iw_qid_list, entry);
list_del_init(&entry->entry);
kfree(entry);
}
mutex_unlock(&uctx->lock);
}
void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx)
{
INIT_LIST_HEAD(&uctx->qpids);
INIT_LIST_HEAD(&uctx->cqids);
mutex_init(&uctx->lock);
}
/* Caller takes care of locking if needed */
static int c4iw_rdev_open(struct c4iw_rdev *rdev)
{
int err;
c4iw_init_dev_ucontext(rdev, &rdev->uctx);
/*
* qpshift is the number of bits to shift the qpid left in order
* to get the correct address of the doorbell for that qp.
*/
rdev->qpshift = PAGE_SHIFT - ilog2(rdev->lldi.udb_density);
rdev->qpmask = rdev->lldi.udb_density - 1;
rdev->cqshift = PAGE_SHIFT - ilog2(rdev->lldi.ucq_density);
rdev->cqmask = rdev->lldi.ucq_density - 1;
PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
"pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x\n",
__func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
rdev->lldi.vr->pbl.start,
rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
rdev->lldi.vr->rq.size);
PDBG("udb len 0x%x udb base %p db_reg %p gts_reg %p qpshift %lu "
"qpmask 0x%x cqshift %lu cqmask 0x%x\n",
(unsigned)pci_resource_len(rdev->lldi.pdev, 2),
(void *)pci_resource_start(rdev->lldi.pdev, 2),
rdev->lldi.db_reg,
rdev->lldi.gts_reg,
rdev->qpshift, rdev->qpmask,
rdev->cqshift, rdev->cqmask);
if (c4iw_num_stags(rdev) == 0) {
err = -EINVAL;
goto err1;
}
err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
if (err) {
printk(KERN_ERR MOD "error %d initializing resources\n", err);
goto err1;
}
err = c4iw_pblpool_create(rdev);
if (err) {
printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
goto err2;
}
err = c4iw_rqtpool_create(rdev);
if (err) {
printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
goto err3;
}
return 0;
err3:
c4iw_pblpool_destroy(rdev);
err2:
c4iw_destroy_resource(&rdev->resource);
err1:
return err;
}
static void c4iw_rdev_close(struct c4iw_rdev *rdev)
{
c4iw_pblpool_destroy(rdev);
c4iw_rqtpool_destroy(rdev);
c4iw_destroy_resource(&rdev->resource);
}
static void c4iw_remove(struct c4iw_dev *dev)
{
PDBG("%s c4iw_dev %p\n", __func__, dev);
cancel_delayed_work_sync(&dev->db_drop_task);
list_del(&dev->entry);
c4iw_unregister_device(dev);
c4iw_rdev_close(&dev->rdev);
idr_destroy(&dev->cqidr);
idr_destroy(&dev->qpidr);
idr_destroy(&dev->mmidr);
ib_dealloc_device(&dev->ibdev);
}
static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
{
struct c4iw_dev *devp;
int ret;
devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
if (!devp) {
printk(KERN_ERR MOD "Cannot allocate ib device\n");
return NULL;
}
devp->rdev.lldi = *infop;
mutex_lock(&dev_mutex);
ret = c4iw_rdev_open(&devp->rdev);
if (ret) {
mutex_unlock(&dev_mutex);
printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
ib_dealloc_device(&devp->ibdev);
return NULL;
}
idr_init(&devp->cqidr);
idr_init(&devp->qpidr);
idr_init(&devp->mmidr);
spin_lock_init(&devp->lock);
list_add_tail(&devp->entry, &dev_list);
mutex_unlock(&dev_mutex);
if (c4iw_register_device(devp)) {
printk(KERN_ERR MOD "Unable to register device\n");
mutex_lock(&dev_mutex);
c4iw_remove(devp);
mutex_unlock(&dev_mutex);
}
if (c4iw_debugfs_root) {
devp->debugfs_root = debugfs_create_dir(
pci_name(devp->rdev.lldi.pdev),
c4iw_debugfs_root);
setup_debugfs(devp);
}
return devp;
}
static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
{
struct c4iw_dev *dev;
static int vers_printed;
int i;
if (!vers_printed++)
printk(KERN_INFO MOD "Chelsio T4 RDMA Driver - version %s\n",
DRV_VERSION);
dev = c4iw_alloc(infop);
if (!dev)
goto out;
PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
__func__, pci_name(dev->rdev.lldi.pdev),
dev->rdev.lldi.nchan, dev->rdev.lldi.nrxq,
dev->rdev.lldi.ntxq, dev->rdev.lldi.nports);
for (i = 0; i < dev->rdev.lldi.nrxq; i++)
PDBG("rxqid[%u] %u\n", i, dev->rdev.lldi.rxq_ids[i]);
printk(KERN_INFO MOD "Initialized device %s\n",
pci_name(dev->rdev.lldi.pdev));
out:
return dev;
}
static struct sk_buff *t4_pktgl_to_skb(const struct pkt_gl *gl,
unsigned int skb_len,
unsigned int pull_len)
{
struct sk_buff *skb;
struct skb_shared_info *ssi;
if (gl->tot_len <= 512) {
skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
if (unlikely(!skb))
goto out;
__skb_put(skb, gl->tot_len);
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
} else {
skb = alloc_skb(skb_len, GFP_ATOMIC);
if (unlikely(!skb))
goto out;
__skb_put(skb, pull_len);
skb_copy_to_linear_data(skb, gl->va, pull_len);
ssi = skb_shinfo(skb);
ssi->frags[0].page = gl->frags[0].page;
ssi->frags[0].page_offset = gl->frags[0].page_offset + pull_len;
ssi->frags[0].size = gl->frags[0].size - pull_len;
if (gl->nfrags > 1)
memcpy(&ssi->frags[1], &gl->frags[1],
(gl->nfrags - 1) * sizeof(skb_frag_t));
ssi->nr_frags = gl->nfrags;
skb->len = gl->tot_len;
skb->data_len = skb->len - pull_len;
skb->truesize += skb->data_len;
/* Get a reference for the last page, we don't own it */
get_page(gl->frags[gl->nfrags - 1].page);
}
out:
return skb;
}
static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
const struct pkt_gl *gl)
{
struct c4iw_dev *dev = handle;
struct sk_buff *skb;
const struct cpl_act_establish *rpl;
unsigned int opcode;
if (gl == NULL) {
/* omit RSS and rsp_ctrl at end of descriptor */
unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
skb = alloc_skb(256, GFP_ATOMIC);
if (!skb)
goto nomem;
__skb_put(skb, len);
skb_copy_to_linear_data(skb, &rsp[1], len);
} else if (gl == CXGB4_MSG_AN) {
const struct rsp_ctrl *rc = (void *)rsp;
u32 qid = be32_to_cpu(rc->pldbuflen_qid);
c4iw_ev_handler(dev, qid);
return 0;
} else {
skb = t4_pktgl_to_skb(gl, 128, 128);
if (unlikely(!skb))
goto nomem;
}
rpl = cplhdr(skb);
opcode = rpl->ot.opcode;
if (c4iw_handlers[opcode])
c4iw_handlers[opcode](dev, skb);
else
printk(KERN_INFO "%s no handler opcode 0x%x...\n", __func__,
opcode);
return 0;
nomem:
return -1;
}
static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
{
PDBG("%s new_state %u\n", __func__, new_state);
return 0;
}
static struct cxgb4_uld_info c4iw_uld_info = {
.name = DRV_NAME,
.add = c4iw_uld_add,
.rx_handler = c4iw_uld_rx_handler,
.state_change = c4iw_uld_state_change,
};
static int __init c4iw_init_module(void)
{
int err;
err = c4iw_cm_init();
if (err)
return err;
c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
if (!c4iw_debugfs_root)
printk(KERN_WARNING MOD
"could not create debugfs entry, continuing\n");
cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
return 0;
}
static void __exit c4iw_exit_module(void)
{
struct c4iw_dev *dev, *tmp;
cxgb4_unregister_uld(CXGB4_ULD_RDMA);
mutex_lock(&dev_mutex);
list_for_each_entry_safe(dev, tmp, &dev_list, entry) {
c4iw_remove(dev);
}
mutex_unlock(&dev_mutex);
c4iw_cm_term();
debugfs_remove_recursive(c4iw_debugfs_root);
}
module_init(c4iw_init_module);
module_exit(c4iw_exit_module);

View File

@ -0,0 +1,193 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/mman.h>
#include <net/sock.h>
#include "iw_cxgb4.h"
static void post_qp_event(struct c4iw_dev *dev, struct c4iw_cq *chp,
struct c4iw_qp *qhp,
struct t4_cqe *err_cqe,
enum ib_event_type ib_event)
{
struct ib_event event;
struct c4iw_qp_attributes attrs;
if ((qhp->attr.state == C4IW_QP_STATE_ERROR) ||
(qhp->attr.state == C4IW_QP_STATE_TERMINATE)) {
PDBG("%s AE received after RTS - "
"qp state %d qpid 0x%x status 0x%x\n", __func__,
qhp->attr.state, qhp->wq.sq.qid, CQE_STATUS(err_cqe));
return;
}
printk(KERN_ERR MOD "AE qpid 0x%x opcode %d status 0x%x "
"type %d wrid.hi 0x%x wrid.lo 0x%x\n",
CQE_QPID(err_cqe), CQE_OPCODE(err_cqe),
CQE_STATUS(err_cqe), CQE_TYPE(err_cqe),
CQE_WRID_HI(err_cqe), CQE_WRID_LOW(err_cqe));
if (qhp->attr.state == C4IW_QP_STATE_RTS) {
attrs.next_state = C4IW_QP_STATE_TERMINATE;
c4iw_modify_qp(qhp->rhp, qhp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
event.event = ib_event;
event.device = chp->ibcq.device;
if (ib_event == IB_EVENT_CQ_ERR)
event.element.cq = &chp->ibcq;
else
event.element.qp = &qhp->ibqp;
if (qhp->ibqp.event_handler)
(*qhp->ibqp.event_handler)(&event, qhp->ibqp.qp_context);
(*chp->ibcq.comp_handler)(&chp->ibcq, chp->ibcq.cq_context);
}
void c4iw_ev_dispatch(struct c4iw_dev *dev, struct t4_cqe *err_cqe)
{
struct c4iw_cq *chp;
struct c4iw_qp *qhp;
u32 cqid;
spin_lock(&dev->lock);
qhp = get_qhp(dev, CQE_QPID(err_cqe));
if (!qhp) {
printk(KERN_ERR MOD "BAD AE qpid 0x%x opcode %d "
"status 0x%x type %d wrid.hi 0x%x wrid.lo 0x%x\n",
CQE_QPID(err_cqe),
CQE_OPCODE(err_cqe), CQE_STATUS(err_cqe),
CQE_TYPE(err_cqe), CQE_WRID_HI(err_cqe),
CQE_WRID_LOW(err_cqe));
spin_unlock(&dev->lock);
goto out;
}
if (SQ_TYPE(err_cqe))
cqid = qhp->attr.scq;
else
cqid = qhp->attr.rcq;
chp = get_chp(dev, cqid);
if (!chp) {
printk(KERN_ERR MOD "BAD AE cqid 0x%x qpid 0x%x opcode %d "
"status 0x%x type %d wrid.hi 0x%x wrid.lo 0x%x\n",
cqid, CQE_QPID(err_cqe),
CQE_OPCODE(err_cqe), CQE_STATUS(err_cqe),
CQE_TYPE(err_cqe), CQE_WRID_HI(err_cqe),
CQE_WRID_LOW(err_cqe));
spin_unlock(&dev->lock);
goto out;
}
c4iw_qp_add_ref(&qhp->ibqp);
atomic_inc(&chp->refcnt);
spin_unlock(&dev->lock);
/* Bad incoming write */
if (RQ_TYPE(err_cqe) &&
(CQE_OPCODE(err_cqe) == FW_RI_RDMA_WRITE)) {
post_qp_event(dev, chp, qhp, err_cqe, IB_EVENT_QP_REQ_ERR);
goto done;
}
switch (CQE_STATUS(err_cqe)) {
/* Completion Events */
case T4_ERR_SUCCESS:
printk(KERN_ERR MOD "AE with status 0!\n");
break;
case T4_ERR_STAG:
case T4_ERR_PDID:
case T4_ERR_QPID:
case T4_ERR_ACCESS:
case T4_ERR_WRAP:
case T4_ERR_BOUND:
case T4_ERR_INVALIDATE_SHARED_MR:
case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
post_qp_event(dev, chp, qhp, err_cqe, IB_EVENT_QP_ACCESS_ERR);
break;
/* Device Fatal Errors */
case T4_ERR_ECC:
case T4_ERR_ECC_PSTAG:
case T4_ERR_INTERNAL_ERR:
post_qp_event(dev, chp, qhp, err_cqe, IB_EVENT_DEVICE_FATAL);
break;
/* QP Fatal Errors */
case T4_ERR_OUT_OF_RQE:
case T4_ERR_PBL_ADDR_BOUND:
case T4_ERR_CRC:
case T4_ERR_MARKER:
case T4_ERR_PDU_LEN_ERR:
case T4_ERR_DDP_VERSION:
case T4_ERR_RDMA_VERSION:
case T4_ERR_OPCODE:
case T4_ERR_DDP_QUEUE_NUM:
case T4_ERR_MSN:
case T4_ERR_TBIT:
case T4_ERR_MO:
case T4_ERR_MSN_GAP:
case T4_ERR_MSN_RANGE:
case T4_ERR_RQE_ADDR_BOUND:
case T4_ERR_IRD_OVERFLOW:
post_qp_event(dev, chp, qhp, err_cqe, IB_EVENT_QP_FATAL);
break;
default:
printk(KERN_ERR MOD "Unknown T4 status 0x%x QPID 0x%x\n",
CQE_STATUS(err_cqe), qhp->wq.sq.qid);
post_qp_event(dev, chp, qhp, err_cqe, IB_EVENT_QP_FATAL);
break;
}
done:
if (atomic_dec_and_test(&chp->refcnt))
wake_up(&chp->wait);
c4iw_qp_rem_ref(&qhp->ibqp);
out:
return;
}
int c4iw_ev_handler(struct c4iw_dev *dev, u32 qid)
{
struct c4iw_cq *chp;
chp = get_chp(dev, qid);
if (chp)
(*chp->ibcq.comp_handler)(&chp->ibcq, chp->ibcq.cq_context);
else
PDBG("%s unknown cqid 0x%x\n", __func__, qid);
return 0;
}

View File

@ -0,0 +1,745 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __IW_CXGB4_H__
#define __IW_CXGB4_H__
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/idr.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/inet.h>
#include <linux/wait.h>
#include <linux/kref.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <linux/kfifo.h>
#include <asm/byteorder.h>
#include <net/net_namespace.h>
#include <rdma/ib_verbs.h>
#include <rdma/iw_cm.h>
#include "cxgb4.h"
#include "cxgb4_uld.h"
#include "l2t.h"
#include "user.h"
#define DRV_NAME "iw_cxgb4"
#define MOD DRV_NAME ":"
extern int c4iw_debug;
#define PDBG(fmt, args...) \
do { \
if (c4iw_debug) \
printk(MOD fmt, ## args); \
} while (0)
#include "t4.h"
#define PBL_OFF(rdev_p, a) ((a) - (rdev_p)->lldi.vr->pbl.start)
#define RQT_OFF(rdev_p, a) ((a) - (rdev_p)->lldi.vr->rq.start)
static inline void *cplhdr(struct sk_buff *skb)
{
return skb->data;
}
#define C4IW_WR_TO (10*HZ)
struct c4iw_wr_wait {
wait_queue_head_t wait;
int done;
int ret;
};
static inline void c4iw_init_wr_wait(struct c4iw_wr_wait *wr_waitp)
{
wr_waitp->ret = 0;
wr_waitp->done = 0;
init_waitqueue_head(&wr_waitp->wait);
}
struct c4iw_resource {
struct kfifo tpt_fifo;
spinlock_t tpt_fifo_lock;
struct kfifo qid_fifo;
spinlock_t qid_fifo_lock;
struct kfifo pdid_fifo;
spinlock_t pdid_fifo_lock;
};
struct c4iw_qid_list {
struct list_head entry;
u32 qid;
};
struct c4iw_dev_ucontext {
struct list_head qpids;
struct list_head cqids;
struct mutex lock;
};
enum c4iw_rdev_flags {
T4_FATAL_ERROR = (1<<0),
};
struct c4iw_rdev {
struct c4iw_resource resource;
unsigned long qpshift;
u32 qpmask;
unsigned long cqshift;
u32 cqmask;
struct c4iw_dev_ucontext uctx;
struct gen_pool *pbl_pool;
struct gen_pool *rqt_pool;
u32 flags;
struct cxgb4_lld_info lldi;
};
static inline int c4iw_fatal_error(struct c4iw_rdev *rdev)
{
return rdev->flags & T4_FATAL_ERROR;
}
static inline int c4iw_num_stags(struct c4iw_rdev *rdev)
{
return min((int)T4_MAX_NUM_STAG, (int)(rdev->lldi.vr->stag.size >> 5));
}
struct c4iw_dev {
struct ib_device ibdev;
struct c4iw_rdev rdev;
u32 device_cap_flags;
struct idr cqidr;
struct idr qpidr;
struct idr mmidr;
spinlock_t lock;
struct list_head entry;
struct delayed_work db_drop_task;
struct dentry *debugfs_root;
};
static inline struct c4iw_dev *to_c4iw_dev(struct ib_device *ibdev)
{
return container_of(ibdev, struct c4iw_dev, ibdev);
}
static inline struct c4iw_dev *rdev_to_c4iw_dev(struct c4iw_rdev *rdev)
{
return container_of(rdev, struct c4iw_dev, rdev);
}
static inline struct c4iw_cq *get_chp(struct c4iw_dev *rhp, u32 cqid)
{
return idr_find(&rhp->cqidr, cqid);
}
static inline struct c4iw_qp *get_qhp(struct c4iw_dev *rhp, u32 qpid)
{
return idr_find(&rhp->qpidr, qpid);
}
static inline struct c4iw_mr *get_mhp(struct c4iw_dev *rhp, u32 mmid)
{
return idr_find(&rhp->mmidr, mmid);
}
static inline int insert_handle(struct c4iw_dev *rhp, struct idr *idr,
void *handle, u32 id)
{
int ret;
int newid;
do {
if (!idr_pre_get(idr, GFP_KERNEL))
return -ENOMEM;
spin_lock_irq(&rhp->lock);
ret = idr_get_new_above(idr, handle, id, &newid);
BUG_ON(newid != id);
spin_unlock_irq(&rhp->lock);
} while (ret == -EAGAIN);
return ret;
}
static inline void remove_handle(struct c4iw_dev *rhp, struct idr *idr, u32 id)
{
spin_lock_irq(&rhp->lock);
idr_remove(idr, id);
spin_unlock_irq(&rhp->lock);
}
struct c4iw_pd {
struct ib_pd ibpd;
u32 pdid;
struct c4iw_dev *rhp;
};
static inline struct c4iw_pd *to_c4iw_pd(struct ib_pd *ibpd)
{
return container_of(ibpd, struct c4iw_pd, ibpd);
}
struct tpt_attributes {
u64 len;
u64 va_fbo;
enum fw_ri_mem_perms perms;
u32 stag;
u32 pdid;
u32 qpid;
u32 pbl_addr;
u32 pbl_size;
u32 state:1;
u32 type:2;
u32 rsvd:1;
u32 remote_invaliate_disable:1;
u32 zbva:1;
u32 mw_bind_enable:1;
u32 page_size:5;
};
struct c4iw_mr {
struct ib_mr ibmr;
struct ib_umem *umem;
struct c4iw_dev *rhp;
u64 kva;
struct tpt_attributes attr;
};
static inline struct c4iw_mr *to_c4iw_mr(struct ib_mr *ibmr)
{
return container_of(ibmr, struct c4iw_mr, ibmr);
}
struct c4iw_mw {
struct ib_mw ibmw;
struct c4iw_dev *rhp;
u64 kva;
struct tpt_attributes attr;
};
static inline struct c4iw_mw *to_c4iw_mw(struct ib_mw *ibmw)
{
return container_of(ibmw, struct c4iw_mw, ibmw);
}
struct c4iw_fr_page_list {
struct ib_fast_reg_page_list ibpl;
DECLARE_PCI_UNMAP_ADDR(mapping);
dma_addr_t dma_addr;
struct c4iw_dev *dev;
int size;
};
static inline struct c4iw_fr_page_list *to_c4iw_fr_page_list(
struct ib_fast_reg_page_list *ibpl)
{
return container_of(ibpl, struct c4iw_fr_page_list, ibpl);
}
struct c4iw_cq {
struct ib_cq ibcq;
struct c4iw_dev *rhp;
struct t4_cq cq;
spinlock_t lock;
atomic_t refcnt;
wait_queue_head_t wait;
};
static inline struct c4iw_cq *to_c4iw_cq(struct ib_cq *ibcq)
{
return container_of(ibcq, struct c4iw_cq, ibcq);
}
struct c4iw_mpa_attributes {
u8 initiator;
u8 recv_marker_enabled;
u8 xmit_marker_enabled;
u8 crc_enabled;
u8 version;
u8 p2p_type;
};
struct c4iw_qp_attributes {
u32 scq;
u32 rcq;
u32 sq_num_entries;
u32 rq_num_entries;
u32 sq_max_sges;
u32 sq_max_sges_rdma_write;
u32 rq_max_sges;
u32 state;
u8 enable_rdma_read;
u8 enable_rdma_write;
u8 enable_bind;
u8 enable_mmid0_fastreg;
u32 max_ord;
u32 max_ird;
u32 pd;
u32 next_state;
char terminate_buffer[52];
u32 terminate_msg_len;
u8 is_terminate_local;
struct c4iw_mpa_attributes mpa_attr;
struct c4iw_ep *llp_stream_handle;
};
struct c4iw_qp {
struct ib_qp ibqp;
struct c4iw_dev *rhp;
struct c4iw_ep *ep;
struct c4iw_qp_attributes attr;
struct t4_wq wq;
spinlock_t lock;
atomic_t refcnt;
wait_queue_head_t wait;
struct timer_list timer;
};
static inline struct c4iw_qp *to_c4iw_qp(struct ib_qp *ibqp)
{
return container_of(ibqp, struct c4iw_qp, ibqp);
}
struct c4iw_ucontext {
struct ib_ucontext ibucontext;
struct c4iw_dev_ucontext uctx;
u32 key;
spinlock_t mmap_lock;
struct list_head mmaps;
};
static inline struct c4iw_ucontext *to_c4iw_ucontext(struct ib_ucontext *c)
{
return container_of(c, struct c4iw_ucontext, ibucontext);
}
struct c4iw_mm_entry {
struct list_head entry;
u64 addr;
u32 key;
unsigned len;
};
static inline struct c4iw_mm_entry *remove_mmap(struct c4iw_ucontext *ucontext,
u32 key, unsigned len)
{
struct list_head *pos, *nxt;
struct c4iw_mm_entry *mm;
spin_lock(&ucontext->mmap_lock);
list_for_each_safe(pos, nxt, &ucontext->mmaps) {
mm = list_entry(pos, struct c4iw_mm_entry, entry);
if (mm->key == key && mm->len == len) {
list_del_init(&mm->entry);
spin_unlock(&ucontext->mmap_lock);
PDBG("%s key 0x%x addr 0x%llx len %d\n", __func__,
key, (unsigned long long) mm->addr, mm->len);
return mm;
}
}
spin_unlock(&ucontext->mmap_lock);
return NULL;
}
static inline void insert_mmap(struct c4iw_ucontext *ucontext,
struct c4iw_mm_entry *mm)
{
spin_lock(&ucontext->mmap_lock);
PDBG("%s key 0x%x addr 0x%llx len %d\n", __func__,
mm->key, (unsigned long long) mm->addr, mm->len);
list_add_tail(&mm->entry, &ucontext->mmaps);
spin_unlock(&ucontext->mmap_lock);
}
enum c4iw_qp_attr_mask {
C4IW_QP_ATTR_NEXT_STATE = 1 << 0,
C4IW_QP_ATTR_ENABLE_RDMA_READ = 1 << 7,
C4IW_QP_ATTR_ENABLE_RDMA_WRITE = 1 << 8,
C4IW_QP_ATTR_ENABLE_RDMA_BIND = 1 << 9,
C4IW_QP_ATTR_MAX_ORD = 1 << 11,
C4IW_QP_ATTR_MAX_IRD = 1 << 12,
C4IW_QP_ATTR_LLP_STREAM_HANDLE = 1 << 22,
C4IW_QP_ATTR_STREAM_MSG_BUFFER = 1 << 23,
C4IW_QP_ATTR_MPA_ATTR = 1 << 24,
C4IW_QP_ATTR_QP_CONTEXT_ACTIVATE = 1 << 25,
C4IW_QP_ATTR_VALID_MODIFY = (C4IW_QP_ATTR_ENABLE_RDMA_READ |
C4IW_QP_ATTR_ENABLE_RDMA_WRITE |
C4IW_QP_ATTR_MAX_ORD |
C4IW_QP_ATTR_MAX_IRD |
C4IW_QP_ATTR_LLP_STREAM_HANDLE |
C4IW_QP_ATTR_STREAM_MSG_BUFFER |
C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_QP_CONTEXT_ACTIVATE)
};
int c4iw_modify_qp(struct c4iw_dev *rhp,
struct c4iw_qp *qhp,
enum c4iw_qp_attr_mask mask,
struct c4iw_qp_attributes *attrs,
int internal);
enum c4iw_qp_state {
C4IW_QP_STATE_IDLE,
C4IW_QP_STATE_RTS,
C4IW_QP_STATE_ERROR,
C4IW_QP_STATE_TERMINATE,
C4IW_QP_STATE_CLOSING,
C4IW_QP_STATE_TOT
};
static inline int c4iw_convert_state(enum ib_qp_state ib_state)
{
switch (ib_state) {
case IB_QPS_RESET:
case IB_QPS_INIT:
return C4IW_QP_STATE_IDLE;
case IB_QPS_RTS:
return C4IW_QP_STATE_RTS;
case IB_QPS_SQD:
return C4IW_QP_STATE_CLOSING;
case IB_QPS_SQE:
return C4IW_QP_STATE_TERMINATE;
case IB_QPS_ERR:
return C4IW_QP_STATE_ERROR;
default:
return -1;
}
}
static inline u32 c4iw_ib_to_tpt_access(int a)
{
return (a & IB_ACCESS_REMOTE_WRITE ? FW_RI_MEM_ACCESS_REM_WRITE : 0) |
(a & IB_ACCESS_REMOTE_READ ? FW_RI_MEM_ACCESS_REM_READ : 0) |
(a & IB_ACCESS_LOCAL_WRITE ? FW_RI_MEM_ACCESS_LOCAL_WRITE : 0) |
FW_RI_MEM_ACCESS_LOCAL_READ;
}
static inline u32 c4iw_ib_to_tpt_bind_access(int acc)
{
return (acc & IB_ACCESS_REMOTE_WRITE ? FW_RI_MEM_ACCESS_REM_WRITE : 0) |
(acc & IB_ACCESS_REMOTE_READ ? FW_RI_MEM_ACCESS_REM_READ : 0);
}
enum c4iw_mmid_state {
C4IW_STAG_STATE_VALID,
C4IW_STAG_STATE_INVALID
};
#define C4IW_NODE_DESC "cxgb4 Chelsio Communications"
#define MPA_KEY_REQ "MPA ID Req Frame"
#define MPA_KEY_REP "MPA ID Rep Frame"
#define MPA_MAX_PRIVATE_DATA 256
#define MPA_REJECT 0x20
#define MPA_CRC 0x40
#define MPA_MARKERS 0x80
#define MPA_FLAGS_MASK 0xE0
#define c4iw_put_ep(ep) { \
PDBG("put_ep (via %s:%u) ep %p refcnt %d\n", __func__, __LINE__, \
ep, atomic_read(&((ep)->kref.refcount))); \
WARN_ON(atomic_read(&((ep)->kref.refcount)) < 1); \
kref_put(&((ep)->kref), _c4iw_free_ep); \
}
#define c4iw_get_ep(ep) { \
PDBG("get_ep (via %s:%u) ep %p, refcnt %d\n", __func__, __LINE__, \
ep, atomic_read(&((ep)->kref.refcount))); \
kref_get(&((ep)->kref)); \
}
void _c4iw_free_ep(struct kref *kref);
struct mpa_message {
u8 key[16];
u8 flags;
u8 revision;
__be16 private_data_size;
u8 private_data[0];
};
struct terminate_message {
u8 layer_etype;
u8 ecode;
__be16 hdrct_rsvd;
u8 len_hdrs[0];
};
#define TERM_MAX_LENGTH (sizeof(struct terminate_message) + 2 + 18 + 28)
enum c4iw_layers_types {
LAYER_RDMAP = 0x00,
LAYER_DDP = 0x10,
LAYER_MPA = 0x20,
RDMAP_LOCAL_CATA = 0x00,
RDMAP_REMOTE_PROT = 0x01,
RDMAP_REMOTE_OP = 0x02,
DDP_LOCAL_CATA = 0x00,
DDP_TAGGED_ERR = 0x01,
DDP_UNTAGGED_ERR = 0x02,
DDP_LLP = 0x03
};
enum c4iw_rdma_ecodes {
RDMAP_INV_STAG = 0x00,
RDMAP_BASE_BOUNDS = 0x01,
RDMAP_ACC_VIOL = 0x02,
RDMAP_STAG_NOT_ASSOC = 0x03,
RDMAP_TO_WRAP = 0x04,
RDMAP_INV_VERS = 0x05,
RDMAP_INV_OPCODE = 0x06,
RDMAP_STREAM_CATA = 0x07,
RDMAP_GLOBAL_CATA = 0x08,
RDMAP_CANT_INV_STAG = 0x09,
RDMAP_UNSPECIFIED = 0xff
};
enum c4iw_ddp_ecodes {
DDPT_INV_STAG = 0x00,
DDPT_BASE_BOUNDS = 0x01,
DDPT_STAG_NOT_ASSOC = 0x02,
DDPT_TO_WRAP = 0x03,
DDPT_INV_VERS = 0x04,
DDPU_INV_QN = 0x01,
DDPU_INV_MSN_NOBUF = 0x02,
DDPU_INV_MSN_RANGE = 0x03,
DDPU_INV_MO = 0x04,
DDPU_MSG_TOOBIG = 0x05,
DDPU_INV_VERS = 0x06
};
enum c4iw_mpa_ecodes {
MPA_CRC_ERR = 0x02,
MPA_MARKER_ERR = 0x03
};
enum c4iw_ep_state {
IDLE = 0,
LISTEN,
CONNECTING,
MPA_REQ_WAIT,
MPA_REQ_SENT,
MPA_REQ_RCVD,
MPA_REP_SENT,
FPDU_MODE,
ABORTING,
CLOSING,
MORIBUND,
DEAD,
};
enum c4iw_ep_flags {
PEER_ABORT_IN_PROGRESS = 0,
ABORT_REQ_IN_PROGRESS = 1,
RELEASE_RESOURCES = 2,
CLOSE_SENT = 3,
};
struct c4iw_ep_common {
struct iw_cm_id *cm_id;
struct c4iw_qp *qp;
struct c4iw_dev *dev;
enum c4iw_ep_state state;
struct kref kref;
spinlock_t lock;
struct sockaddr_in local_addr;
struct sockaddr_in remote_addr;
wait_queue_head_t waitq;
int rpl_done;
int rpl_err;
unsigned long flags;
};
struct c4iw_listen_ep {
struct c4iw_ep_common com;
unsigned int stid;
int backlog;
};
struct c4iw_ep {
struct c4iw_ep_common com;
struct c4iw_ep *parent_ep;
struct timer_list timer;
struct list_head entry;
unsigned int atid;
u32 hwtid;
u32 snd_seq;
u32 rcv_seq;
struct l2t_entry *l2t;
struct dst_entry *dst;
struct sk_buff *mpa_skb;
struct c4iw_mpa_attributes mpa_attr;
u8 mpa_pkt[sizeof(struct mpa_message) + MPA_MAX_PRIVATE_DATA];
unsigned int mpa_pkt_len;
u32 ird;
u32 ord;
u32 smac_idx;
u32 tx_chan;
u32 mtu;
u16 mss;
u16 emss;
u16 plen;
u16 rss_qid;
u16 txq_idx;
u8 tos;
};
static inline struct c4iw_ep *to_ep(struct iw_cm_id *cm_id)
{
return cm_id->provider_data;
}
static inline struct c4iw_listen_ep *to_listen_ep(struct iw_cm_id *cm_id)
{
return cm_id->provider_data;
}
static inline int compute_wscale(int win)
{
int wscale = 0;
while (wscale < 14 && (65535<<wscale) < win)
wscale++;
return wscale;
}
typedef int (*c4iw_handler_func)(struct c4iw_dev *dev, struct sk_buff *skb);
int c4iw_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
struct l2t_entry *l2t);
void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qpid,
struct c4iw_dev_ucontext *uctx);
u32 c4iw_get_resource(struct kfifo *fifo, spinlock_t *lock);
void c4iw_put_resource(struct kfifo *fifo, u32 entry, spinlock_t *lock);
int c4iw_init_resource(struct c4iw_rdev *rdev, u32 nr_tpt, u32 nr_pdid);
int c4iw_init_ctrl_qp(struct c4iw_rdev *rdev);
int c4iw_pblpool_create(struct c4iw_rdev *rdev);
int c4iw_rqtpool_create(struct c4iw_rdev *rdev);
void c4iw_pblpool_destroy(struct c4iw_rdev *rdev);
void c4iw_rqtpool_destroy(struct c4iw_rdev *rdev);
void c4iw_destroy_resource(struct c4iw_resource *rscp);
int c4iw_destroy_ctrl_qp(struct c4iw_rdev *rdev);
int c4iw_register_device(struct c4iw_dev *dev);
void c4iw_unregister_device(struct c4iw_dev *dev);
int __init c4iw_cm_init(void);
void __exit c4iw_cm_term(void);
void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx);
void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx);
int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc);
int c4iw_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
struct ib_send_wr **bad_wr);
int c4iw_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr);
int c4iw_bind_mw(struct ib_qp *qp, struct ib_mw *mw,
struct ib_mw_bind *mw_bind);
int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param);
int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog);
int c4iw_destroy_listen(struct iw_cm_id *cm_id);
int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param);
int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len);
void c4iw_qp_add_ref(struct ib_qp *qp);
void c4iw_qp_rem_ref(struct ib_qp *qp);
void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *page_list);
struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(
struct ib_device *device,
int page_list_len);
struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth);
int c4iw_dealloc_mw(struct ib_mw *mw);
struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd);
struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start,
u64 length, u64 virt, int acc,
struct ib_udata *udata);
struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc);
struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc,
u64 *iova_start);
int c4iw_reregister_phys_mem(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc, u64 *iova_start);
int c4iw_dereg_mr(struct ib_mr *ib_mr);
int c4iw_destroy_cq(struct ib_cq *ib_cq);
struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
int vector,
struct ib_ucontext *ib_context,
struct ib_udata *udata);
int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata);
int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags);
int c4iw_destroy_qp(struct ib_qp *ib_qp);
struct ib_qp *c4iw_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *attrs,
struct ib_udata *udata);
int c4iw_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata);
struct ib_qp *c4iw_get_qp(struct ib_device *dev, int qpn);
u32 c4iw_rqtpool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_rqtpool_free(struct c4iw_rdev *rdev, u32 addr, int size);
u32 c4iw_pblpool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_pblpool_free(struct c4iw_rdev *rdev, u32 addr, int size);
int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb);
void c4iw_flush_hw_cq(struct t4_cq *cq);
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
void c4iw_count_scqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp);
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_flush_sq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_ev_handler(struct c4iw_dev *rnicp, u32 qid);
u16 c4iw_rqes_posted(struct c4iw_qp *qhp);
int c4iw_post_zb_read(struct c4iw_qp *qhp);
int c4iw_post_terminate(struct c4iw_qp *qhp, struct t4_cqe *err_cqe);
u32 c4iw_get_cqid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx);
void c4iw_put_cqid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx);
u32 c4iw_get_qpid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx);
void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx);
void c4iw_ev_dispatch(struct c4iw_dev *dev, struct t4_cqe *err_cqe);
extern struct cxgb4_client t4c_client;
extern c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS];
extern int c4iw_max_read_depth;
#endif

View File

@ -0,0 +1,811 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/ib_umem.h>
#include <asm/atomic.h>
#include "iw_cxgb4.h"
#define T4_ULPTX_MIN_IO 32
#define C4IW_MAX_INLINE_SIZE 96
static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
void *data)
{
struct sk_buff *skb;
struct ulp_mem_io *req;
struct ulptx_idata *sc;
u8 wr_len, *to_dp, *from_dp;
int copy_len, num_wqe, i, ret = 0;
struct c4iw_wr_wait wr_wait;
addr &= 0x7FFFFFF;
PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
c4iw_init_wr_wait(&wr_wait);
for (i = 0; i < num_wqe; i++) {
copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
len;
wr_len = roundup(sizeof *req + sizeof *sc +
roundup(copy_len, T4_ULPTX_MIN_IO), 16);
skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
if (!skb)
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
memset(req, 0, wr_len);
INIT_ULPTX_WR(req, wr_len, 0, 0);
if (i == (num_wqe-1)) {
req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
FW_WR_COMPL(1));
req->wr.wr_lo = (__force __be64)&wr_wait;
} else
req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
req->wr.wr_mid = cpu_to_be32(
FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE) | (1<<23));
req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
16));
req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
sc = (struct ulptx_idata *)(req + 1);
sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
to_dp = (u8 *)(sc + 1);
from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
if (data)
memcpy(to_dp, from_dp, copy_len);
else
memset(to_dp, 0, copy_len);
if (copy_len % T4_ULPTX_MIN_IO)
memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
(copy_len % T4_ULPTX_MIN_IO));
ret = c4iw_ofld_send(rdev, skb);
if (ret)
return ret;
len -= C4IW_MAX_INLINE_SIZE;
}
wait_event_timeout(wr_wait.wait, wr_wait.done, C4IW_WR_TO);
if (!wr_wait.done) {
printk(KERN_ERR MOD "Device %s not responding!\n",
pci_name(rdev->lldi.pdev));
rdev->flags = T4_FATAL_ERROR;
ret = -EIO;
} else
ret = wr_wait.ret;
return ret;
}
/*
* Build and write a TPT entry.
* IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
* pbl_size and pbl_addr
* OUT: stag index
*/
static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
u32 *stag, u8 stag_state, u32 pdid,
enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
int bind_enabled, u32 zbva, u64 to,
u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
{
int err;
struct fw_ri_tpte tpt;
u32 stag_idx;
static atomic_t key;
if (c4iw_fatal_error(rdev))
return -EIO;
stag_state = stag_state > 0;
stag_idx = (*stag) >> 8;
if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
stag_idx = c4iw_get_resource(&rdev->resource.tpt_fifo,
&rdev->resource.tpt_fifo_lock);
if (!stag_idx)
return -ENOMEM;
*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
}
PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
__func__, stag_state, type, pdid, stag_idx);
/* write TPT entry */
if (reset_tpt_entry)
memset(&tpt, 0, sizeof(tpt));
else {
tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
V_FW_RI_TPTE_STAGSTATE(stag_state) |
V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
FW_RI_VA_BASED_TO))|
V_FW_RI_TPTE_PS(page_size));
tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
tpt.va_hi = cpu_to_be32((u32)(to >> 32));
tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
tpt.len_hi = cpu_to_be32((u32)(len >> 32));
}
err = write_adapter_mem(rdev, stag_idx +
(rdev->lldi.vr->stag.start >> 5),
sizeof(tpt), &tpt);
if (reset_tpt_entry)
c4iw_put_resource(&rdev->resource.tpt_fifo, stag_idx,
&rdev->resource.tpt_fifo_lock);
return err;
}
static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
u32 pbl_addr, u32 pbl_size)
{
int err;
PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
__func__, pbl_addr, rdev->lldi.vr->pbl.start,
pbl_size);
err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
return err;
}
static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
u32 pbl_addr)
{
return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
pbl_size, pbl_addr);
}
static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
{
*stag = T4_STAG_UNSET;
return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
0UL, 0, 0, 0, 0);
}
static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
{
return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
0);
}
static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
u32 pbl_size, u32 pbl_addr)
{
*stag = T4_STAG_UNSET;
return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
0UL, 0, 0, pbl_size, pbl_addr);
}
static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
{
u32 mmid;
mhp->attr.state = 1;
mhp->attr.stag = stag;
mmid = stag >> 8;
mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
}
static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
struct c4iw_mr *mhp, int shift)
{
u32 stag = T4_STAG_UNSET;
int ret;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, mhp->attr.zbva,
mhp->attr.va_fbo, mhp->attr.len, shift - 12,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
return ret;
ret = finish_mem_reg(mhp, stag);
if (ret)
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
return ret;
}
static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
struct c4iw_mr *mhp, int shift, int npages)
{
u32 stag;
int ret;
if (npages > mhp->attr.pbl_size)
return -ENOMEM;
stag = mhp->attr.stag;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, mhp->attr.zbva,
mhp->attr.va_fbo, mhp->attr.len, shift - 12,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
return ret;
ret = finish_mem_reg(mhp, stag);
if (ret)
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
return ret;
}
static int alloc_pbl(struct c4iw_mr *mhp, int npages)
{
mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
npages << 3);
if (!mhp->attr.pbl_addr)
return -ENOMEM;
mhp->attr.pbl_size = npages;
return 0;
}
static int build_phys_page_list(struct ib_phys_buf *buffer_list,
int num_phys_buf, u64 *iova_start,
u64 *total_size, int *npages,
int *shift, __be64 **page_list)
{
u64 mask;
int i, j, n;
mask = 0;
*total_size = 0;
for (i = 0; i < num_phys_buf; ++i) {
if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
return -EINVAL;
if (i != 0 && i != num_phys_buf - 1 &&
(buffer_list[i].size & ~PAGE_MASK))
return -EINVAL;
*total_size += buffer_list[i].size;
if (i > 0)
mask |= buffer_list[i].addr;
else
mask |= buffer_list[i].addr & PAGE_MASK;
if (i != num_phys_buf - 1)
mask |= buffer_list[i].addr + buffer_list[i].size;
else
mask |= (buffer_list[i].addr + buffer_list[i].size +
PAGE_SIZE - 1) & PAGE_MASK;
}
if (*total_size > 0xFFFFFFFFULL)
return -ENOMEM;
/* Find largest page shift we can use to cover buffers */
for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
if ((1ULL << *shift) & mask)
break;
buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
buffer_list[0].addr &= ~0ull << *shift;
*npages = 0;
for (i = 0; i < num_phys_buf; ++i)
*npages += (buffer_list[i].size +
(1ULL << *shift) - 1) >> *shift;
if (!*npages)
return -EINVAL;
*page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
if (!*page_list)
return -ENOMEM;
n = 0;
for (i = 0; i < num_phys_buf; ++i)
for (j = 0;
j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
++j)
(*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
((u64) j << *shift));
PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
__func__, (unsigned long long)*iova_start,
(unsigned long long)mask, *shift, (unsigned long long)*total_size,
*npages);
return 0;
}
int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
struct ib_pd *pd, struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start)
{
struct c4iw_mr mh, *mhp;
struct c4iw_pd *php;
struct c4iw_dev *rhp;
__be64 *page_list = NULL;
int shift = 0;
u64 total_size;
int npages;
int ret;
PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
/* There can be no memory windows */
if (atomic_read(&mr->usecnt))
return -EINVAL;
mhp = to_c4iw_mr(mr);
rhp = mhp->rhp;
php = to_c4iw_pd(mr->pd);
/* make sure we are on the same adapter */
if (rhp != php->rhp)
return -EINVAL;
memcpy(&mh, mhp, sizeof *mhp);
if (mr_rereg_mask & IB_MR_REREG_PD)
php = to_c4iw_pd(pd);
if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
mh.attr.perms = c4iw_ib_to_tpt_access(acc);
mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
IB_ACCESS_MW_BIND;
}
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
ret = build_phys_page_list(buffer_list, num_phys_buf,
iova_start,
&total_size, &npages,
&shift, &page_list);
if (ret)
return ret;
}
ret = reregister_mem(rhp, php, &mh, shift, npages);
kfree(page_list);
if (ret)
return ret;
if (mr_rereg_mask & IB_MR_REREG_PD)
mhp->attr.pdid = php->pdid;
if (mr_rereg_mask & IB_MR_REREG_ACCESS)
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
mhp->attr.zbva = 0;
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
}
return 0;
}
struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start)
{
__be64 *page_list;
int shift;
u64 total_size;
int npages;
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
int ret;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
/* First check that we have enough alignment */
if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
if (num_phys_buf > 1 &&
((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
&total_size, &npages, &shift,
&page_list);
if (ret)
goto err;
ret = alloc_pbl(mhp, npages);
if (ret) {
kfree(page_list);
goto err_pbl;
}
ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
npages);
kfree(page_list);
if (ret)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
ret = register_mem(rhp, php, mhp, shift);
if (ret)
goto err_pbl;
return &mhp->ibmr;
err_pbl:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err:
kfree(mhp);
return ERR_PTR(ret);
}
struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
int ret;
u32 stag = T4_STAG_UNSET;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
mhp->attr.pdid = php->pdid;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
mhp->attr.zbva = 0;
mhp->attr.va_fbo = 0;
mhp->attr.page_size = 0;
mhp->attr.len = ~0UL;
mhp->attr.pbl_size = 0;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
if (ret)
goto err1;
ret = finish_mem_reg(mhp, stag);
if (ret)
goto err2;
return &mhp->ibmr;
err2:
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
err1:
kfree(mhp);
return ERR_PTR(ret);
}
struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt, int acc, struct ib_udata *udata)
{
__be64 *pages;
int shift, n, len;
int i, j, k;
int err = 0;
struct ib_umem_chunk *chunk;
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
PDBG("%s ib_pd %p\n", __func__, pd);
if (length == ~0ULL)
return ERR_PTR(-EINVAL);
if ((length + start) < start)
return ERR_PTR(-EINVAL);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
if (IS_ERR(mhp->umem)) {
err = PTR_ERR(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
shift = ffs(mhp->umem->page_size) - 1;
n = 0;
list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
n += chunk->nents;
err = alloc_pbl(mhp, n);
if (err)
goto err;
pages = (__be64 *) __get_free_page(GFP_KERNEL);
if (!pages) {
err = -ENOMEM;
goto err_pbl;
}
i = n = 0;
list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
for (j = 0; j < chunk->nmap; ++j) {
len = sg_dma_len(&chunk->page_list[j]) >> shift;
for (k = 0; k < len; ++k) {
pages[i++] = cpu_to_be64(sg_dma_address(
&chunk->page_list[j]) +
mhp->umem->page_size * k);
if (i == PAGE_SIZE / sizeof *pages) {
err = write_pbl(&mhp->rhp->rdev,
pages,
mhp->attr.pbl_addr + (n << 3), i);
if (err)
goto pbl_done;
n += i;
i = 0;
}
}
}
if (i)
err = write_pbl(&mhp->rhp->rdev, pages,
mhp->attr.pbl_addr + (n << 3), i);
pbl_done:
free_page((unsigned long) pages);
if (err)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.va_fbo = virt;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) length;
err = register_mem(rhp, php, mhp, shift);
if (err)
goto err_pbl;
return &mhp->ibmr;
err_pbl:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err:
ib_umem_release(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mw *mhp;
u32 mmid;
u32 stag = 0;
int ret;
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
ret = allocate_window(&rhp->rdev, &stag, php->pdid);
if (ret) {
kfree(mhp);
return ERR_PTR(ret);
}
mhp->rhp = rhp;
mhp->attr.pdid = php->pdid;
mhp->attr.type = FW_RI_STAG_MW;
mhp->attr.stag = stag;
mmid = (stag) >> 8;
mhp->ibmw.rkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
deallocate_window(&rhp->rdev, mhp->attr.stag);
kfree(mhp);
return ERR_PTR(-ENOMEM);
}
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmw);
}
int c4iw_dealloc_mw(struct ib_mw *mw)
{
struct c4iw_dev *rhp;
struct c4iw_mw *mhp;
u32 mmid;
mhp = to_c4iw_mw(mw);
rhp = mhp->rhp;
mmid = (mw->rkey) >> 8;
deallocate_window(&rhp->rdev, mhp->attr.stag);
remove_handle(rhp, &rhp->mmidr, mmid);
kfree(mhp);
PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
return 0;
}
struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
u32 mmid;
u32 stag = 0;
int ret = 0;
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
goto err;
mhp->rhp = rhp;
ret = alloc_pbl(mhp, pbl_depth);
if (ret)
goto err1;
mhp->attr.pbl_size = pbl_depth;
ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
goto err2;
mhp->attr.pdid = php->pdid;
mhp->attr.type = FW_RI_STAG_NSMR;
mhp->attr.stag = stag;
mhp->attr.state = 1;
mmid = (stag) >> 8;
mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid))
goto err3;
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmr);
err3:
dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
err2:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err1:
kfree(mhp);
err:
return ERR_PTR(ret);
}
struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
int page_list_len)
{
struct c4iw_fr_page_list *c4pl;
struct c4iw_dev *dev = to_c4iw_dev(device);
dma_addr_t dma_addr;
int size = sizeof *c4pl + page_list_len * sizeof(u64);
if (page_list_len > T4_MAX_FR_DEPTH)
return ERR_PTR(-EINVAL);
c4pl = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev, size,
&dma_addr, GFP_KERNEL);
if (!c4pl)
return ERR_PTR(-ENOMEM);
pci_unmap_addr_set(c4pl, mapping, dma_addr);
c4pl->dma_addr = dma_addr;
c4pl->dev = dev;
c4pl->size = size;
c4pl->ibpl.page_list = (u64 *)(c4pl + 1);
c4pl->ibpl.max_page_list_len = page_list_len;
return &c4pl->ibpl;
}
void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
{
struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev, c4pl->size,
c4pl, pci_unmap_addr(c4pl, mapping));
}
int c4iw_dereg_mr(struct ib_mr *ib_mr)
{
struct c4iw_dev *rhp;
struct c4iw_mr *mhp;
u32 mmid;
PDBG("%s ib_mr %p\n", __func__, ib_mr);
/* There can be no memory windows */
if (atomic_read(&ib_mr->usecnt))
return -EINVAL;
mhp = to_c4iw_mr(ib_mr);
rhp = mhp->rhp;
mmid = mhp->attr.stag >> 8;
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
if (mhp->attr.pbl_size)
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
remove_handle(rhp, &rhp->mmidr, mmid);
if (mhp->kva)
kfree((void *) (unsigned long) mhp->kva);
if (mhp->umem)
ib_umem_release(mhp->umem);
PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
kfree(mhp);
return 0;
}

View File

@ -0,0 +1,518 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/rtnetlink.h>
#include <linux/inetdevice.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <rdma/iw_cm.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_smi.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_user_verbs.h>
#include "iw_cxgb4.h"
static int fastreg_support;
module_param(fastreg_support, int, 0644);
MODULE_PARM_DESC(fastreg_support, "Advertise fastreg support (default=0)");
static int c4iw_modify_port(struct ib_device *ibdev,
u8 port, int port_modify_mask,
struct ib_port_modify *props)
{
return -ENOSYS;
}
static struct ib_ah *c4iw_ah_create(struct ib_pd *pd,
struct ib_ah_attr *ah_attr)
{
return ERR_PTR(-ENOSYS);
}
static int c4iw_ah_destroy(struct ib_ah *ah)
{
return -ENOSYS;
}
static int c4iw_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid)
{
return -ENOSYS;
}
static int c4iw_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid)
{
return -ENOSYS;
}
static int c4iw_process_mad(struct ib_device *ibdev, int mad_flags,
u8 port_num, struct ib_wc *in_wc,
struct ib_grh *in_grh, struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
return -ENOSYS;
}
static int c4iw_dealloc_ucontext(struct ib_ucontext *context)
{
struct c4iw_dev *rhp = to_c4iw_dev(context->device);
struct c4iw_ucontext *ucontext = to_c4iw_ucontext(context);
struct c4iw_mm_entry *mm, *tmp;
PDBG("%s context %p\n", __func__, context);
list_for_each_entry_safe(mm, tmp, &ucontext->mmaps, entry)
kfree(mm);
c4iw_release_dev_ucontext(&rhp->rdev, &ucontext->uctx);
kfree(ucontext);
return 0;
}
static struct ib_ucontext *c4iw_alloc_ucontext(struct ib_device *ibdev,
struct ib_udata *udata)
{
struct c4iw_ucontext *context;
struct c4iw_dev *rhp = to_c4iw_dev(ibdev);
PDBG("%s ibdev %p\n", __func__, ibdev);
context = kzalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return ERR_PTR(-ENOMEM);
c4iw_init_dev_ucontext(&rhp->rdev, &context->uctx);
INIT_LIST_HEAD(&context->mmaps);
spin_lock_init(&context->mmap_lock);
return &context->ibucontext;
}
static int c4iw_mmap(struct ib_ucontext *context, struct vm_area_struct *vma)
{
int len = vma->vm_end - vma->vm_start;
u32 key = vma->vm_pgoff << PAGE_SHIFT;
struct c4iw_rdev *rdev;
int ret = 0;
struct c4iw_mm_entry *mm;
struct c4iw_ucontext *ucontext;
u64 addr;
PDBG("%s pgoff 0x%lx key 0x%x len %d\n", __func__, vma->vm_pgoff,
key, len);
if (vma->vm_start & (PAGE_SIZE-1))
return -EINVAL;
rdev = &(to_c4iw_dev(context->device)->rdev);
ucontext = to_c4iw_ucontext(context);
mm = remove_mmap(ucontext, key, len);
if (!mm)
return -EINVAL;
addr = mm->addr;
kfree(mm);
if ((addr >= pci_resource_start(rdev->lldi.pdev, 2)) &&
(addr < (pci_resource_start(rdev->lldi.pdev, 2) +
pci_resource_len(rdev->lldi.pdev, 2)))) {
/*
* Map T4 DB register.
*/
if (vma->vm_flags & VM_READ)
return -EPERM;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_flags &= ~VM_MAYREAD;
ret = io_remap_pfn_range(vma, vma->vm_start,
addr >> PAGE_SHIFT,
len, vma->vm_page_prot);
} else {
/*
* Map WQ or CQ contig dma memory...
*/
ret = remap_pfn_range(vma, vma->vm_start,
addr >> PAGE_SHIFT,
len, vma->vm_page_prot);
}
return ret;
}
static int c4iw_deallocate_pd(struct ib_pd *pd)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
php = to_c4iw_pd(pd);
rhp = php->rhp;
PDBG("%s ibpd %p pdid 0x%x\n", __func__, pd, php->pdid);
c4iw_put_resource(&rhp->rdev.resource.pdid_fifo, php->pdid,
&rhp->rdev.resource.pdid_fifo_lock);
kfree(php);
return 0;
}
static struct ib_pd *c4iw_allocate_pd(struct ib_device *ibdev,
struct ib_ucontext *context,
struct ib_udata *udata)
{
struct c4iw_pd *php;
u32 pdid;
struct c4iw_dev *rhp;
PDBG("%s ibdev %p\n", __func__, ibdev);
rhp = (struct c4iw_dev *) ibdev;
pdid = c4iw_get_resource(&rhp->rdev.resource.pdid_fifo,
&rhp->rdev.resource.pdid_fifo_lock);
if (!pdid)
return ERR_PTR(-EINVAL);
php = kzalloc(sizeof(*php), GFP_KERNEL);
if (!php) {
c4iw_put_resource(&rhp->rdev.resource.pdid_fifo, pdid,
&rhp->rdev.resource.pdid_fifo_lock);
return ERR_PTR(-ENOMEM);
}
php->pdid = pdid;
php->rhp = rhp;
if (context) {
if (ib_copy_to_udata(udata, &php->pdid, sizeof(u32))) {
c4iw_deallocate_pd(&php->ibpd);
return ERR_PTR(-EFAULT);
}
}
PDBG("%s pdid 0x%0x ptr 0x%p\n", __func__, pdid, php);
return &php->ibpd;
}
static int c4iw_query_pkey(struct ib_device *ibdev, u8 port, u16 index,
u16 *pkey)
{
PDBG("%s ibdev %p\n", __func__, ibdev);
*pkey = 0;
return 0;
}
static int c4iw_query_gid(struct ib_device *ibdev, u8 port, int index,
union ib_gid *gid)
{
struct c4iw_dev *dev;
PDBG("%s ibdev %p, port %d, index %d, gid %p\n",
__func__, ibdev, port, index, gid);
dev = to_c4iw_dev(ibdev);
BUG_ON(port == 0);
memset(&(gid->raw[0]), 0, sizeof(gid->raw));
memcpy(&(gid->raw[0]), dev->rdev.lldi.ports[port-1]->dev_addr, 6);
return 0;
}
static int c4iw_query_device(struct ib_device *ibdev,
struct ib_device_attr *props)
{
struct c4iw_dev *dev;
PDBG("%s ibdev %p\n", __func__, ibdev);
dev = to_c4iw_dev(ibdev);
memset(props, 0, sizeof *props);
memcpy(&props->sys_image_guid, dev->rdev.lldi.ports[0]->dev_addr, 6);
props->hw_ver = dev->rdev.lldi.adapter_type;
props->fw_ver = dev->rdev.lldi.fw_vers;
props->device_cap_flags = dev->device_cap_flags;
props->page_size_cap = T4_PAGESIZE_MASK;
props->vendor_id = (u32)dev->rdev.lldi.pdev->vendor;
props->vendor_part_id = (u32)dev->rdev.lldi.pdev->device;
props->max_mr_size = T4_MAX_MR_SIZE;
props->max_qp = T4_MAX_NUM_QP;
props->max_qp_wr = T4_MAX_QP_DEPTH;
props->max_sge = T4_MAX_RECV_SGE;
props->max_sge_rd = 1;
props->max_qp_rd_atom = c4iw_max_read_depth;
props->max_qp_init_rd_atom = c4iw_max_read_depth;
props->max_cq = T4_MAX_NUM_CQ;
props->max_cqe = T4_MAX_CQ_DEPTH;
props->max_mr = c4iw_num_stags(&dev->rdev);
props->max_pd = T4_MAX_NUM_PD;
props->local_ca_ack_delay = 0;
props->max_fast_reg_page_list_len = T4_MAX_FR_DEPTH;
return 0;
}
static int c4iw_query_port(struct ib_device *ibdev, u8 port,
struct ib_port_attr *props)
{
struct c4iw_dev *dev;
struct net_device *netdev;
struct in_device *inetdev;
PDBG("%s ibdev %p\n", __func__, ibdev);
dev = to_c4iw_dev(ibdev);
netdev = dev->rdev.lldi.ports[port-1];
memset(props, 0, sizeof(struct ib_port_attr));
props->max_mtu = IB_MTU_4096;
if (netdev->mtu >= 4096)
props->active_mtu = IB_MTU_4096;
else if (netdev->mtu >= 2048)
props->active_mtu = IB_MTU_2048;
else if (netdev->mtu >= 1024)
props->active_mtu = IB_MTU_1024;
else if (netdev->mtu >= 512)
props->active_mtu = IB_MTU_512;
else
props->active_mtu = IB_MTU_256;
if (!netif_carrier_ok(netdev))
props->state = IB_PORT_DOWN;
else {
inetdev = in_dev_get(netdev);
if (inetdev) {
if (inetdev->ifa_list)
props->state = IB_PORT_ACTIVE;
else
props->state = IB_PORT_INIT;
in_dev_put(inetdev);
} else
props->state = IB_PORT_INIT;
}
props->port_cap_flags =
IB_PORT_CM_SUP |
IB_PORT_SNMP_TUNNEL_SUP |
IB_PORT_REINIT_SUP |
IB_PORT_DEVICE_MGMT_SUP |
IB_PORT_VENDOR_CLASS_SUP | IB_PORT_BOOT_MGMT_SUP;
props->gid_tbl_len = 1;
props->pkey_tbl_len = 1;
props->active_width = 2;
props->active_speed = 2;
props->max_msg_sz = -1;
return 0;
}
static ssize_t show_rev(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct c4iw_dev *c4iw_dev = container_of(dev, struct c4iw_dev,
ibdev.dev);
PDBG("%s dev 0x%p\n", __func__, dev);
return sprintf(buf, "%d\n", c4iw_dev->rdev.lldi.adapter_type);
}
static ssize_t show_fw_ver(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct c4iw_dev *c4iw_dev = container_of(dev, struct c4iw_dev,
ibdev.dev);
PDBG("%s dev 0x%p\n", __func__, dev);
return sprintf(buf, "%u.%u.%u.%u\n",
FW_HDR_FW_VER_MAJOR_GET(c4iw_dev->rdev.lldi.fw_vers),
FW_HDR_FW_VER_MINOR_GET(c4iw_dev->rdev.lldi.fw_vers),
FW_HDR_FW_VER_MICRO_GET(c4iw_dev->rdev.lldi.fw_vers),
FW_HDR_FW_VER_BUILD_GET(c4iw_dev->rdev.lldi.fw_vers));
}
static ssize_t show_hca(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct c4iw_dev *c4iw_dev = container_of(dev, struct c4iw_dev,
ibdev.dev);
struct ethtool_drvinfo info;
struct net_device *lldev = c4iw_dev->rdev.lldi.ports[0];
PDBG("%s dev 0x%p\n", __func__, dev);
lldev->ethtool_ops->get_drvinfo(lldev, &info);
return sprintf(buf, "%s\n", info.driver);
}
static ssize_t show_board(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct c4iw_dev *c4iw_dev = container_of(dev, struct c4iw_dev,
ibdev.dev);
PDBG("%s dev 0x%p\n", __func__, dev);
return sprintf(buf, "%x.%x\n", c4iw_dev->rdev.lldi.pdev->vendor,
c4iw_dev->rdev.lldi.pdev->device);
}
static int c4iw_get_mib(struct ib_device *ibdev,
union rdma_protocol_stats *stats)
{
return -ENOSYS;
}
static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL);
static DEVICE_ATTR(fw_ver, S_IRUGO, show_fw_ver, NULL);
static DEVICE_ATTR(hca_type, S_IRUGO, show_hca, NULL);
static DEVICE_ATTR(board_id, S_IRUGO, show_board, NULL);
static struct device_attribute *c4iw_class_attributes[] = {
&dev_attr_hw_rev,
&dev_attr_fw_ver,
&dev_attr_hca_type,
&dev_attr_board_id,
};
int c4iw_register_device(struct c4iw_dev *dev)
{
int ret;
int i;
PDBG("%s c4iw_dev %p\n", __func__, dev);
BUG_ON(!dev->rdev.lldi.ports[0]);
strlcpy(dev->ibdev.name, "cxgb4_%d", IB_DEVICE_NAME_MAX);
memset(&dev->ibdev.node_guid, 0, sizeof(dev->ibdev.node_guid));
memcpy(&dev->ibdev.node_guid, dev->rdev.lldi.ports[0]->dev_addr, 6);
dev->ibdev.owner = THIS_MODULE;
dev->device_cap_flags = IB_DEVICE_LOCAL_DMA_LKEY | IB_DEVICE_MEM_WINDOW;
if (fastreg_support)
dev->device_cap_flags |= IB_DEVICE_MEM_MGT_EXTENSIONS;
dev->ibdev.local_dma_lkey = 0;
dev->ibdev.uverbs_cmd_mask =
(1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
(1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
(1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_REG_MR) |
(1ull << IB_USER_VERBS_CMD_DEREG_MR) |
(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
(1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
(1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_QP) |
(1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
(1ull << IB_USER_VERBS_CMD_POLL_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
(1ull << IB_USER_VERBS_CMD_POST_SEND) |
(1ull << IB_USER_VERBS_CMD_POST_RECV);
dev->ibdev.node_type = RDMA_NODE_RNIC;
memcpy(dev->ibdev.node_desc, C4IW_NODE_DESC, sizeof(C4IW_NODE_DESC));
dev->ibdev.phys_port_cnt = dev->rdev.lldi.nports;
dev->ibdev.num_comp_vectors = 1;
dev->ibdev.dma_device = &(dev->rdev.lldi.pdev->dev);
dev->ibdev.query_device = c4iw_query_device;
dev->ibdev.query_port = c4iw_query_port;
dev->ibdev.modify_port = c4iw_modify_port;
dev->ibdev.query_pkey = c4iw_query_pkey;
dev->ibdev.query_gid = c4iw_query_gid;
dev->ibdev.alloc_ucontext = c4iw_alloc_ucontext;
dev->ibdev.dealloc_ucontext = c4iw_dealloc_ucontext;
dev->ibdev.mmap = c4iw_mmap;
dev->ibdev.alloc_pd = c4iw_allocate_pd;
dev->ibdev.dealloc_pd = c4iw_deallocate_pd;
dev->ibdev.create_ah = c4iw_ah_create;
dev->ibdev.destroy_ah = c4iw_ah_destroy;
dev->ibdev.create_qp = c4iw_create_qp;
dev->ibdev.modify_qp = c4iw_ib_modify_qp;
dev->ibdev.destroy_qp = c4iw_destroy_qp;
dev->ibdev.create_cq = c4iw_create_cq;
dev->ibdev.destroy_cq = c4iw_destroy_cq;
dev->ibdev.resize_cq = c4iw_resize_cq;
dev->ibdev.poll_cq = c4iw_poll_cq;
dev->ibdev.get_dma_mr = c4iw_get_dma_mr;
dev->ibdev.reg_phys_mr = c4iw_register_phys_mem;
dev->ibdev.rereg_phys_mr = c4iw_reregister_phys_mem;
dev->ibdev.reg_user_mr = c4iw_reg_user_mr;
dev->ibdev.dereg_mr = c4iw_dereg_mr;
dev->ibdev.alloc_mw = c4iw_alloc_mw;
dev->ibdev.bind_mw = c4iw_bind_mw;
dev->ibdev.dealloc_mw = c4iw_dealloc_mw;
dev->ibdev.alloc_fast_reg_mr = c4iw_alloc_fast_reg_mr;
dev->ibdev.alloc_fast_reg_page_list = c4iw_alloc_fastreg_pbl;
dev->ibdev.free_fast_reg_page_list = c4iw_free_fastreg_pbl;
dev->ibdev.attach_mcast = c4iw_multicast_attach;
dev->ibdev.detach_mcast = c4iw_multicast_detach;
dev->ibdev.process_mad = c4iw_process_mad;
dev->ibdev.req_notify_cq = c4iw_arm_cq;
dev->ibdev.post_send = c4iw_post_send;
dev->ibdev.post_recv = c4iw_post_receive;
dev->ibdev.get_protocol_stats = c4iw_get_mib;
dev->ibdev.iwcm = kmalloc(sizeof(struct iw_cm_verbs), GFP_KERNEL);
if (!dev->ibdev.iwcm)
return -ENOMEM;
dev->ibdev.iwcm->connect = c4iw_connect;
dev->ibdev.iwcm->accept = c4iw_accept_cr;
dev->ibdev.iwcm->reject = c4iw_reject_cr;
dev->ibdev.iwcm->create_listen = c4iw_create_listen;
dev->ibdev.iwcm->destroy_listen = c4iw_destroy_listen;
dev->ibdev.iwcm->add_ref = c4iw_qp_add_ref;
dev->ibdev.iwcm->rem_ref = c4iw_qp_rem_ref;
dev->ibdev.iwcm->get_qp = c4iw_get_qp;
ret = ib_register_device(&dev->ibdev);
if (ret)
goto bail1;
for (i = 0; i < ARRAY_SIZE(c4iw_class_attributes); ++i) {
ret = device_create_file(&dev->ibdev.dev,
c4iw_class_attributes[i]);
if (ret)
goto bail2;
}
return 0;
bail2:
ib_unregister_device(&dev->ibdev);
bail1:
kfree(dev->ibdev.iwcm);
return ret;
}
void c4iw_unregister_device(struct c4iw_dev *dev)
{
int i;
PDBG("%s c4iw_dev %p\n", __func__, dev);
for (i = 0; i < ARRAY_SIZE(c4iw_class_attributes); ++i)
device_remove_file(&dev->ibdev.dev,
c4iw_class_attributes[i]);
ib_unregister_device(&dev->ibdev);
kfree(dev->ibdev.iwcm);
return;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,417 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* Crude resource management */
#include <linux/kernel.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/kfifo.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/genalloc.h>
#include "iw_cxgb4.h"
#define RANDOM_SIZE 16
static int __c4iw_init_resource_fifo(struct kfifo *fifo,
spinlock_t *fifo_lock,
u32 nr, u32 skip_low,
u32 skip_high,
int random)
{
u32 i, j, entry = 0, idx;
u32 random_bytes;
u32 rarray[16];
spin_lock_init(fifo_lock);
if (kfifo_alloc(fifo, nr * sizeof(u32), GFP_KERNEL))
return -ENOMEM;
for (i = 0; i < skip_low + skip_high; i++)
kfifo_in(fifo, (unsigned char *) &entry, sizeof(u32));
if (random) {
j = 0;
random_bytes = random32();
for (i = 0; i < RANDOM_SIZE; i++)
rarray[i] = i + skip_low;
for (i = skip_low + RANDOM_SIZE; i < nr - skip_high; i++) {
if (j >= RANDOM_SIZE) {
j = 0;
random_bytes = random32();
}
idx = (random_bytes >> (j * 2)) & 0xF;
kfifo_in(fifo,
(unsigned char *) &rarray[idx],
sizeof(u32));
rarray[idx] = i;
j++;
}
for (i = 0; i < RANDOM_SIZE; i++)
kfifo_in(fifo,
(unsigned char *) &rarray[i],
sizeof(u32));
} else
for (i = skip_low; i < nr - skip_high; i++)
kfifo_in(fifo, (unsigned char *) &i, sizeof(u32));
for (i = 0; i < skip_low + skip_high; i++)
if (kfifo_out_locked(fifo, (unsigned char *) &entry,
sizeof(u32), fifo_lock))
break;
return 0;
}
static int c4iw_init_resource_fifo(struct kfifo *fifo, spinlock_t * fifo_lock,
u32 nr, u32 skip_low, u32 skip_high)
{
return __c4iw_init_resource_fifo(fifo, fifo_lock, nr, skip_low,
skip_high, 0);
}
static int c4iw_init_resource_fifo_random(struct kfifo *fifo,
spinlock_t *fifo_lock,
u32 nr, u32 skip_low, u32 skip_high)
{
return __c4iw_init_resource_fifo(fifo, fifo_lock, nr, skip_low,
skip_high, 1);
}
static int c4iw_init_qid_fifo(struct c4iw_rdev *rdev)
{
u32 i;
spin_lock_init(&rdev->resource.qid_fifo_lock);
if (kfifo_alloc(&rdev->resource.qid_fifo, T4_MAX_QIDS * sizeof(u32),
GFP_KERNEL))
return -ENOMEM;
for (i = T4_QID_BASE; i < T4_QID_BASE + T4_MAX_QIDS; i++)
if (!(i & rdev->qpmask))
kfifo_in(&rdev->resource.qid_fifo,
(unsigned char *) &i, sizeof(u32));
return 0;
}
/* nr_* must be power of 2 */
int c4iw_init_resource(struct c4iw_rdev *rdev, u32 nr_tpt, u32 nr_pdid)
{
int err = 0;
err = c4iw_init_resource_fifo_random(&rdev->resource.tpt_fifo,
&rdev->resource.tpt_fifo_lock,
nr_tpt, 1, 0);
if (err)
goto tpt_err;
err = c4iw_init_qid_fifo(rdev);
if (err)
goto qid_err;
err = c4iw_init_resource_fifo(&rdev->resource.pdid_fifo,
&rdev->resource.pdid_fifo_lock,
nr_pdid, 1, 0);
if (err)
goto pdid_err;
return 0;
pdid_err:
kfifo_free(&rdev->resource.qid_fifo);
qid_err:
kfifo_free(&rdev->resource.tpt_fifo);
tpt_err:
return -ENOMEM;
}
/*
* returns 0 if no resource available
*/
u32 c4iw_get_resource(struct kfifo *fifo, spinlock_t *lock)
{
u32 entry;
if (kfifo_out_locked(fifo, (unsigned char *) &entry, sizeof(u32), lock))
return entry;
else
return 0;
}
void c4iw_put_resource(struct kfifo *fifo, u32 entry, spinlock_t *lock)
{
PDBG("%s entry 0x%x\n", __func__, entry);
kfifo_in_locked(fifo, (unsigned char *) &entry, sizeof(u32), lock);
}
u32 c4iw_get_cqid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx)
{
struct c4iw_qid_list *entry;
u32 qid;
int i;
mutex_lock(&uctx->lock);
if (!list_empty(&uctx->cqids)) {
entry = list_entry(uctx->cqids.next, struct c4iw_qid_list,
entry);
list_del(&entry->entry);
qid = entry->qid;
kfree(entry);
} else {
qid = c4iw_get_resource(&rdev->resource.qid_fifo,
&rdev->resource.qid_fifo_lock);
if (!qid)
goto out;
for (i = qid+1; i & rdev->qpmask; i++) {
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = i;
list_add_tail(&entry->entry, &uctx->cqids);
}
/*
* now put the same ids on the qp list since they all
* map to the same db/gts page.
*/
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = qid;
list_add_tail(&entry->entry, &uctx->qpids);
for (i = qid+1; i & rdev->qpmask; i++) {
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = i;
list_add_tail(&entry->entry, &uctx->qpids);
}
}
out:
mutex_unlock(&uctx->lock);
PDBG("%s qid 0x%x\n", __func__, qid);
return qid;
}
void c4iw_put_cqid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx)
{
struct c4iw_qid_list *entry;
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
return;
PDBG("%s qid 0x%x\n", __func__, qid);
entry->qid = qid;
mutex_lock(&uctx->lock);
list_add_tail(&entry->entry, &uctx->cqids);
mutex_unlock(&uctx->lock);
}
u32 c4iw_get_qpid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx)
{
struct c4iw_qid_list *entry;
u32 qid;
int i;
mutex_lock(&uctx->lock);
if (!list_empty(&uctx->qpids)) {
entry = list_entry(uctx->qpids.next, struct c4iw_qid_list,
entry);
list_del(&entry->entry);
qid = entry->qid;
kfree(entry);
} else {
qid = c4iw_get_resource(&rdev->resource.qid_fifo,
&rdev->resource.qid_fifo_lock);
if (!qid)
goto out;
for (i = qid+1; i & rdev->qpmask; i++) {
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = i;
list_add_tail(&entry->entry, &uctx->qpids);
}
/*
* now put the same ids on the cq list since they all
* map to the same db/gts page.
*/
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = qid;
list_add_tail(&entry->entry, &uctx->cqids);
for (i = qid; i & rdev->qpmask; i++) {
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
goto out;
entry->qid = i;
list_add_tail(&entry->entry, &uctx->cqids);
}
}
out:
mutex_unlock(&uctx->lock);
PDBG("%s qid 0x%x\n", __func__, qid);
return qid;
}
void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx)
{
struct c4iw_qid_list *entry;
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
return;
PDBG("%s qid 0x%x\n", __func__, qid);
entry->qid = qid;
mutex_lock(&uctx->lock);
list_add_tail(&entry->entry, &uctx->qpids);
mutex_unlock(&uctx->lock);
}
void c4iw_destroy_resource(struct c4iw_resource *rscp)
{
kfifo_free(&rscp->tpt_fifo);
kfifo_free(&rscp->qid_fifo);
kfifo_free(&rscp->pdid_fifo);
}
/*
* PBL Memory Manager. Uses Linux generic allocator.
*/
#define MIN_PBL_SHIFT 8 /* 256B == min PBL size (32 entries) */
u32 c4iw_pblpool_alloc(struct c4iw_rdev *rdev, int size)
{
unsigned long addr = gen_pool_alloc(rdev->pbl_pool, size);
PDBG("%s addr 0x%x size %d\n", __func__, (u32)addr, size);
return (u32)addr;
}
void c4iw_pblpool_free(struct c4iw_rdev *rdev, u32 addr, int size)
{
PDBG("%s addr 0x%x size %d\n", __func__, addr, size);
gen_pool_free(rdev->pbl_pool, (unsigned long)addr, size);
}
int c4iw_pblpool_create(struct c4iw_rdev *rdev)
{
unsigned pbl_start, pbl_chunk, pbl_top;
rdev->pbl_pool = gen_pool_create(MIN_PBL_SHIFT, -1);
if (!rdev->pbl_pool)
return -ENOMEM;
pbl_start = rdev->lldi.vr->pbl.start;
pbl_chunk = rdev->lldi.vr->pbl.size;
pbl_top = pbl_start + pbl_chunk;
while (pbl_start < pbl_top) {
pbl_chunk = min(pbl_top - pbl_start + 1, pbl_chunk);
if (gen_pool_add(rdev->pbl_pool, pbl_start, pbl_chunk, -1)) {
PDBG("%s failed to add PBL chunk (%x/%x)\n",
__func__, pbl_start, pbl_chunk);
if (pbl_chunk <= 1024 << MIN_PBL_SHIFT) {
printk(KERN_WARNING MOD
"Failed to add all PBL chunks (%x/%x)\n",
pbl_start,
pbl_top - pbl_start);
return 0;
}
pbl_chunk >>= 1;
} else {
PDBG("%s added PBL chunk (%x/%x)\n",
__func__, pbl_start, pbl_chunk);
pbl_start += pbl_chunk;
}
}
return 0;
}
void c4iw_pblpool_destroy(struct c4iw_rdev *rdev)
{
gen_pool_destroy(rdev->pbl_pool);
}
/*
* RQT Memory Manager. Uses Linux generic allocator.
*/
#define MIN_RQT_SHIFT 10 /* 1KB == min RQT size (16 entries) */
u32 c4iw_rqtpool_alloc(struct c4iw_rdev *rdev, int size)
{
unsigned long addr = gen_pool_alloc(rdev->rqt_pool, size << 6);
PDBG("%s addr 0x%x size %d\n", __func__, (u32)addr, size << 6);
return (u32)addr;
}
void c4iw_rqtpool_free(struct c4iw_rdev *rdev, u32 addr, int size)
{
PDBG("%s addr 0x%x size %d\n", __func__, addr, size << 6);
gen_pool_free(rdev->rqt_pool, (unsigned long)addr, size << 6);
}
int c4iw_rqtpool_create(struct c4iw_rdev *rdev)
{
unsigned rqt_start, rqt_chunk, rqt_top;
rdev->rqt_pool = gen_pool_create(MIN_RQT_SHIFT, -1);
if (!rdev->rqt_pool)
return -ENOMEM;
rqt_start = rdev->lldi.vr->rq.start;
rqt_chunk = rdev->lldi.vr->rq.size;
rqt_top = rqt_start + rqt_chunk;
while (rqt_start < rqt_top) {
rqt_chunk = min(rqt_top - rqt_start + 1, rqt_chunk);
if (gen_pool_add(rdev->rqt_pool, rqt_start, rqt_chunk, -1)) {
PDBG("%s failed to add RQT chunk (%x/%x)\n",
__func__, rqt_start, rqt_chunk);
if (rqt_chunk <= 1024 << MIN_RQT_SHIFT) {
printk(KERN_WARNING MOD
"Failed to add all RQT chunks (%x/%x)\n",
rqt_start, rqt_top - rqt_start);
return 0;
}
rqt_chunk >>= 1;
} else {
PDBG("%s added RQT chunk (%x/%x)\n",
__func__, rqt_start, rqt_chunk);
rqt_start += rqt_chunk;
}
}
return 0;
}
void c4iw_rqtpool_destroy(struct c4iw_rdev *rdev)
{
gen_pool_destroy(rdev->rqt_pool);
}

View File

@ -0,0 +1,550 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __T4_H__
#define __T4_H__
#include "t4_hw.h"
#include "t4_regs.h"
#include "t4_msg.h"
#include "t4fw_ri_api.h"
#define T4_QID_BASE 1024
#define T4_MAX_QIDS 256
#define T4_MAX_NUM_QP (1<<16)
#define T4_MAX_NUM_CQ (1<<15)
#define T4_MAX_NUM_PD (1<<15)
#define T4_MAX_PBL_SIZE 256
#define T4_MAX_RQ_SIZE 1024
#define T4_MAX_SQ_SIZE 1024
#define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE-1)
#define T4_MAX_CQ_DEPTH 8192
#define T4_MAX_NUM_STAG (1<<15)
#define T4_MAX_MR_SIZE (~0ULL - 1)
#define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
#define T4_STAG_UNSET 0xffffffff
#define T4_FW_MAJ 0
#define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
struct t4_status_page {
__be32 rsvd1; /* flit 0 - hw owns */
__be16 rsvd2;
__be16 qid;
__be16 cidx;
__be16 pidx;
u8 qp_err; /* flit 1 - sw owns */
u8 db_off;
};
#define T4_EQ_SIZE 64
#define T4_SQ_NUM_SLOTS 4
#define T4_SQ_NUM_BYTES (T4_EQ_SIZE * T4_SQ_NUM_SLOTS)
#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
sizeof(struct fw_ri_immd)))
#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
sizeof(struct fw_ri_rdma_write_wr) - \
sizeof(struct fw_ri_immd)))
#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
sizeof(struct fw_ri_rdma_write_wr) - \
sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
sizeof(struct fw_ri_immd)))
#define T4_MAX_FR_DEPTH 255
#define T4_RQ_NUM_SLOTS 2
#define T4_RQ_NUM_BYTES (T4_EQ_SIZE * T4_RQ_NUM_SLOTS)
#define T4_MAX_RECV_SGE ((T4_RQ_NUM_BYTES - sizeof(struct fw_ri_recv_wr) - \
sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
union t4_wr {
struct fw_ri_res_wr res;
struct fw_ri_wr ri;
struct fw_ri_rdma_write_wr write;
struct fw_ri_send_wr send;
struct fw_ri_rdma_read_wr read;
struct fw_ri_bind_mw_wr bind;
struct fw_ri_fr_nsmr_wr fr;
struct fw_ri_inv_lstag_wr inv;
struct t4_status_page status;
__be64 flits[T4_EQ_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
};
union t4_recv_wr {
struct fw_ri_recv_wr recv;
struct t4_status_page status;
__be64 flits[T4_EQ_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
};
static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
enum fw_wr_opcodes opcode, u8 flags, u8 len16)
{
int slots_used;
wqe->send.opcode = (u8)opcode;
wqe->send.flags = flags;
wqe->send.wrid = wrid;
wqe->send.r1[0] = 0;
wqe->send.r1[1] = 0;
wqe->send.r1[2] = 0;
wqe->send.len16 = len16;
slots_used = DIV_ROUND_UP(len16*16, T4_EQ_SIZE);
while (slots_used < T4_SQ_NUM_SLOTS) {
wqe->flits[slots_used * T4_EQ_SIZE / sizeof(__be64)] = 0;
slots_used++;
}
}
/* CQE/AE status codes */
#define T4_ERR_SUCCESS 0x0
#define T4_ERR_STAG 0x1 /* STAG invalid: either the */
/* STAG is offlimt, being 0, */
/* or STAG_key mismatch */
#define T4_ERR_PDID 0x2 /* PDID mismatch */
#define T4_ERR_QPID 0x3 /* QPID mismatch */
#define T4_ERR_ACCESS 0x4 /* Invalid access right */
#define T4_ERR_WRAP 0x5 /* Wrap error */
#define T4_ERR_BOUND 0x6 /* base and bounds voilation */
#define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
/* shared memory region */
#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
/* shared memory region */
#define T4_ERR_ECC 0x9 /* ECC error detected */
#define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
/* reading PSTAG for a MW */
/* Invalidate */
#define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
/* software error */
#define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
#define T4_ERR_CRC 0x10 /* CRC error */
#define T4_ERR_MARKER 0x11 /* Marker error */
#define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
#define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
#define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
#define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
#define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
#define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
#define T4_ERR_MSN 0x18 /* MSN error */
#define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
#define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
/* or READ_REQ */
#define T4_ERR_MSN_GAP 0x1B
#define T4_ERR_MSN_RANGE 0x1C
#define T4_ERR_IRD_OVERFLOW 0x1D
#define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
/* software error */
#define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
/* mismatch) */
/*
* CQE defs
*/
struct t4_cqe {
__be32 header;
__be32 len;
union {
struct {
__be32 stag;
__be32 msn;
} rcqe;
struct {
u32 nada1;
u16 nada2;
u16 cidx;
} scqe;
struct {
__be32 wrid_hi;
__be32 wrid_low;
} gen;
} u;
__be64 reserved;
__be64 bits_type_ts;
};
/* macros for flit 0 of the cqe */
#define S_CQE_QPID 12
#define M_CQE_QPID 0xFFFFF
#define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
#define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
#define S_CQE_SWCQE 11
#define M_CQE_SWCQE 0x1
#define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
#define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
#define S_CQE_STATUS 5
#define M_CQE_STATUS 0x1F
#define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
#define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
#define S_CQE_TYPE 4
#define M_CQE_TYPE 0x1
#define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
#define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
#define S_CQE_OPCODE 0
#define M_CQE_OPCODE 0xF
#define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
#define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
#define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
#define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
#define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
#define SQ_TYPE(x) (CQE_TYPE((x)))
#define RQ_TYPE(x) (!CQE_TYPE((x)))
#define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
#define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
#define CQE_SEND_OPCODE(x)( \
(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
#define CQE_LEN(x) (be32_to_cpu((x)->len))
/* used for RQ completion processing */
#define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
#define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
/* used for SQ completion processing */
#define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
/* generic accessor macros */
#define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
#define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
/* macros for flit 3 of the cqe */
#define S_CQE_GENBIT 63
#define M_CQE_GENBIT 0x1
#define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
#define S_CQE_OVFBIT 62
#define M_CQE_OVFBIT 0x1
#define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
#define S_CQE_IQTYPE 60
#define M_CQE_IQTYPE 0x3
#define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
#define M_CQE_TS 0x0fffffffffffffffULL
#define G_CQE_TS(x) ((x) & M_CQE_TS)
#define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
#define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
#define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
struct t4_swsqe {
u64 wr_id;
struct t4_cqe cqe;
int read_len;
int opcode;
int complete;
int signaled;
u16 idx;
};
struct t4_sq {
union t4_wr *queue;
dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping);
struct t4_swsqe *sw_sq;
struct t4_swsqe *oldest_read;
u64 udb;
size_t memsize;
u32 qid;
u16 in_use;
u16 size;
u16 cidx;
u16 pidx;
};
struct t4_swrqe {
u64 wr_id;
};
struct t4_rq {
union t4_recv_wr *queue;
dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping);
struct t4_swrqe *sw_rq;
u64 udb;
size_t memsize;
u32 qid;
u32 msn;
u32 rqt_hwaddr;
u16 rqt_size;
u16 in_use;
u16 size;
u16 cidx;
u16 pidx;
};
struct t4_wq {
struct t4_sq sq;
struct t4_rq rq;
void __iomem *db;
void __iomem *gts;
struct c4iw_rdev *rdev;
};
static inline int t4_rqes_posted(struct t4_wq *wq)
{
return wq->rq.in_use;
}
static inline int t4_rq_empty(struct t4_wq *wq)
{
return wq->rq.in_use == 0;
}
static inline int t4_rq_full(struct t4_wq *wq)
{
return wq->rq.in_use == (wq->rq.size - 1);
}
static inline u32 t4_rq_avail(struct t4_wq *wq)
{
return wq->rq.size - 1 - wq->rq.in_use;
}
static inline void t4_rq_produce(struct t4_wq *wq)
{
wq->rq.in_use++;
if (++wq->rq.pidx == wq->rq.size)
wq->rq.pidx = 0;
}
static inline void t4_rq_consume(struct t4_wq *wq)
{
wq->rq.in_use--;
wq->rq.msn++;
if (++wq->rq.cidx == wq->rq.size)
wq->rq.cidx = 0;
}
static inline int t4_sq_empty(struct t4_wq *wq)
{
return wq->sq.in_use == 0;
}
static inline int t4_sq_full(struct t4_wq *wq)
{
return wq->sq.in_use == (wq->sq.size - 1);
}
static inline u32 t4_sq_avail(struct t4_wq *wq)
{
return wq->sq.size - 1 - wq->sq.in_use;
}
static inline void t4_sq_produce(struct t4_wq *wq)
{
wq->sq.in_use++;
if (++wq->sq.pidx == wq->sq.size)
wq->sq.pidx = 0;
}
static inline void t4_sq_consume(struct t4_wq *wq)
{
wq->sq.in_use--;
if (++wq->sq.cidx == wq->sq.size)
wq->sq.cidx = 0;
}
static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
{
inc *= T4_SQ_NUM_SLOTS;
wmb();
writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
}
static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
{
inc *= T4_RQ_NUM_SLOTS;
wmb();
writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
}
static inline int t4_wq_in_error(struct t4_wq *wq)
{
return wq->sq.queue[wq->sq.size].status.qp_err;
}
static inline void t4_set_wq_in_error(struct t4_wq *wq)
{
wq->sq.queue[wq->sq.size].status.qp_err = 1;
wq->rq.queue[wq->rq.size].status.qp_err = 1;
}
static inline void t4_disable_wq_db(struct t4_wq *wq)
{
wq->sq.queue[wq->sq.size].status.db_off = 1;
wq->rq.queue[wq->rq.size].status.db_off = 1;
}
static inline void t4_enable_wq_db(struct t4_wq *wq)
{
wq->sq.queue[wq->sq.size].status.db_off = 0;
wq->rq.queue[wq->rq.size].status.db_off = 0;
}
static inline int t4_wq_db_enabled(struct t4_wq *wq)
{
return !wq->sq.queue[wq->sq.size].status.db_off;
}
struct t4_cq {
struct t4_cqe *queue;
dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping);
struct t4_cqe *sw_queue;
void __iomem *gts;
struct c4iw_rdev *rdev;
u64 ugts;
size_t memsize;
u64 timestamp;
u32 cqid;
u16 size; /* including status page */
u16 cidx;
u16 sw_pidx;
u16 sw_cidx;
u16 sw_in_use;
u16 cidx_inc;
u8 gen;
u8 error;
};
static inline int t4_arm_cq(struct t4_cq *cq, int se)
{
u32 val;
u16 inc;
do {
/*
* inc must be less the both the max update value -and-
* the size of the CQ.
*/
inc = cq->cidx_inc <= CIDXINC_MASK ? cq->cidx_inc :
CIDXINC_MASK;
inc = inc <= (cq->size - 1) ? inc : (cq->size - 1);
if (inc == cq->cidx_inc)
val = SEINTARM(se) | CIDXINC(inc) | TIMERREG(6) |
INGRESSQID(cq->cqid);
else
val = SEINTARM(0) | CIDXINC(inc) | TIMERREG(7) |
INGRESSQID(cq->cqid);
cq->cidx_inc -= inc;
writel(val, cq->gts);
} while (cq->cidx_inc);
return 0;
}
static inline void t4_swcq_produce(struct t4_cq *cq)
{
cq->sw_in_use++;
if (++cq->sw_pidx == cq->size)
cq->sw_pidx = 0;
}
static inline void t4_swcq_consume(struct t4_cq *cq)
{
cq->sw_in_use--;
if (++cq->sw_cidx == cq->size)
cq->sw_cidx = 0;
}
static inline void t4_hwcq_consume(struct t4_cq *cq)
{
cq->cidx_inc++;
if (++cq->cidx == cq->size) {
cq->cidx = 0;
cq->gen ^= 1;
}
}
static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
{
return (CQE_GENBIT(cqe) == cq->gen);
}
static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
{
int ret = 0;
u64 bits_type_ts = be64_to_cpu(cq->queue[cq->cidx].bits_type_ts);
if (G_CQE_GENBIT(bits_type_ts) == cq->gen) {
*cqe = &cq->queue[cq->cidx];
cq->timestamp = G_CQE_TS(bits_type_ts);
} else if (G_CQE_TS(bits_type_ts) > cq->timestamp)
ret = -EOVERFLOW;
else
ret = -ENODATA;
if (ret == -EOVERFLOW) {
printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
cq->error = 1;
}
return ret;
}
static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
{
if (cq->sw_in_use)
return &cq->sw_queue[cq->sw_cidx];
return NULL;
}
static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
{
int ret = 0;
if (cq->error)
ret = -ENODATA;
else if (cq->sw_in_use)
*cqe = &cq->sw_queue[cq->sw_cidx];
else
ret = t4_next_hw_cqe(cq, cqe);
return ret;
}
static inline int t4_cq_in_error(struct t4_cq *cq)
{
return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
}
static inline void t4_set_cq_in_error(struct t4_cq *cq)
{
((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
}
#endif

View File

@ -0,0 +1,829 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _T4FW_RI_API_H_
#define _T4FW_RI_API_H_
#include "t4fw_api.h"
enum fw_ri_wr_opcode {
FW_RI_RDMA_WRITE = 0x0, /* IETF RDMAP v1.0 ... */
FW_RI_READ_REQ = 0x1,
FW_RI_READ_RESP = 0x2,
FW_RI_SEND = 0x3,
FW_RI_SEND_WITH_INV = 0x4,
FW_RI_SEND_WITH_SE = 0x5,
FW_RI_SEND_WITH_SE_INV = 0x6,
FW_RI_TERMINATE = 0x7,
FW_RI_RDMA_INIT = 0x8, /* CHELSIO RI specific ... */
FW_RI_BIND_MW = 0x9,
FW_RI_FAST_REGISTER = 0xa,
FW_RI_LOCAL_INV = 0xb,
FW_RI_QP_MODIFY = 0xc,
FW_RI_BYPASS = 0xd,
FW_RI_RECEIVE = 0xe,
FW_RI_SGE_EC_CR_RETURN = 0xf
};
enum fw_ri_wr_flags {
FW_RI_COMPLETION_FLAG = 0x01,
FW_RI_NOTIFICATION_FLAG = 0x02,
FW_RI_SOLICITED_EVENT_FLAG = 0x04,
FW_RI_READ_FENCE_FLAG = 0x08,
FW_RI_LOCAL_FENCE_FLAG = 0x10,
FW_RI_RDMA_READ_INVALIDATE = 0x20
};
enum fw_ri_mpa_attrs {
FW_RI_MPA_RX_MARKER_ENABLE = 0x01,
FW_RI_MPA_TX_MARKER_ENABLE = 0x02,
FW_RI_MPA_CRC_ENABLE = 0x04,
FW_RI_MPA_IETF_ENABLE = 0x08
};
enum fw_ri_qp_caps {
FW_RI_QP_RDMA_READ_ENABLE = 0x01,
FW_RI_QP_RDMA_WRITE_ENABLE = 0x02,
FW_RI_QP_BIND_ENABLE = 0x04,
FW_RI_QP_FAST_REGISTER_ENABLE = 0x08,
FW_RI_QP_STAG0_ENABLE = 0x10
};
enum fw_ri_addr_type {
FW_RI_ZERO_BASED_TO = 0x00,
FW_RI_VA_BASED_TO = 0x01
};
enum fw_ri_mem_perms {
FW_RI_MEM_ACCESS_REM_WRITE = 0x01,
FW_RI_MEM_ACCESS_REM_READ = 0x02,
FW_RI_MEM_ACCESS_REM = 0x03,
FW_RI_MEM_ACCESS_LOCAL_WRITE = 0x04,
FW_RI_MEM_ACCESS_LOCAL_READ = 0x08,
FW_RI_MEM_ACCESS_LOCAL = 0x0C
};
enum fw_ri_stag_type {
FW_RI_STAG_NSMR = 0x00,
FW_RI_STAG_SMR = 0x01,
FW_RI_STAG_MW = 0x02,
FW_RI_STAG_MW_RELAXED = 0x03
};
enum fw_ri_data_op {
FW_RI_DATA_IMMD = 0x81,
FW_RI_DATA_DSGL = 0x82,
FW_RI_DATA_ISGL = 0x83
};
enum fw_ri_sgl_depth {
FW_RI_SGL_DEPTH_MAX_SQ = 16,
FW_RI_SGL_DEPTH_MAX_RQ = 4
};
struct fw_ri_dsge_pair {
__be32 len[2];
__be64 addr[2];
};
struct fw_ri_dsgl {
__u8 op;
__u8 r1;
__be16 nsge;
__be32 len0;
__be64 addr0;
#ifndef C99_NOT_SUPPORTED
struct fw_ri_dsge_pair sge[0];
#endif
};
struct fw_ri_sge {
__be32 stag;
__be32 len;
__be64 to;
};
struct fw_ri_isgl {
__u8 op;
__u8 r1;
__be16 nsge;
__be32 r2;
#ifndef C99_NOT_SUPPORTED
struct fw_ri_sge sge[0];
#endif
};
struct fw_ri_immd {
__u8 op;
__u8 r1;
__be16 r2;
__be32 immdlen;
#ifndef C99_NOT_SUPPORTED
__u8 data[0];
#endif
};
struct fw_ri_tpte {
__be32 valid_to_pdid;
__be32 locread_to_qpid;
__be32 nosnoop_pbladdr;
__be32 len_lo;
__be32 va_hi;
__be32 va_lo_fbo;
__be32 dca_mwbcnt_pstag;
__be32 len_hi;
};
#define S_FW_RI_TPTE_VALID 31
#define M_FW_RI_TPTE_VALID 0x1
#define V_FW_RI_TPTE_VALID(x) ((x) << S_FW_RI_TPTE_VALID)
#define G_FW_RI_TPTE_VALID(x) \
(((x) >> S_FW_RI_TPTE_VALID) & M_FW_RI_TPTE_VALID)
#define F_FW_RI_TPTE_VALID V_FW_RI_TPTE_VALID(1U)
#define S_FW_RI_TPTE_STAGKEY 23
#define M_FW_RI_TPTE_STAGKEY 0xff
#define V_FW_RI_TPTE_STAGKEY(x) ((x) << S_FW_RI_TPTE_STAGKEY)
#define G_FW_RI_TPTE_STAGKEY(x) \
(((x) >> S_FW_RI_TPTE_STAGKEY) & M_FW_RI_TPTE_STAGKEY)
#define S_FW_RI_TPTE_STAGSTATE 22
#define M_FW_RI_TPTE_STAGSTATE 0x1
#define V_FW_RI_TPTE_STAGSTATE(x) ((x) << S_FW_RI_TPTE_STAGSTATE)
#define G_FW_RI_TPTE_STAGSTATE(x) \
(((x) >> S_FW_RI_TPTE_STAGSTATE) & M_FW_RI_TPTE_STAGSTATE)
#define F_FW_RI_TPTE_STAGSTATE V_FW_RI_TPTE_STAGSTATE(1U)
#define S_FW_RI_TPTE_STAGTYPE 20
#define M_FW_RI_TPTE_STAGTYPE 0x3
#define V_FW_RI_TPTE_STAGTYPE(x) ((x) << S_FW_RI_TPTE_STAGTYPE)
#define G_FW_RI_TPTE_STAGTYPE(x) \
(((x) >> S_FW_RI_TPTE_STAGTYPE) & M_FW_RI_TPTE_STAGTYPE)
#define S_FW_RI_TPTE_PDID 0
#define M_FW_RI_TPTE_PDID 0xfffff
#define V_FW_RI_TPTE_PDID(x) ((x) << S_FW_RI_TPTE_PDID)
#define G_FW_RI_TPTE_PDID(x) \
(((x) >> S_FW_RI_TPTE_PDID) & M_FW_RI_TPTE_PDID)
#define S_FW_RI_TPTE_PERM 28
#define M_FW_RI_TPTE_PERM 0xf
#define V_FW_RI_TPTE_PERM(x) ((x) << S_FW_RI_TPTE_PERM)
#define G_FW_RI_TPTE_PERM(x) \
(((x) >> S_FW_RI_TPTE_PERM) & M_FW_RI_TPTE_PERM)
#define S_FW_RI_TPTE_REMINVDIS 27
#define M_FW_RI_TPTE_REMINVDIS 0x1
#define V_FW_RI_TPTE_REMINVDIS(x) ((x) << S_FW_RI_TPTE_REMINVDIS)
#define G_FW_RI_TPTE_REMINVDIS(x) \
(((x) >> S_FW_RI_TPTE_REMINVDIS) & M_FW_RI_TPTE_REMINVDIS)
#define F_FW_RI_TPTE_REMINVDIS V_FW_RI_TPTE_REMINVDIS(1U)
#define S_FW_RI_TPTE_ADDRTYPE 26
#define M_FW_RI_TPTE_ADDRTYPE 1
#define V_FW_RI_TPTE_ADDRTYPE(x) ((x) << S_FW_RI_TPTE_ADDRTYPE)
#define G_FW_RI_TPTE_ADDRTYPE(x) \
(((x) >> S_FW_RI_TPTE_ADDRTYPE) & M_FW_RI_TPTE_ADDRTYPE)
#define F_FW_RI_TPTE_ADDRTYPE V_FW_RI_TPTE_ADDRTYPE(1U)
#define S_FW_RI_TPTE_MWBINDEN 25
#define M_FW_RI_TPTE_MWBINDEN 0x1
#define V_FW_RI_TPTE_MWBINDEN(x) ((x) << S_FW_RI_TPTE_MWBINDEN)
#define G_FW_RI_TPTE_MWBINDEN(x) \
(((x) >> S_FW_RI_TPTE_MWBINDEN) & M_FW_RI_TPTE_MWBINDEN)
#define F_FW_RI_TPTE_MWBINDEN V_FW_RI_TPTE_MWBINDEN(1U)
#define S_FW_RI_TPTE_PS 20
#define M_FW_RI_TPTE_PS 0x1f
#define V_FW_RI_TPTE_PS(x) ((x) << S_FW_RI_TPTE_PS)
#define G_FW_RI_TPTE_PS(x) \
(((x) >> S_FW_RI_TPTE_PS) & M_FW_RI_TPTE_PS)
#define S_FW_RI_TPTE_QPID 0
#define M_FW_RI_TPTE_QPID 0xfffff
#define V_FW_RI_TPTE_QPID(x) ((x) << S_FW_RI_TPTE_QPID)
#define G_FW_RI_TPTE_QPID(x) \
(((x) >> S_FW_RI_TPTE_QPID) & M_FW_RI_TPTE_QPID)
#define S_FW_RI_TPTE_NOSNOOP 30
#define M_FW_RI_TPTE_NOSNOOP 0x1
#define V_FW_RI_TPTE_NOSNOOP(x) ((x) << S_FW_RI_TPTE_NOSNOOP)
#define G_FW_RI_TPTE_NOSNOOP(x) \
(((x) >> S_FW_RI_TPTE_NOSNOOP) & M_FW_RI_TPTE_NOSNOOP)
#define F_FW_RI_TPTE_NOSNOOP V_FW_RI_TPTE_NOSNOOP(1U)
#define S_FW_RI_TPTE_PBLADDR 0
#define M_FW_RI_TPTE_PBLADDR 0x1fffffff
#define V_FW_RI_TPTE_PBLADDR(x) ((x) << S_FW_RI_TPTE_PBLADDR)
#define G_FW_RI_TPTE_PBLADDR(x) \
(((x) >> S_FW_RI_TPTE_PBLADDR) & M_FW_RI_TPTE_PBLADDR)
#define S_FW_RI_TPTE_DCA 24
#define M_FW_RI_TPTE_DCA 0x1f
#define V_FW_RI_TPTE_DCA(x) ((x) << S_FW_RI_TPTE_DCA)
#define G_FW_RI_TPTE_DCA(x) \
(((x) >> S_FW_RI_TPTE_DCA) & M_FW_RI_TPTE_DCA)
#define S_FW_RI_TPTE_MWBCNT_PSTAG 0
#define M_FW_RI_TPTE_MWBCNT_PSTAG 0xffffff
#define V_FW_RI_TPTE_MWBCNT_PSTAT(x) \
((x) << S_FW_RI_TPTE_MWBCNT_PSTAG)
#define G_FW_RI_TPTE_MWBCNT_PSTAG(x) \
(((x) >> S_FW_RI_TPTE_MWBCNT_PSTAG) & M_FW_RI_TPTE_MWBCNT_PSTAG)
enum fw_ri_res_type {
FW_RI_RES_TYPE_SQ,
FW_RI_RES_TYPE_RQ,
FW_RI_RES_TYPE_CQ,
};
enum fw_ri_res_op {
FW_RI_RES_OP_WRITE,
FW_RI_RES_OP_RESET,
};
struct fw_ri_res {
union fw_ri_restype {
struct fw_ri_res_sqrq {
__u8 restype;
__u8 op;
__be16 r3;
__be32 eqid;
__be32 r4[2];
__be32 fetchszm_to_iqid;
__be32 dcaen_to_eqsize;
__be64 eqaddr;
} sqrq;
struct fw_ri_res_cq {
__u8 restype;
__u8 op;
__be16 r3;
__be32 iqid;
__be32 r4[2];
__be32 iqandst_to_iqandstindex;
__be16 iqdroprss_to_iqesize;
__be16 iqsize;
__be64 iqaddr;
__be32 iqns_iqro;
__be32 r6_lo;
__be64 r7;
} cq;
} u;
};
struct fw_ri_res_wr {
__be32 op_nres;
__be32 len16_pkd;
__u64 cookie;
#ifndef C99_NOT_SUPPORTED
struct fw_ri_res res[0];
#endif
};
#define S_FW_RI_RES_WR_NRES 0
#define M_FW_RI_RES_WR_NRES 0xff
#define V_FW_RI_RES_WR_NRES(x) ((x) << S_FW_RI_RES_WR_NRES)
#define G_FW_RI_RES_WR_NRES(x) \
(((x) >> S_FW_RI_RES_WR_NRES) & M_FW_RI_RES_WR_NRES)
#define S_FW_RI_RES_WR_FETCHSZM 26
#define M_FW_RI_RES_WR_FETCHSZM 0x1
#define V_FW_RI_RES_WR_FETCHSZM(x) ((x) << S_FW_RI_RES_WR_FETCHSZM)
#define G_FW_RI_RES_WR_FETCHSZM(x) \
(((x) >> S_FW_RI_RES_WR_FETCHSZM) & M_FW_RI_RES_WR_FETCHSZM)
#define F_FW_RI_RES_WR_FETCHSZM V_FW_RI_RES_WR_FETCHSZM(1U)
#define S_FW_RI_RES_WR_STATUSPGNS 25
#define M_FW_RI_RES_WR_STATUSPGNS 0x1
#define V_FW_RI_RES_WR_STATUSPGNS(x) ((x) << S_FW_RI_RES_WR_STATUSPGNS)
#define G_FW_RI_RES_WR_STATUSPGNS(x) \
(((x) >> S_FW_RI_RES_WR_STATUSPGNS) & M_FW_RI_RES_WR_STATUSPGNS)
#define F_FW_RI_RES_WR_STATUSPGNS V_FW_RI_RES_WR_STATUSPGNS(1U)
#define S_FW_RI_RES_WR_STATUSPGRO 24
#define M_FW_RI_RES_WR_STATUSPGRO 0x1
#define V_FW_RI_RES_WR_STATUSPGRO(x) ((x) << S_FW_RI_RES_WR_STATUSPGRO)
#define G_FW_RI_RES_WR_STATUSPGRO(x) \
(((x) >> S_FW_RI_RES_WR_STATUSPGRO) & M_FW_RI_RES_WR_STATUSPGRO)
#define F_FW_RI_RES_WR_STATUSPGRO V_FW_RI_RES_WR_STATUSPGRO(1U)
#define S_FW_RI_RES_WR_FETCHNS 23
#define M_FW_RI_RES_WR_FETCHNS 0x1
#define V_FW_RI_RES_WR_FETCHNS(x) ((x) << S_FW_RI_RES_WR_FETCHNS)
#define G_FW_RI_RES_WR_FETCHNS(x) \
(((x) >> S_FW_RI_RES_WR_FETCHNS) & M_FW_RI_RES_WR_FETCHNS)
#define F_FW_RI_RES_WR_FETCHNS V_FW_RI_RES_WR_FETCHNS(1U)
#define S_FW_RI_RES_WR_FETCHRO 22
#define M_FW_RI_RES_WR_FETCHRO 0x1
#define V_FW_RI_RES_WR_FETCHRO(x) ((x) << S_FW_RI_RES_WR_FETCHRO)
#define G_FW_RI_RES_WR_FETCHRO(x) \
(((x) >> S_FW_RI_RES_WR_FETCHRO) & M_FW_RI_RES_WR_FETCHRO)
#define F_FW_RI_RES_WR_FETCHRO V_FW_RI_RES_WR_FETCHRO(1U)
#define S_FW_RI_RES_WR_HOSTFCMODE 20
#define M_FW_RI_RES_WR_HOSTFCMODE 0x3
#define V_FW_RI_RES_WR_HOSTFCMODE(x) ((x) << S_FW_RI_RES_WR_HOSTFCMODE)
#define G_FW_RI_RES_WR_HOSTFCMODE(x) \
(((x) >> S_FW_RI_RES_WR_HOSTFCMODE) & M_FW_RI_RES_WR_HOSTFCMODE)
#define S_FW_RI_RES_WR_CPRIO 19
#define M_FW_RI_RES_WR_CPRIO 0x1
#define V_FW_RI_RES_WR_CPRIO(x) ((x) << S_FW_RI_RES_WR_CPRIO)
#define G_FW_RI_RES_WR_CPRIO(x) \
(((x) >> S_FW_RI_RES_WR_CPRIO) & M_FW_RI_RES_WR_CPRIO)
#define F_FW_RI_RES_WR_CPRIO V_FW_RI_RES_WR_CPRIO(1U)
#define S_FW_RI_RES_WR_ONCHIP 18
#define M_FW_RI_RES_WR_ONCHIP 0x1
#define V_FW_RI_RES_WR_ONCHIP(x) ((x) << S_FW_RI_RES_WR_ONCHIP)
#define G_FW_RI_RES_WR_ONCHIP(x) \
(((x) >> S_FW_RI_RES_WR_ONCHIP) & M_FW_RI_RES_WR_ONCHIP)
#define F_FW_RI_RES_WR_ONCHIP V_FW_RI_RES_WR_ONCHIP(1U)
#define S_FW_RI_RES_WR_PCIECHN 16
#define M_FW_RI_RES_WR_PCIECHN 0x3
#define V_FW_RI_RES_WR_PCIECHN(x) ((x) << S_FW_RI_RES_WR_PCIECHN)
#define G_FW_RI_RES_WR_PCIECHN(x) \
(((x) >> S_FW_RI_RES_WR_PCIECHN) & M_FW_RI_RES_WR_PCIECHN)
#define S_FW_RI_RES_WR_IQID 0
#define M_FW_RI_RES_WR_IQID 0xffff
#define V_FW_RI_RES_WR_IQID(x) ((x) << S_FW_RI_RES_WR_IQID)
#define G_FW_RI_RES_WR_IQID(x) \
(((x) >> S_FW_RI_RES_WR_IQID) & M_FW_RI_RES_WR_IQID)
#define S_FW_RI_RES_WR_DCAEN 31
#define M_FW_RI_RES_WR_DCAEN 0x1
#define V_FW_RI_RES_WR_DCAEN(x) ((x) << S_FW_RI_RES_WR_DCAEN)
#define G_FW_RI_RES_WR_DCAEN(x) \
(((x) >> S_FW_RI_RES_WR_DCAEN) & M_FW_RI_RES_WR_DCAEN)
#define F_FW_RI_RES_WR_DCAEN V_FW_RI_RES_WR_DCAEN(1U)
#define S_FW_RI_RES_WR_DCACPU 26
#define M_FW_RI_RES_WR_DCACPU 0x1f
#define V_FW_RI_RES_WR_DCACPU(x) ((x) << S_FW_RI_RES_WR_DCACPU)
#define G_FW_RI_RES_WR_DCACPU(x) \
(((x) >> S_FW_RI_RES_WR_DCACPU) & M_FW_RI_RES_WR_DCACPU)
#define S_FW_RI_RES_WR_FBMIN 23
#define M_FW_RI_RES_WR_FBMIN 0x7
#define V_FW_RI_RES_WR_FBMIN(x) ((x) << S_FW_RI_RES_WR_FBMIN)
#define G_FW_RI_RES_WR_FBMIN(x) \
(((x) >> S_FW_RI_RES_WR_FBMIN) & M_FW_RI_RES_WR_FBMIN)
#define S_FW_RI_RES_WR_FBMAX 20
#define M_FW_RI_RES_WR_FBMAX 0x7
#define V_FW_RI_RES_WR_FBMAX(x) ((x) << S_FW_RI_RES_WR_FBMAX)
#define G_FW_RI_RES_WR_FBMAX(x) \
(((x) >> S_FW_RI_RES_WR_FBMAX) & M_FW_RI_RES_WR_FBMAX)
#define S_FW_RI_RES_WR_CIDXFTHRESHO 19
#define M_FW_RI_RES_WR_CIDXFTHRESHO 0x1
#define V_FW_RI_RES_WR_CIDXFTHRESHO(x) ((x) << S_FW_RI_RES_WR_CIDXFTHRESHO)
#define G_FW_RI_RES_WR_CIDXFTHRESHO(x) \
(((x) >> S_FW_RI_RES_WR_CIDXFTHRESHO) & M_FW_RI_RES_WR_CIDXFTHRESHO)
#define F_FW_RI_RES_WR_CIDXFTHRESHO V_FW_RI_RES_WR_CIDXFTHRESHO(1U)
#define S_FW_RI_RES_WR_CIDXFTHRESH 16
#define M_FW_RI_RES_WR_CIDXFTHRESH 0x7
#define V_FW_RI_RES_WR_CIDXFTHRESH(x) ((x) << S_FW_RI_RES_WR_CIDXFTHRESH)
#define G_FW_RI_RES_WR_CIDXFTHRESH(x) \
(((x) >> S_FW_RI_RES_WR_CIDXFTHRESH) & M_FW_RI_RES_WR_CIDXFTHRESH)
#define S_FW_RI_RES_WR_EQSIZE 0
#define M_FW_RI_RES_WR_EQSIZE 0xffff
#define V_FW_RI_RES_WR_EQSIZE(x) ((x) << S_FW_RI_RES_WR_EQSIZE)
#define G_FW_RI_RES_WR_EQSIZE(x) \
(((x) >> S_FW_RI_RES_WR_EQSIZE) & M_FW_RI_RES_WR_EQSIZE)
#define S_FW_RI_RES_WR_IQANDST 15
#define M_FW_RI_RES_WR_IQANDST 0x1
#define V_FW_RI_RES_WR_IQANDST(x) ((x) << S_FW_RI_RES_WR_IQANDST)
#define G_FW_RI_RES_WR_IQANDST(x) \
(((x) >> S_FW_RI_RES_WR_IQANDST) & M_FW_RI_RES_WR_IQANDST)
#define F_FW_RI_RES_WR_IQANDST V_FW_RI_RES_WR_IQANDST(1U)
#define S_FW_RI_RES_WR_IQANUS 14
#define M_FW_RI_RES_WR_IQANUS 0x1
#define V_FW_RI_RES_WR_IQANUS(x) ((x) << S_FW_RI_RES_WR_IQANUS)
#define G_FW_RI_RES_WR_IQANUS(x) \
(((x) >> S_FW_RI_RES_WR_IQANUS) & M_FW_RI_RES_WR_IQANUS)
#define F_FW_RI_RES_WR_IQANUS V_FW_RI_RES_WR_IQANUS(1U)
#define S_FW_RI_RES_WR_IQANUD 12
#define M_FW_RI_RES_WR_IQANUD 0x3
#define V_FW_RI_RES_WR_IQANUD(x) ((x) << S_FW_RI_RES_WR_IQANUD)
#define G_FW_RI_RES_WR_IQANUD(x) \
(((x) >> S_FW_RI_RES_WR_IQANUD) & M_FW_RI_RES_WR_IQANUD)
#define S_FW_RI_RES_WR_IQANDSTINDEX 0
#define M_FW_RI_RES_WR_IQANDSTINDEX 0xfff
#define V_FW_RI_RES_WR_IQANDSTINDEX(x) ((x) << S_FW_RI_RES_WR_IQANDSTINDEX)
#define G_FW_RI_RES_WR_IQANDSTINDEX(x) \
(((x) >> S_FW_RI_RES_WR_IQANDSTINDEX) & M_FW_RI_RES_WR_IQANDSTINDEX)
#define S_FW_RI_RES_WR_IQDROPRSS 15
#define M_FW_RI_RES_WR_IQDROPRSS 0x1
#define V_FW_RI_RES_WR_IQDROPRSS(x) ((x) << S_FW_RI_RES_WR_IQDROPRSS)
#define G_FW_RI_RES_WR_IQDROPRSS(x) \
(((x) >> S_FW_RI_RES_WR_IQDROPRSS) & M_FW_RI_RES_WR_IQDROPRSS)
#define F_FW_RI_RES_WR_IQDROPRSS V_FW_RI_RES_WR_IQDROPRSS(1U)
#define S_FW_RI_RES_WR_IQGTSMODE 14
#define M_FW_RI_RES_WR_IQGTSMODE 0x1
#define V_FW_RI_RES_WR_IQGTSMODE(x) ((x) << S_FW_RI_RES_WR_IQGTSMODE)
#define G_FW_RI_RES_WR_IQGTSMODE(x) \
(((x) >> S_FW_RI_RES_WR_IQGTSMODE) & M_FW_RI_RES_WR_IQGTSMODE)
#define F_FW_RI_RES_WR_IQGTSMODE V_FW_RI_RES_WR_IQGTSMODE(1U)
#define S_FW_RI_RES_WR_IQPCIECH 12
#define M_FW_RI_RES_WR_IQPCIECH 0x3
#define V_FW_RI_RES_WR_IQPCIECH(x) ((x) << S_FW_RI_RES_WR_IQPCIECH)
#define G_FW_RI_RES_WR_IQPCIECH(x) \
(((x) >> S_FW_RI_RES_WR_IQPCIECH) & M_FW_RI_RES_WR_IQPCIECH)
#define S_FW_RI_RES_WR_IQDCAEN 11
#define M_FW_RI_RES_WR_IQDCAEN 0x1
#define V_FW_RI_RES_WR_IQDCAEN(x) ((x) << S_FW_RI_RES_WR_IQDCAEN)
#define G_FW_RI_RES_WR_IQDCAEN(x) \
(((x) >> S_FW_RI_RES_WR_IQDCAEN) & M_FW_RI_RES_WR_IQDCAEN)
#define F_FW_RI_RES_WR_IQDCAEN V_FW_RI_RES_WR_IQDCAEN(1U)
#define S_FW_RI_RES_WR_IQDCACPU 6
#define M_FW_RI_RES_WR_IQDCACPU 0x1f
#define V_FW_RI_RES_WR_IQDCACPU(x) ((x) << S_FW_RI_RES_WR_IQDCACPU)
#define G_FW_RI_RES_WR_IQDCACPU(x) \
(((x) >> S_FW_RI_RES_WR_IQDCACPU) & M_FW_RI_RES_WR_IQDCACPU)
#define S_FW_RI_RES_WR_IQINTCNTTHRESH 4
#define M_FW_RI_RES_WR_IQINTCNTTHRESH 0x3
#define V_FW_RI_RES_WR_IQINTCNTTHRESH(x) \
((x) << S_FW_RI_RES_WR_IQINTCNTTHRESH)
#define G_FW_RI_RES_WR_IQINTCNTTHRESH(x) \
(((x) >> S_FW_RI_RES_WR_IQINTCNTTHRESH) & M_FW_RI_RES_WR_IQINTCNTTHRESH)
#define S_FW_RI_RES_WR_IQO 3
#define M_FW_RI_RES_WR_IQO 0x1
#define V_FW_RI_RES_WR_IQO(x) ((x) << S_FW_RI_RES_WR_IQO)
#define G_FW_RI_RES_WR_IQO(x) \
(((x) >> S_FW_RI_RES_WR_IQO) & M_FW_RI_RES_WR_IQO)
#define F_FW_RI_RES_WR_IQO V_FW_RI_RES_WR_IQO(1U)
#define S_FW_RI_RES_WR_IQCPRIO 2
#define M_FW_RI_RES_WR_IQCPRIO 0x1
#define V_FW_RI_RES_WR_IQCPRIO(x) ((x) << S_FW_RI_RES_WR_IQCPRIO)
#define G_FW_RI_RES_WR_IQCPRIO(x) \
(((x) >> S_FW_RI_RES_WR_IQCPRIO) & M_FW_RI_RES_WR_IQCPRIO)
#define F_FW_RI_RES_WR_IQCPRIO V_FW_RI_RES_WR_IQCPRIO(1U)
#define S_FW_RI_RES_WR_IQESIZE 0
#define M_FW_RI_RES_WR_IQESIZE 0x3
#define V_FW_RI_RES_WR_IQESIZE(x) ((x) << S_FW_RI_RES_WR_IQESIZE)
#define G_FW_RI_RES_WR_IQESIZE(x) \
(((x) >> S_FW_RI_RES_WR_IQESIZE) & M_FW_RI_RES_WR_IQESIZE)
#define S_FW_RI_RES_WR_IQNS 31
#define M_FW_RI_RES_WR_IQNS 0x1
#define V_FW_RI_RES_WR_IQNS(x) ((x) << S_FW_RI_RES_WR_IQNS)
#define G_FW_RI_RES_WR_IQNS(x) \
(((x) >> S_FW_RI_RES_WR_IQNS) & M_FW_RI_RES_WR_IQNS)
#define F_FW_RI_RES_WR_IQNS V_FW_RI_RES_WR_IQNS(1U)
#define S_FW_RI_RES_WR_IQRO 30
#define M_FW_RI_RES_WR_IQRO 0x1
#define V_FW_RI_RES_WR_IQRO(x) ((x) << S_FW_RI_RES_WR_IQRO)
#define G_FW_RI_RES_WR_IQRO(x) \
(((x) >> S_FW_RI_RES_WR_IQRO) & M_FW_RI_RES_WR_IQRO)
#define F_FW_RI_RES_WR_IQRO V_FW_RI_RES_WR_IQRO(1U)
struct fw_ri_rdma_write_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__be64 r2;
__be32 plen;
__be32 stag_sink;
__be64 to_sink;
#ifndef C99_NOT_SUPPORTED
union {
struct fw_ri_immd immd_src[0];
struct fw_ri_isgl isgl_src[0];
} u;
#endif
};
struct fw_ri_send_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__be32 sendop_pkd;
__be32 stag_inv;
__be32 plen;
__be32 r3;
__be64 r4;
#ifndef C99_NOT_SUPPORTED
union {
struct fw_ri_immd immd_src[0];
struct fw_ri_isgl isgl_src[0];
} u;
#endif
};
#define S_FW_RI_SEND_WR_SENDOP 0
#define M_FW_RI_SEND_WR_SENDOP 0xf
#define V_FW_RI_SEND_WR_SENDOP(x) ((x) << S_FW_RI_SEND_WR_SENDOP)
#define G_FW_RI_SEND_WR_SENDOP(x) \
(((x) >> S_FW_RI_SEND_WR_SENDOP) & M_FW_RI_SEND_WR_SENDOP)
struct fw_ri_rdma_read_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__be64 r2;
__be32 stag_sink;
__be32 to_sink_hi;
__be32 to_sink_lo;
__be32 plen;
__be32 stag_src;
__be32 to_src_hi;
__be32 to_src_lo;
__be32 r5;
};
struct fw_ri_recv_wr {
__u8 opcode;
__u8 r1;
__u16 wrid;
__u8 r2[3];
__u8 len16;
struct fw_ri_isgl isgl;
};
struct fw_ri_bind_mw_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__u8 qpbinde_to_dcacpu;
__u8 pgsz_shift;
__u8 addr_type;
__u8 mem_perms;
__be32 stag_mr;
__be32 stag_mw;
__be32 r3;
__be64 len_mw;
__be64 va_fbo;
__be64 r4;
};
#define S_FW_RI_BIND_MW_WR_QPBINDE 6
#define M_FW_RI_BIND_MW_WR_QPBINDE 0x1
#define V_FW_RI_BIND_MW_WR_QPBINDE(x) ((x) << S_FW_RI_BIND_MW_WR_QPBINDE)
#define G_FW_RI_BIND_MW_WR_QPBINDE(x) \
(((x) >> S_FW_RI_BIND_MW_WR_QPBINDE) & M_FW_RI_BIND_MW_WR_QPBINDE)
#define F_FW_RI_BIND_MW_WR_QPBINDE V_FW_RI_BIND_MW_WR_QPBINDE(1U)
#define S_FW_RI_BIND_MW_WR_NS 5
#define M_FW_RI_BIND_MW_WR_NS 0x1
#define V_FW_RI_BIND_MW_WR_NS(x) ((x) << S_FW_RI_BIND_MW_WR_NS)
#define G_FW_RI_BIND_MW_WR_NS(x) \
(((x) >> S_FW_RI_BIND_MW_WR_NS) & M_FW_RI_BIND_MW_WR_NS)
#define F_FW_RI_BIND_MW_WR_NS V_FW_RI_BIND_MW_WR_NS(1U)
#define S_FW_RI_BIND_MW_WR_DCACPU 0
#define M_FW_RI_BIND_MW_WR_DCACPU 0x1f
#define V_FW_RI_BIND_MW_WR_DCACPU(x) ((x) << S_FW_RI_BIND_MW_WR_DCACPU)
#define G_FW_RI_BIND_MW_WR_DCACPU(x) \
(((x) >> S_FW_RI_BIND_MW_WR_DCACPU) & M_FW_RI_BIND_MW_WR_DCACPU)
struct fw_ri_fr_nsmr_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__u8 qpbinde_to_dcacpu;
__u8 pgsz_shift;
__u8 addr_type;
__u8 mem_perms;
__be32 stag;
__be32 len_hi;
__be32 len_lo;
__be32 va_hi;
__be32 va_lo_fbo;
};
#define S_FW_RI_FR_NSMR_WR_QPBINDE 6
#define M_FW_RI_FR_NSMR_WR_QPBINDE 0x1
#define V_FW_RI_FR_NSMR_WR_QPBINDE(x) ((x) << S_FW_RI_FR_NSMR_WR_QPBINDE)
#define G_FW_RI_FR_NSMR_WR_QPBINDE(x) \
(((x) >> S_FW_RI_FR_NSMR_WR_QPBINDE) & M_FW_RI_FR_NSMR_WR_QPBINDE)
#define F_FW_RI_FR_NSMR_WR_QPBINDE V_FW_RI_FR_NSMR_WR_QPBINDE(1U)
#define S_FW_RI_FR_NSMR_WR_NS 5
#define M_FW_RI_FR_NSMR_WR_NS 0x1
#define V_FW_RI_FR_NSMR_WR_NS(x) ((x) << S_FW_RI_FR_NSMR_WR_NS)
#define G_FW_RI_FR_NSMR_WR_NS(x) \
(((x) >> S_FW_RI_FR_NSMR_WR_NS) & M_FW_RI_FR_NSMR_WR_NS)
#define F_FW_RI_FR_NSMR_WR_NS V_FW_RI_FR_NSMR_WR_NS(1U)
#define S_FW_RI_FR_NSMR_WR_DCACPU 0
#define M_FW_RI_FR_NSMR_WR_DCACPU 0x1f
#define V_FW_RI_FR_NSMR_WR_DCACPU(x) ((x) << S_FW_RI_FR_NSMR_WR_DCACPU)
#define G_FW_RI_FR_NSMR_WR_DCACPU(x) \
(((x) >> S_FW_RI_FR_NSMR_WR_DCACPU) & M_FW_RI_FR_NSMR_WR_DCACPU)
struct fw_ri_inv_lstag_wr {
__u8 opcode;
__u8 flags;
__u16 wrid;
__u8 r1[3];
__u8 len16;
__be32 r2;
__be32 stag_inv;
};
enum fw_ri_type {
FW_RI_TYPE_INIT,
FW_RI_TYPE_FINI,
FW_RI_TYPE_TERMINATE
};
enum fw_ri_init_p2ptype {
FW_RI_INIT_P2PTYPE_RDMA_WRITE = FW_RI_RDMA_WRITE,
FW_RI_INIT_P2PTYPE_READ_REQ = FW_RI_READ_REQ,
FW_RI_INIT_P2PTYPE_SEND = FW_RI_SEND,
FW_RI_INIT_P2PTYPE_SEND_WITH_INV = FW_RI_SEND_WITH_INV,
FW_RI_INIT_P2PTYPE_SEND_WITH_SE = FW_RI_SEND_WITH_SE,
FW_RI_INIT_P2PTYPE_SEND_WITH_SE_INV = FW_RI_SEND_WITH_SE_INV,
FW_RI_INIT_P2PTYPE_DISABLED = 0xf,
};
struct fw_ri_wr {
__be32 op_compl;
__be32 flowid_len16;
__u64 cookie;
union fw_ri {
struct fw_ri_init {
__u8 type;
__u8 mpareqbit_p2ptype;
__u8 r4[2];
__u8 mpa_attrs;
__u8 qp_caps;
__be16 nrqe;
__be32 pdid;
__be32 qpid;
__be32 sq_eqid;
__be32 rq_eqid;
__be32 scqid;
__be32 rcqid;
__be32 ord_max;
__be32 ird_max;
__be32 iss;
__be32 irs;
__be32 hwrqsize;
__be32 hwrqaddr;
__be64 r5;
union fw_ri_init_p2p {
struct fw_ri_rdma_write_wr write;
struct fw_ri_rdma_read_wr read;
struct fw_ri_send_wr send;
} u;
} init;
struct fw_ri_fini {
__u8 type;
__u8 r3[7];
__be64 r4;
} fini;
struct fw_ri_terminate {
__u8 type;
__u8 r3[3];
__be32 immdlen;
__u8 termmsg[40];
} terminate;
} u;
};
#define S_FW_RI_WR_MPAREQBIT 7
#define M_FW_RI_WR_MPAREQBIT 0x1
#define V_FW_RI_WR_MPAREQBIT(x) ((x) << S_FW_RI_WR_MPAREQBIT)
#define G_FW_RI_WR_MPAREQBIT(x) \
(((x) >> S_FW_RI_WR_MPAREQBIT) & M_FW_RI_WR_MPAREQBIT)
#define F_FW_RI_WR_MPAREQBIT V_FW_RI_WR_MPAREQBIT(1U)
#define S_FW_RI_WR_P2PTYPE 0
#define M_FW_RI_WR_P2PTYPE 0xf
#define V_FW_RI_WR_P2PTYPE(x) ((x) << S_FW_RI_WR_P2PTYPE)
#define G_FW_RI_WR_P2PTYPE(x) \
(((x) >> S_FW_RI_WR_P2PTYPE) & M_FW_RI_WR_P2PTYPE)
struct tcp_options {
__be16 mss;
__u8 wsf;
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8:4;
__u8 unknown:1;
__u8:1;
__u8 sack:1;
__u8 tstamp:1;
#else
__u8 tstamp:1;
__u8 sack:1;
__u8:1;
__u8 unknown:1;
__u8:4;
#endif
};
struct cpl_pass_accept_req {
union opcode_tid ot;
__be16 rsvd;
__be16 len;
__be32 hdr_len;
__be16 vlan;
__be16 l2info;
__be32 tos_stid;
struct tcp_options tcpopt;
};
/* cpl_pass_accept_req.hdr_len fields */
#define S_SYN_RX_CHAN 0
#define M_SYN_RX_CHAN 0xF
#define V_SYN_RX_CHAN(x) ((x) << S_SYN_RX_CHAN)
#define G_SYN_RX_CHAN(x) (((x) >> S_SYN_RX_CHAN) & M_SYN_RX_CHAN)
#define S_TCP_HDR_LEN 10
#define M_TCP_HDR_LEN 0x3F
#define V_TCP_HDR_LEN(x) ((x) << S_TCP_HDR_LEN)
#define G_TCP_HDR_LEN(x) (((x) >> S_TCP_HDR_LEN) & M_TCP_HDR_LEN)
#define S_IP_HDR_LEN 16
#define M_IP_HDR_LEN 0x3FF
#define V_IP_HDR_LEN(x) ((x) << S_IP_HDR_LEN)
#define G_IP_HDR_LEN(x) (((x) >> S_IP_HDR_LEN) & M_IP_HDR_LEN)
#define S_ETH_HDR_LEN 26
#define M_ETH_HDR_LEN 0x1F
#define V_ETH_HDR_LEN(x) ((x) << S_ETH_HDR_LEN)
#define G_ETH_HDR_LEN(x) (((x) >> S_ETH_HDR_LEN) & M_ETH_HDR_LEN)
/* cpl_pass_accept_req.l2info fields */
#define S_SYN_MAC_IDX 0
#define M_SYN_MAC_IDX 0x1FF
#define V_SYN_MAC_IDX(x) ((x) << S_SYN_MAC_IDX)
#define G_SYN_MAC_IDX(x) (((x) >> S_SYN_MAC_IDX) & M_SYN_MAC_IDX)
#define S_SYN_XACT_MATCH 9
#define V_SYN_XACT_MATCH(x) ((x) << S_SYN_XACT_MATCH)
#define F_SYN_XACT_MATCH V_SYN_XACT_MATCH(1U)
#define S_SYN_INTF 12
#define M_SYN_INTF 0xF
#define V_SYN_INTF(x) ((x) << S_SYN_INTF)
#define G_SYN_INTF(x) (((x) >> S_SYN_INTF) & M_SYN_INTF)
struct ulptx_idata {
__be32 cmd_more;
__be32 len;
};
#define S_ULPTX_NSGE 0
#define M_ULPTX_NSGE 0xFFFF
#define V_ULPTX_NSGE(x) ((x) << S_ULPTX_NSGE)
#endif /* _T4FW_RI_API_H_ */

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __C4IW_USER_H__
#define __C4IW_USER_H__
#define C4IW_UVERBS_ABI_VERSION 1
/*
* Make sure that all structs defined in this file remain laid out so
* that they pack the same way on 32-bit and 64-bit architectures (to
* avoid incompatibility between 32-bit userspace and 64-bit kernels).
* In particular do not use pointer types -- pass pointers in __u64
* instead.
*/
struct c4iw_create_cq_resp {
__u64 key;
__u64 gts_key;
__u64 memsize;
__u32 cqid;
__u32 size;
__u32 qid_mask;
};
struct c4iw_create_qp_resp {
__u64 sq_key;
__u64 rq_key;
__u64 sq_db_gts_key;
__u64 rq_db_gts_key;
__u64 sq_memsize;
__u64 rq_memsize;
__u32 sqid;
__u32 rqid;
__u32 sq_size;
__u32 rq_size;
__u32 qid_mask;
};
#endif

View File

@ -661,6 +661,14 @@ repoll:
wc->opcode = IB_WC_FETCH_ADD; wc->opcode = IB_WC_FETCH_ADD;
wc->byte_len = 8; wc->byte_len = 8;
break; break;
case MLX4_OPCODE_MASKED_ATOMIC_CS:
wc->opcode = IB_WC_MASKED_COMP_SWAP;
wc->byte_len = 8;
break;
case MLX4_OPCODE_MASKED_ATOMIC_FA:
wc->opcode = IB_WC_MASKED_FETCH_ADD;
wc->byte_len = 8;
break;
case MLX4_OPCODE_BIND_MW: case MLX4_OPCODE_BIND_MW:
wc->opcode = IB_WC_BIND_MW; wc->opcode = IB_WC_BIND_MW;
break; break;

View File

@ -139,6 +139,7 @@ static int mlx4_ib_query_device(struct ib_device *ibdev,
props->local_ca_ack_delay = dev->dev->caps.local_ca_ack_delay; props->local_ca_ack_delay = dev->dev->caps.local_ca_ack_delay;
props->atomic_cap = dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_ATOMIC ? props->atomic_cap = dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_ATOMIC ?
IB_ATOMIC_HCA : IB_ATOMIC_NONE; IB_ATOMIC_HCA : IB_ATOMIC_NONE;
props->masked_atomic_cap = IB_ATOMIC_HCA;
props->max_pkeys = dev->dev->caps.pkey_table_len[1]; props->max_pkeys = dev->dev->caps.pkey_table_len[1];
props->max_mcast_grp = dev->dev->caps.num_mgms + dev->dev->caps.num_amgms; props->max_mcast_grp = dev->dev->caps.num_mgms + dev->dev->caps.num_amgms;
props->max_mcast_qp_attach = dev->dev->caps.num_qp_per_mgm; props->max_mcast_qp_attach = dev->dev->caps.num_qp_per_mgm;

View File

@ -85,6 +85,8 @@ static const __be32 mlx4_ib_opcode[] = {
[IB_WR_SEND_WITH_INV] = cpu_to_be32(MLX4_OPCODE_SEND_INVAL), [IB_WR_SEND_WITH_INV] = cpu_to_be32(MLX4_OPCODE_SEND_INVAL),
[IB_WR_LOCAL_INV] = cpu_to_be32(MLX4_OPCODE_LOCAL_INVAL), [IB_WR_LOCAL_INV] = cpu_to_be32(MLX4_OPCODE_LOCAL_INVAL),
[IB_WR_FAST_REG_MR] = cpu_to_be32(MLX4_OPCODE_FMR), [IB_WR_FAST_REG_MR] = cpu_to_be32(MLX4_OPCODE_FMR),
[IB_WR_MASKED_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_CS),
[IB_WR_MASKED_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_FA),
}; };
static struct mlx4_ib_sqp *to_msqp(struct mlx4_ib_qp *mqp) static struct mlx4_ib_sqp *to_msqp(struct mlx4_ib_qp *mqp)
@ -1407,6 +1409,9 @@ static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg, struct ib_send_wr *
if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) { if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) {
aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap); aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap);
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add); aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add);
} else if (wr->opcode == IB_WR_MASKED_ATOMIC_FETCH_AND_ADD) {
aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add);
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add_mask);
} else { } else {
aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add); aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add);
aseg->compare = 0; aseg->compare = 0;
@ -1414,6 +1419,15 @@ static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg, struct ib_send_wr *
} }
static void set_masked_atomic_seg(struct mlx4_wqe_masked_atomic_seg *aseg,
struct ib_send_wr *wr)
{
aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap);
aseg->swap_add_mask = cpu_to_be64(wr->wr.atomic.swap_mask);
aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add);
aseg->compare_mask = cpu_to_be64(wr->wr.atomic.compare_add_mask);
}
static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg, static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg,
struct ib_send_wr *wr) struct ib_send_wr *wr)
{ {
@ -1567,6 +1581,7 @@ int mlx4_ib_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
switch (wr->opcode) { switch (wr->opcode) {
case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD: case IB_WR_ATOMIC_FETCH_AND_ADD:
case IB_WR_MASKED_ATOMIC_FETCH_AND_ADD:
set_raddr_seg(wqe, wr->wr.atomic.remote_addr, set_raddr_seg(wqe, wr->wr.atomic.remote_addr,
wr->wr.atomic.rkey); wr->wr.atomic.rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg); wqe += sizeof (struct mlx4_wqe_raddr_seg);
@ -1579,6 +1594,19 @@ int mlx4_ib_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
break; break;
case IB_WR_MASKED_ATOMIC_CMP_AND_SWP:
set_raddr_seg(wqe, wr->wr.atomic.remote_addr,
wr->wr.atomic.rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
set_masked_atomic_seg(wqe, wr);
wqe += sizeof (struct mlx4_wqe_masked_atomic_seg);
size += (sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_masked_atomic_seg)) / 16;
break;
case IB_WR_RDMA_READ: case IB_WR_RDMA_READ:
case IB_WR_RDMA_WRITE: case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM: case IB_WR_RDMA_WRITE_WITH_IMM:

View File

@ -211,7 +211,7 @@ int mthca_buf_alloc(struct mthca_dev *dev, int size, int max_direct,
if (!buf->direct.buf) if (!buf->direct.buf)
return -ENOMEM; return -ENOMEM;
pci_unmap_addr_set(&buf->direct, mapping, t); dma_unmap_addr_set(&buf->direct, mapping, t);
memset(buf->direct.buf, 0, size); memset(buf->direct.buf, 0, size);
@ -251,7 +251,7 @@ int mthca_buf_alloc(struct mthca_dev *dev, int size, int max_direct,
goto err_free; goto err_free;
dma_list[i] = t; dma_list[i] = t;
pci_unmap_addr_set(&buf->page_list[i], mapping, t); dma_unmap_addr_set(&buf->page_list[i], mapping, t);
clear_page(buf->page_list[i].buf); clear_page(buf->page_list[i].buf);
} }
@ -289,12 +289,12 @@ void mthca_buf_free(struct mthca_dev *dev, int size, union mthca_buf *buf,
if (is_direct) if (is_direct)
dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf, dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
pci_unmap_addr(&buf->direct, mapping)); dma_unmap_addr(&buf->direct, mapping));
else { else {
for (i = 0; i < (size + PAGE_SIZE - 1) / PAGE_SIZE; ++i) for (i = 0; i < (size + PAGE_SIZE - 1) / PAGE_SIZE; ++i)
dma_free_coherent(&dev->pdev->dev, PAGE_SIZE, dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
buf->page_list[i].buf, buf->page_list[i].buf,
pci_unmap_addr(&buf->page_list[i], dma_unmap_addr(&buf->page_list[i],
mapping)); mapping));
kfree(buf->page_list); kfree(buf->page_list);
} }

View File

@ -504,7 +504,7 @@ static int mthca_create_eq(struct mthca_dev *dev,
goto err_out_free_pages; goto err_out_free_pages;
dma_list[i] = t; dma_list[i] = t;
pci_unmap_addr_set(&eq->page_list[i], mapping, t); dma_unmap_addr_set(&eq->page_list[i], mapping, t);
clear_page(eq->page_list[i].buf); clear_page(eq->page_list[i].buf);
} }
@ -579,7 +579,7 @@ static int mthca_create_eq(struct mthca_dev *dev,
if (eq->page_list[i].buf) if (eq->page_list[i].buf)
dma_free_coherent(&dev->pdev->dev, PAGE_SIZE, dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
eq->page_list[i].buf, eq->page_list[i].buf,
pci_unmap_addr(&eq->page_list[i], dma_unmap_addr(&eq->page_list[i],
mapping)); mapping));
mthca_free_mailbox(dev, mailbox); mthca_free_mailbox(dev, mailbox);
@ -629,7 +629,7 @@ static void mthca_free_eq(struct mthca_dev *dev,
for (i = 0; i < npages; ++i) for (i = 0; i < npages; ++i)
pci_free_consistent(dev->pdev, PAGE_SIZE, pci_free_consistent(dev->pdev, PAGE_SIZE,
eq->page_list[i].buf, eq->page_list[i].buf,
pci_unmap_addr(&eq->page_list[i], mapping)); dma_unmap_addr(&eq->page_list[i], mapping));
kfree(eq->page_list); kfree(eq->page_list);
mthca_free_mailbox(dev, mailbox); mthca_free_mailbox(dev, mailbox);

View File

@ -46,7 +46,7 @@
struct mthca_buf_list { struct mthca_buf_list {
void *buf; void *buf;
DECLARE_PCI_UNMAP_ADDR(mapping) DEFINE_DMA_UNMAP_ADDR(mapping);
}; };
union mthca_buf { union mthca_buf {

View File

@ -1297,7 +1297,7 @@ int nes_destroy_cqp(struct nes_device *nesdev)
/** /**
* nes_init_1g_phy * nes_init_1g_phy
*/ */
int nes_init_1g_phy(struct nes_device *nesdev, u8 phy_type, u8 phy_index) static int nes_init_1g_phy(struct nes_device *nesdev, u8 phy_type, u8 phy_index)
{ {
u32 counter = 0; u32 counter = 0;
u16 phy_data; u16 phy_data;
@ -1351,7 +1351,7 @@ int nes_init_1g_phy(struct nes_device *nesdev, u8 phy_type, u8 phy_index)
/** /**
* nes_init_2025_phy * nes_init_2025_phy
*/ */
int nes_init_2025_phy(struct nes_device *nesdev, u8 phy_type, u8 phy_index) static int nes_init_2025_phy(struct nes_device *nesdev, u8 phy_type, u8 phy_index)
{ {
u32 temp_phy_data = 0; u32 temp_phy_data = 0;
u32 temp_phy_data2 = 0; u32 temp_phy_data2 = 0;
@ -2458,7 +2458,6 @@ static void nes_process_mac_intr(struct nes_device *nesdev, u32 mac_number)
return; return;
} }
nesadapter->mac_sw_state[mac_number] = NES_MAC_SW_INTERRUPT; nesadapter->mac_sw_state[mac_number] = NES_MAC_SW_INTERRUPT;
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
/* ack the MAC interrupt */ /* ack the MAC interrupt */
mac_status = nes_read_indexed(nesdev, NES_IDX_MAC_INT_STATUS + (mac_index * 0x200)); mac_status = nes_read_indexed(nesdev, NES_IDX_MAC_INT_STATUS + (mac_index * 0x200));
@ -2469,11 +2468,9 @@ static void nes_process_mac_intr(struct nes_device *nesdev, u32 mac_number)
if (mac_status & (NES_MAC_INT_LINK_STAT_CHG | NES_MAC_INT_XGMII_EXT)) { if (mac_status & (NES_MAC_INT_LINK_STAT_CHG | NES_MAC_INT_XGMII_EXT)) {
nesdev->link_status_interrupts++; nesdev->link_status_interrupts++;
if (0 == (++nesadapter->link_interrupt_count[mac_index] % ((u16)NES_MAX_LINK_INTERRUPTS))) { if (0 == (++nesadapter->link_interrupt_count[mac_index] % ((u16)NES_MAX_LINK_INTERRUPTS)))
spin_lock_irqsave(&nesadapter->phy_lock, flags);
nes_reset_link(nesdev, mac_index); nes_reset_link(nesdev, mac_index);
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
}
/* read the PHY interrupt status register */ /* read the PHY interrupt status register */
if ((nesadapter->OneG_Mode) && if ((nesadapter->OneG_Mode) &&
(nesadapter->phy_type[mac_index] != NES_PHY_TYPE_PUMA_1G)) { (nesadapter->phy_type[mac_index] != NES_PHY_TYPE_PUMA_1G)) {
@ -2587,6 +2584,7 @@ static void nes_process_mac_intr(struct nes_device *nesdev, u32 mac_number)
break; break;
} }
} }
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
if (phy_data & 0x0004) { if (phy_data & 0x0004) {
if (wide_ppm_offset && if (wide_ppm_offset &&

View File

@ -1461,11 +1461,14 @@ static int nes_netdev_get_settings(struct net_device *netdev, struct ethtool_cmd
et_cmd->transceiver = XCVR_INTERNAL; et_cmd->transceiver = XCVR_INTERNAL;
et_cmd->phy_address = mac_index; et_cmd->phy_address = mac_index;
} else { } else {
unsigned long flags;
et_cmd->supported = SUPPORTED_1000baseT_Full et_cmd->supported = SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg; | SUPPORTED_Autoneg;
et_cmd->advertising = ADVERTISED_1000baseT_Full et_cmd->advertising = ADVERTISED_1000baseT_Full
| ADVERTISED_Autoneg; | ADVERTISED_Autoneg;
spin_lock_irqsave(&nesadapter->phy_lock, flags);
nes_read_1G_phy_reg(nesdev, 0, phy_index, &phy_data); nes_read_1G_phy_reg(nesdev, 0, phy_index, &phy_data);
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
if (phy_data & 0x1000) if (phy_data & 0x1000)
et_cmd->autoneg = AUTONEG_ENABLE; et_cmd->autoneg = AUTONEG_ENABLE;
else else
@ -1503,12 +1506,15 @@ static int nes_netdev_set_settings(struct net_device *netdev, struct ethtool_cmd
struct nes_vnic *nesvnic = netdev_priv(netdev); struct nes_vnic *nesvnic = netdev_priv(netdev);
struct nes_device *nesdev = nesvnic->nesdev; struct nes_device *nesdev = nesvnic->nesdev;
struct nes_adapter *nesadapter = nesdev->nesadapter; struct nes_adapter *nesadapter = nesdev->nesadapter;
u16 phy_data;
if ((nesadapter->OneG_Mode) && if ((nesadapter->OneG_Mode) &&
(nesadapter->phy_type[nesdev->mac_index] != NES_PHY_TYPE_PUMA_1G)) { (nesadapter->phy_type[nesdev->mac_index] != NES_PHY_TYPE_PUMA_1G)) {
nes_read_1G_phy_reg(nesdev, 0, nesadapter->phy_index[nesdev->mac_index], unsigned long flags;
&phy_data); u16 phy_data;
u8 phy_index = nesadapter->phy_index[nesdev->mac_index];
spin_lock_irqsave(&nesadapter->phy_lock, flags);
nes_read_1G_phy_reg(nesdev, 0, phy_index, &phy_data);
if (et_cmd->autoneg) { if (et_cmd->autoneg) {
/* Turn on Full duplex, Autoneg, and restart autonegotiation */ /* Turn on Full duplex, Autoneg, and restart autonegotiation */
phy_data |= 0x1300; phy_data |= 0x1300;
@ -1516,8 +1522,8 @@ static int nes_netdev_set_settings(struct net_device *netdev, struct ethtool_cmd
/* Turn off autoneg */ /* Turn off autoneg */
phy_data &= ~0x1000; phy_data &= ~0x1000;
} }
nes_write_1G_phy_reg(nesdev, 0, nesadapter->phy_index[nesdev->mac_index], nes_write_1G_phy_reg(nesdev, 0, phy_index, phy_data);
phy_data); spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
} }
return 0; return 0;

View File

@ -381,12 +381,8 @@ static u16 nes_read16_eeprom(void __iomem *addr, u16 offset)
*/ */
void nes_write_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u16 data) void nes_write_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u16 data)
{ {
struct nes_adapter *nesadapter = nesdev->nesadapter;
u32 u32temp; u32 u32temp;
u32 counter; u32 counter;
unsigned long flags;
spin_lock_irqsave(&nesadapter->phy_lock, flags);
nes_write_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL, nes_write_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL,
0x50020000 | data | ((u32)phy_reg << 18) | ((u32)phy_addr << 23)); 0x50020000 | data | ((u32)phy_reg << 18) | ((u32)phy_addr << 23));
@ -402,8 +398,6 @@ void nes_write_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u1
if (!(u32temp & 1)) if (!(u32temp & 1))
nes_debug(NES_DBG_PHY, "Phy is not responding. interrupt status = 0x%X.\n", nes_debug(NES_DBG_PHY, "Phy is not responding. interrupt status = 0x%X.\n",
u32temp); u32temp);
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
} }
@ -414,14 +408,11 @@ void nes_write_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u1
*/ */
void nes_read_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u16 *data) void nes_read_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u16 *data)
{ {
struct nes_adapter *nesadapter = nesdev->nesadapter;
u32 u32temp; u32 u32temp;
u32 counter; u32 counter;
unsigned long flags;
/* nes_debug(NES_DBG_PHY, "phy addr = %d, mac_index = %d\n", /* nes_debug(NES_DBG_PHY, "phy addr = %d, mac_index = %d\n",
phy_addr, nesdev->mac_index); */ phy_addr, nesdev->mac_index); */
spin_lock_irqsave(&nesadapter->phy_lock, flags);
nes_write_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL, nes_write_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL,
0x60020000 | ((u32)phy_reg << 18) | ((u32)phy_addr << 23)); 0x60020000 | ((u32)phy_reg << 18) | ((u32)phy_addr << 23));
@ -441,7 +432,6 @@ void nes_read_1G_phy_reg(struct nes_device *nesdev, u8 phy_reg, u8 phy_addr, u16
} else { } else {
*data = (u16)nes_read_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL); *data = (u16)nes_read_indexed(nesdev, NES_IDX_MAC_MDIO_CONTROL);
} }
spin_unlock_irqrestore(&nesadapter->phy_lock, flags);
} }

View File

@ -374,7 +374,7 @@ static int alloc_fast_reg_mr(struct nes_device *nesdev, struct nes_pd *nespd,
/* /*
* nes_alloc_fast_reg_mr * nes_alloc_fast_reg_mr
*/ */
struct ib_mr *nes_alloc_fast_reg_mr(struct ib_pd *ibpd, int max_page_list_len) static struct ib_mr *nes_alloc_fast_reg_mr(struct ib_pd *ibpd, int max_page_list_len)
{ {
struct nes_pd *nespd = to_nespd(ibpd); struct nes_pd *nespd = to_nespd(ibpd);
struct nes_vnic *nesvnic = to_nesvnic(ibpd->device); struct nes_vnic *nesvnic = to_nesvnic(ibpd->device);

View File

@ -49,6 +49,25 @@ static u32 ipoib_get_rx_csum(struct net_device *dev)
!test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags); !test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags);
} }
static int ipoib_set_tso(struct net_device *dev, u32 data)
{
struct ipoib_dev_priv *priv = netdev_priv(dev);
if (data) {
if (!test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags) &&
(dev->features & NETIF_F_SG) &&
(priv->hca_caps & IB_DEVICE_UD_TSO)) {
dev->features |= NETIF_F_TSO;
} else {
ipoib_warn(priv, "can't set TSO on\n");
return -EOPNOTSUPP;
}
} else
dev->features &= ~NETIF_F_TSO;
return 0;
}
static int ipoib_get_coalesce(struct net_device *dev, static int ipoib_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal) struct ethtool_coalesce *coal)
{ {
@ -131,6 +150,7 @@ static void ipoib_get_ethtool_stats(struct net_device *dev,
static const struct ethtool_ops ipoib_ethtool_ops = { static const struct ethtool_ops ipoib_ethtool_ops = {
.get_drvinfo = ipoib_get_drvinfo, .get_drvinfo = ipoib_get_drvinfo,
.get_rx_csum = ipoib_get_rx_csum, .get_rx_csum = ipoib_get_rx_csum,
.set_tso = ipoib_set_tso,
.get_coalesce = ipoib_get_coalesce, .get_coalesce = ipoib_get_coalesce,
.set_coalesce = ipoib_set_coalesce, .set_coalesce = ipoib_set_coalesce,
.get_flags = ethtool_op_get_flags, .get_flags = ethtool_op_get_flags,

View File

@ -325,7 +325,7 @@ iscsi_iser_conn_destroy(struct iscsi_cls_conn *cls_conn)
*/ */
if (ib_conn) { if (ib_conn) {
ib_conn->iser_conn = NULL; ib_conn->iser_conn = NULL;
iser_conn_put(ib_conn); iser_conn_put(ib_conn, 1); /* deref iscsi/ib conn unbinding */
} }
} }
@ -357,11 +357,12 @@ iscsi_iser_conn_bind(struct iscsi_cls_session *cls_session,
/* binds the iSER connection retrieved from the previously /* binds the iSER connection retrieved from the previously
* connected ep_handle to the iSCSI layer connection. exchanges * connected ep_handle to the iSCSI layer connection. exchanges
* connection pointers */ * connection pointers */
iser_err("binding iscsi conn %p to iser_conn %p\n",conn,ib_conn); iser_err("binding iscsi/iser conn %p %p to ib_conn %p\n",
conn, conn->dd_data, ib_conn);
iser_conn = conn->dd_data; iser_conn = conn->dd_data;
ib_conn->iser_conn = iser_conn; ib_conn->iser_conn = iser_conn;
iser_conn->ib_conn = ib_conn; iser_conn->ib_conn = ib_conn;
iser_conn_get(ib_conn); iser_conn_get(ib_conn); /* ref iscsi/ib conn binding */
return 0; return 0;
} }
@ -382,7 +383,7 @@ iscsi_iser_conn_stop(struct iscsi_cls_conn *cls_conn, int flag)
* There is no unbind event so the stop callback * There is no unbind event so the stop callback
* must release the ref from the bind. * must release the ref from the bind.
*/ */
iser_conn_put(ib_conn); iser_conn_put(ib_conn, 1); /* deref iscsi/ib conn unbinding */
} }
iser_conn->ib_conn = NULL; iser_conn->ib_conn = NULL;
} }

View File

@ -232,6 +232,7 @@ struct iser_device {
struct ib_cq *tx_cq; struct ib_cq *tx_cq;
struct ib_mr *mr; struct ib_mr *mr;
struct tasklet_struct cq_tasklet; struct tasklet_struct cq_tasklet;
struct ib_event_handler event_handler;
struct list_head ig_list; /* entry in ig devices list */ struct list_head ig_list; /* entry in ig devices list */
int refcount; int refcount;
}; };
@ -246,7 +247,6 @@ struct iser_conn {
struct rdma_cm_id *cma_id; /* CMA ID */ struct rdma_cm_id *cma_id; /* CMA ID */
struct ib_qp *qp; /* QP */ struct ib_qp *qp; /* QP */
struct ib_fmr_pool *fmr_pool; /* pool of IB FMRs */ struct ib_fmr_pool *fmr_pool; /* pool of IB FMRs */
int disc_evt_flag; /* disconn event delivered */
wait_queue_head_t wait; /* waitq for conn/disconn */ wait_queue_head_t wait; /* waitq for conn/disconn */
int post_recv_buf_count; /* posted rx count */ int post_recv_buf_count; /* posted rx count */
atomic_t post_send_buf_count; /* posted tx count */ atomic_t post_send_buf_count; /* posted tx count */
@ -320,7 +320,7 @@ void iser_conn_init(struct iser_conn *ib_conn);
void iser_conn_get(struct iser_conn *ib_conn); void iser_conn_get(struct iser_conn *ib_conn);
void iser_conn_put(struct iser_conn *ib_conn); int iser_conn_put(struct iser_conn *ib_conn, int destroy_cma_id_allowed);
void iser_conn_terminate(struct iser_conn *ib_conn); void iser_conn_terminate(struct iser_conn *ib_conn);

View File

@ -54,6 +54,13 @@ static void iser_qp_event_callback(struct ib_event *cause, void *context)
iser_err("got qp event %d\n",cause->event); iser_err("got qp event %d\n",cause->event);
} }
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %d on device %s port %d\n", event->event,
event->device->name, event->element.port_num);
}
/** /**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion * iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
@ -96,8 +103,15 @@ static int iser_create_device_ib_res(struct iser_device *device)
if (IS_ERR(device->mr)) if (IS_ERR(device->mr))
goto dma_mr_err; goto dma_mr_err;
INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
iser_event_handler);
if (ib_register_event_handler(&device->event_handler))
goto handler_err;
return 0; return 0;
handler_err:
ib_dereg_mr(device->mr);
dma_mr_err: dma_mr_err:
tasklet_kill(&device->cq_tasklet); tasklet_kill(&device->cq_tasklet);
cq_arm_err: cq_arm_err:
@ -120,7 +134,7 @@ static void iser_free_device_ib_res(struct iser_device *device)
BUG_ON(device->mr == NULL); BUG_ON(device->mr == NULL);
tasklet_kill(&device->cq_tasklet); tasklet_kill(&device->cq_tasklet);
(void)ib_unregister_event_handler(&device->event_handler);
(void)ib_dereg_mr(device->mr); (void)ib_dereg_mr(device->mr);
(void)ib_destroy_cq(device->tx_cq); (void)ib_destroy_cq(device->tx_cq);
(void)ib_destroy_cq(device->rx_cq); (void)ib_destroy_cq(device->rx_cq);
@ -149,10 +163,8 @@ static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
device = ib_conn->device; device = ib_conn->device;
ib_conn->login_buf = kmalloc(ISER_RX_LOGIN_SIZE, GFP_KERNEL); ib_conn->login_buf = kmalloc(ISER_RX_LOGIN_SIZE, GFP_KERNEL);
if (!ib_conn->login_buf) { if (!ib_conn->login_buf)
goto alloc_err; goto out_err;
ret = -ENOMEM;
}
ib_conn->login_dma = ib_dma_map_single(ib_conn->device->ib_device, ib_conn->login_dma = ib_dma_map_single(ib_conn->device->ib_device,
(void *)ib_conn->login_buf, ISER_RX_LOGIN_SIZE, (void *)ib_conn->login_buf, ISER_RX_LOGIN_SIZE,
@ -161,10 +173,9 @@ static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
ib_conn->page_vec = kmalloc(sizeof(struct iser_page_vec) + ib_conn->page_vec = kmalloc(sizeof(struct iser_page_vec) +
(sizeof(u64) * (ISCSI_ISER_SG_TABLESIZE +1)), (sizeof(u64) * (ISCSI_ISER_SG_TABLESIZE +1)),
GFP_KERNEL); GFP_KERNEL);
if (!ib_conn->page_vec) { if (!ib_conn->page_vec)
ret = -ENOMEM; goto out_err;
goto alloc_err;
}
ib_conn->page_vec->pages = (u64 *) (ib_conn->page_vec + 1); ib_conn->page_vec->pages = (u64 *) (ib_conn->page_vec + 1);
params.page_shift = SHIFT_4K; params.page_shift = SHIFT_4K;
@ -184,7 +195,8 @@ static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
ib_conn->fmr_pool = ib_create_fmr_pool(device->pd, &params); ib_conn->fmr_pool = ib_create_fmr_pool(device->pd, &params);
if (IS_ERR(ib_conn->fmr_pool)) { if (IS_ERR(ib_conn->fmr_pool)) {
ret = PTR_ERR(ib_conn->fmr_pool); ret = PTR_ERR(ib_conn->fmr_pool);
goto fmr_pool_err; ib_conn->fmr_pool = NULL;
goto out_err;
} }
memset(&init_attr, 0, sizeof init_attr); memset(&init_attr, 0, sizeof init_attr);
@ -202,7 +214,7 @@ static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret) if (ret)
goto qp_err; goto out_err;
ib_conn->qp = ib_conn->cma_id->qp; ib_conn->qp = ib_conn->cma_id->qp;
iser_err("setting conn %p cma_id %p: fmr_pool %p qp %p\n", iser_err("setting conn %p cma_id %p: fmr_pool %p qp %p\n",
@ -210,12 +222,7 @@ static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
ib_conn->fmr_pool, ib_conn->cma_id->qp); ib_conn->fmr_pool, ib_conn->cma_id->qp);
return ret; return ret;
qp_err: out_err:
(void)ib_destroy_fmr_pool(ib_conn->fmr_pool);
fmr_pool_err:
kfree(ib_conn->page_vec);
kfree(ib_conn->login_buf);
alloc_err:
iser_err("unable to alloc mem or create resource, err %d\n", ret); iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret; return ret;
} }
@ -224,7 +231,7 @@ alloc_err:
* releases the FMR pool, QP and CMA ID objects, returns 0 on success, * releases the FMR pool, QP and CMA ID objects, returns 0 on success,
* -1 on failure * -1 on failure
*/ */
static int iser_free_ib_conn_res(struct iser_conn *ib_conn) static int iser_free_ib_conn_res(struct iser_conn *ib_conn, int can_destroy_id)
{ {
BUG_ON(ib_conn == NULL); BUG_ON(ib_conn == NULL);
@ -239,7 +246,8 @@ static int iser_free_ib_conn_res(struct iser_conn *ib_conn)
if (ib_conn->qp != NULL) if (ib_conn->qp != NULL)
rdma_destroy_qp(ib_conn->cma_id); rdma_destroy_qp(ib_conn->cma_id);
if (ib_conn->cma_id != NULL) /* if cma handler context, the caller acts s.t the cma destroy the id */
if (ib_conn->cma_id != NULL && can_destroy_id)
rdma_destroy_id(ib_conn->cma_id); rdma_destroy_id(ib_conn->cma_id);
ib_conn->fmr_pool = NULL; ib_conn->fmr_pool = NULL;
@ -317,7 +325,7 @@ static int iser_conn_state_comp_exch(struct iser_conn *ib_conn,
/** /**
* Frees all conn objects and deallocs conn descriptor * Frees all conn objects and deallocs conn descriptor
*/ */
static void iser_conn_release(struct iser_conn *ib_conn) static void iser_conn_release(struct iser_conn *ib_conn, int can_destroy_id)
{ {
struct iser_device *device = ib_conn->device; struct iser_device *device = ib_conn->device;
@ -327,13 +335,11 @@ static void iser_conn_release(struct iser_conn *ib_conn)
list_del(&ib_conn->conn_list); list_del(&ib_conn->conn_list);
mutex_unlock(&ig.connlist_mutex); mutex_unlock(&ig.connlist_mutex);
iser_free_rx_descriptors(ib_conn); iser_free_rx_descriptors(ib_conn);
iser_free_ib_conn_res(ib_conn); iser_free_ib_conn_res(ib_conn, can_destroy_id);
ib_conn->device = NULL; ib_conn->device = NULL;
/* on EVENT_ADDR_ERROR there's no device yet for this conn */ /* on EVENT_ADDR_ERROR there's no device yet for this conn */
if (device != NULL) if (device != NULL)
iser_device_try_release(device); iser_device_try_release(device);
if (ib_conn->iser_conn)
ib_conn->iser_conn->ib_conn = NULL;
iscsi_destroy_endpoint(ib_conn->ep); iscsi_destroy_endpoint(ib_conn->ep);
} }
@ -342,10 +348,13 @@ void iser_conn_get(struct iser_conn *ib_conn)
atomic_inc(&ib_conn->refcount); atomic_inc(&ib_conn->refcount);
} }
void iser_conn_put(struct iser_conn *ib_conn) int iser_conn_put(struct iser_conn *ib_conn, int can_destroy_id)
{ {
if (atomic_dec_and_test(&ib_conn->refcount)) if (atomic_dec_and_test(&ib_conn->refcount)) {
iser_conn_release(ib_conn); iser_conn_release(ib_conn, can_destroy_id);
return 1;
}
return 0;
} }
/** /**
@ -369,19 +378,20 @@ void iser_conn_terminate(struct iser_conn *ib_conn)
wait_event_interruptible(ib_conn->wait, wait_event_interruptible(ib_conn->wait,
ib_conn->state == ISER_CONN_DOWN); ib_conn->state == ISER_CONN_DOWN);
iser_conn_put(ib_conn); iser_conn_put(ib_conn, 1); /* deref ib conn deallocate */
} }
static void iser_connect_error(struct rdma_cm_id *cma_id) static int iser_connect_error(struct rdma_cm_id *cma_id)
{ {
struct iser_conn *ib_conn; struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context; ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->state = ISER_CONN_DOWN; ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait); wake_up_interruptible(&ib_conn->wait);
return iser_conn_put(ib_conn, 0); /* deref ib conn's cma id */
} }
static void iser_addr_handler(struct rdma_cm_id *cma_id) static int iser_addr_handler(struct rdma_cm_id *cma_id)
{ {
struct iser_device *device; struct iser_device *device;
struct iser_conn *ib_conn; struct iser_conn *ib_conn;
@ -390,8 +400,7 @@ static void iser_addr_handler(struct rdma_cm_id *cma_id)
device = iser_device_find_by_ib_device(cma_id); device = iser_device_find_by_ib_device(cma_id);
if (!device) { if (!device) {
iser_err("device lookup/creation failed\n"); iser_err("device lookup/creation failed\n");
iser_connect_error(cma_id); return iser_connect_error(cma_id);
return;
} }
ib_conn = (struct iser_conn *)cma_id->context; ib_conn = (struct iser_conn *)cma_id->context;
@ -400,11 +409,13 @@ static void iser_addr_handler(struct rdma_cm_id *cma_id)
ret = rdma_resolve_route(cma_id, 1000); ret = rdma_resolve_route(cma_id, 1000);
if (ret) { if (ret) {
iser_err("resolve route failed: %d\n", ret); iser_err("resolve route failed: %d\n", ret);
iser_connect_error(cma_id); return iser_connect_error(cma_id);
} }
return 0;
} }
static void iser_route_handler(struct rdma_cm_id *cma_id) static int iser_route_handler(struct rdma_cm_id *cma_id)
{ {
struct rdma_conn_param conn_param; struct rdma_conn_param conn_param;
int ret; int ret;
@ -425,9 +436,9 @@ static void iser_route_handler(struct rdma_cm_id *cma_id)
goto failure; goto failure;
} }
return; return 0;
failure: failure:
iser_connect_error(cma_id); return iser_connect_error(cma_id);
} }
static void iser_connected_handler(struct rdma_cm_id *cma_id) static void iser_connected_handler(struct rdma_cm_id *cma_id)
@ -439,12 +450,12 @@ static void iser_connected_handler(struct rdma_cm_id *cma_id)
wake_up_interruptible(&ib_conn->wait); wake_up_interruptible(&ib_conn->wait);
} }
static void iser_disconnected_handler(struct rdma_cm_id *cma_id) static int iser_disconnected_handler(struct rdma_cm_id *cma_id)
{ {
struct iser_conn *ib_conn; struct iser_conn *ib_conn;
int ret;
ib_conn = (struct iser_conn *)cma_id->context; ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->disc_evt_flag = 1;
/* getting here when the state is UP means that the conn is being * /* getting here when the state is UP means that the conn is being *
* terminated asynchronously from the iSCSI layer's perspective. */ * terminated asynchronously from the iSCSI layer's perspective. */
@ -459,20 +470,24 @@ static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
ib_conn->state = ISER_CONN_DOWN; ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait); wake_up_interruptible(&ib_conn->wait);
} }
ret = iser_conn_put(ib_conn, 0); /* deref ib conn's cma id */
return ret;
} }
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{ {
int ret = 0; int ret = 0;
iser_err("event %d conn %p id %p\n",event->event,cma_id->context,cma_id); iser_err("event %d status %d conn %p id %p\n",
event->event, event->status, cma_id->context, cma_id);
switch (event->event) { switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ADDR_RESOLVED:
iser_addr_handler(cma_id); ret = iser_addr_handler(cma_id);
break; break;
case RDMA_CM_EVENT_ROUTE_RESOLVED: case RDMA_CM_EVENT_ROUTE_RESOLVED:
iser_route_handler(cma_id); ret = iser_route_handler(cma_id);
break; break;
case RDMA_CM_EVENT_ESTABLISHED: case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id); iser_connected_handler(cma_id);
@ -482,13 +497,12 @@ static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *eve
case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED: case RDMA_CM_EVENT_REJECTED:
iser_err("event: %d, error: %d\n", event->event, event->status); ret = iser_connect_error(cma_id);
iser_connect_error(cma_id);
break; break;
case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL: case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_ADDR_CHANGE:
iser_disconnected_handler(cma_id); ret = iser_disconnected_handler(cma_id);
break; break;
default: default:
iser_err("Unexpected RDMA CM event (%d)\n", event->event); iser_err("Unexpected RDMA CM event (%d)\n", event->event);
@ -503,7 +517,7 @@ void iser_conn_init(struct iser_conn *ib_conn)
init_waitqueue_head(&ib_conn->wait); init_waitqueue_head(&ib_conn->wait);
ib_conn->post_recv_buf_count = 0; ib_conn->post_recv_buf_count = 0;
atomic_set(&ib_conn->post_send_buf_count, 0); atomic_set(&ib_conn->post_send_buf_count, 0);
atomic_set(&ib_conn->refcount, 1); atomic_set(&ib_conn->refcount, 1); /* ref ib conn allocation */
INIT_LIST_HEAD(&ib_conn->conn_list); INIT_LIST_HEAD(&ib_conn->conn_list);
spin_lock_init(&ib_conn->lock); spin_lock_init(&ib_conn->lock);
} }
@ -531,6 +545,7 @@ int iser_connect(struct iser_conn *ib_conn,
ib_conn->state = ISER_CONN_PENDING; ib_conn->state = ISER_CONN_PENDING;
iser_conn_get(ib_conn); /* ref ib conn's cma id */
ib_conn->cma_id = rdma_create_id(iser_cma_handler, ib_conn->cma_id = rdma_create_id(iser_cma_handler,
(void *)ib_conn, (void *)ib_conn,
RDMA_PS_TCP); RDMA_PS_TCP);
@ -568,7 +583,7 @@ id_failure:
addr_failure: addr_failure:
ib_conn->state = ISER_CONN_DOWN; ib_conn->state = ISER_CONN_DOWN;
connect_failure: connect_failure:
iser_conn_release(ib_conn); iser_conn_release(ib_conn, 1);
return err; return err;
} }
@ -737,13 +752,11 @@ static void iser_handle_comp_error(struct iser_tx_desc *desc,
iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn, iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED); ISCSI_ERR_CONN_FAILED);
/* complete the termination process if disconnect event was delivered * /* no more non completed posts to the QP, complete the
* note there are no more non completed posts to the QP */ * termination process w.o worrying on disconnect event */
if (ib_conn->disc_evt_flag) {
ib_conn->state = ISER_CONN_DOWN; ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait); wake_up_interruptible(&ib_conn->wait);
} }
}
} }
static int iser_drain_tx_cq(struct iser_device *device) static int iser_drain_tx_cq(struct iser_device *device)

View File

@ -123,8 +123,8 @@ enum {
MLX4_OPCODE_RDMA_READ = 0x10, MLX4_OPCODE_RDMA_READ = 0x10,
MLX4_OPCODE_ATOMIC_CS = 0x11, MLX4_OPCODE_ATOMIC_CS = 0x11,
MLX4_OPCODE_ATOMIC_FA = 0x12, MLX4_OPCODE_ATOMIC_FA = 0x12,
MLX4_OPCODE_ATOMIC_MASK_CS = 0x14, MLX4_OPCODE_MASKED_ATOMIC_CS = 0x14,
MLX4_OPCODE_ATOMIC_MASK_FA = 0x15, MLX4_OPCODE_MASKED_ATOMIC_FA = 0x15,
MLX4_OPCODE_BIND_MW = 0x18, MLX4_OPCODE_BIND_MW = 0x18,
MLX4_OPCODE_FMR = 0x19, MLX4_OPCODE_FMR = 0x19,
MLX4_OPCODE_LOCAL_INVAL = 0x1b, MLX4_OPCODE_LOCAL_INVAL = 0x1b,

View File

@ -285,6 +285,13 @@ struct mlx4_wqe_atomic_seg {
__be64 compare; __be64 compare;
}; };
struct mlx4_wqe_masked_atomic_seg {
__be64 swap_add;
__be64 compare;
__be64 swap_add_mask;
__be64 compare_mask;
};
struct mlx4_wqe_data_seg { struct mlx4_wqe_data_seg {
__be32 byte_count; __be32 byte_count;
__be32 lkey; __be32 lkey;

View File

@ -136,6 +136,7 @@ struct ib_device_attr {
int max_qp_init_rd_atom; int max_qp_init_rd_atom;
int max_ee_init_rd_atom; int max_ee_init_rd_atom;
enum ib_atomic_cap atomic_cap; enum ib_atomic_cap atomic_cap;
enum ib_atomic_cap masked_atomic_cap;
int max_ee; int max_ee;
int max_rdd; int max_rdd;
int max_mw; int max_mw;
@ -467,6 +468,8 @@ enum ib_wc_opcode {
IB_WC_LSO, IB_WC_LSO,
IB_WC_LOCAL_INV, IB_WC_LOCAL_INV,
IB_WC_FAST_REG_MR, IB_WC_FAST_REG_MR,
IB_WC_MASKED_COMP_SWAP,
IB_WC_MASKED_FETCH_ADD,
/* /*
* Set value of IB_WC_RECV so consumers can test if a completion is a * Set value of IB_WC_RECV so consumers can test if a completion is a
* receive by testing (opcode & IB_WC_RECV). * receive by testing (opcode & IB_WC_RECV).
@ -689,6 +692,8 @@ enum ib_wr_opcode {
IB_WR_RDMA_READ_WITH_INV, IB_WR_RDMA_READ_WITH_INV,
IB_WR_LOCAL_INV, IB_WR_LOCAL_INV,
IB_WR_FAST_REG_MR, IB_WR_FAST_REG_MR,
IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
}; };
enum ib_send_flags { enum ib_send_flags {
@ -731,6 +736,8 @@ struct ib_send_wr {
u64 remote_addr; u64 remote_addr;
u64 compare_add; u64 compare_add;
u64 swap; u64 swap;
u64 compare_add_mask;
u64 swap_mask;
u32 rkey; u32 rkey;
} atomic; } atomic;
struct { struct {