crypto: mediatek - make hardware operation flow more efficient
This patch refines data structures, which are used to control engine's data path, to make it more efficient. Hence current change are: - gathers the broken pieces of structures 'mtk_aes_ct''mtk_aes_tfm' into struct mtk_aes_info hence avoiding additional DMA-mapping. - adds 'keymode' in struct mtk_aes_base_ctx. When .setkey() callback is called, we store keybit setting in keymode. Doing so, there is no need to check keylen second time in mtk_aes_info_init() / mtk_aes_gcm_info_init(). Besides, this patch also removes unused macro definitions and adds helper inline function to write security information(key, IV,...) to info->state. Signed-off-by: Ryder Lee <ryder.lee@mediatek.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
98b10235f3
commit
9aa2fcb8cf
|
@ -19,13 +19,10 @@
|
|||
#define AES_BUF_ORDER 2
|
||||
#define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \
|
||||
& ~(AES_BLOCK_SIZE - 1))
|
||||
#define AES_MAX_STATE_BUF_SIZE SIZE_IN_WORDS(AES_KEYSIZE_256 + \
|
||||
AES_BLOCK_SIZE * 2)
|
||||
#define AES_MAX_CT_SIZE 6
|
||||
|
||||
/* AES command token size */
|
||||
#define AES_CT_SIZE_ECB 2
|
||||
#define AES_CT_SIZE_CBC 3
|
||||
#define AES_CT_SIZE_CTR 3
|
||||
#define AES_CT_SIZE_GCM_OUT 5
|
||||
#define AES_CT_SIZE_GCM_IN 6
|
||||
#define AES_CT_CTRL_HDR cpu_to_le32(0x00220000)
|
||||
|
||||
/* AES-CBC/ECB/CTR command token */
|
||||
|
@ -50,6 +47,8 @@
|
|||
#define AES_TFM_128BITS cpu_to_le32(0xb << 16)
|
||||
#define AES_TFM_192BITS cpu_to_le32(0xd << 16)
|
||||
#define AES_TFM_256BITS cpu_to_le32(0xf << 16)
|
||||
#define AES_TFM_GHASH_DIGEST cpu_to_le32(0x2 << 21)
|
||||
#define AES_TFM_GHASH cpu_to_le32(0x4 << 23)
|
||||
/* AES transform information word 1 fields */
|
||||
#define AES_TFM_ECB cpu_to_le32(0x0 << 0)
|
||||
#define AES_TFM_CBC cpu_to_le32(0x1 << 0)
|
||||
|
@ -59,10 +58,9 @@
|
|||
#define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* using IV 0-3 */
|
||||
#define AES_TFM_IV_CTR_MODE cpu_to_le32(0x1 << 10)
|
||||
#define AES_TFM_ENC_HASH cpu_to_le32(0x1 << 17)
|
||||
#define AES_TFM_GHASH_DIG cpu_to_le32(0x2 << 21)
|
||||
#define AES_TFM_GHASH cpu_to_le32(0x4 << 23)
|
||||
|
||||
/* AES flags */
|
||||
#define AES_FLAGS_CIPHER_MSK GENMASK(2, 0)
|
||||
#define AES_FLAGS_ECB BIT(0)
|
||||
#define AES_FLAGS_CBC BIT(1)
|
||||
#define AES_FLAGS_CTR BIT(2)
|
||||
|
@ -73,18 +71,12 @@
|
|||
#define AES_AUTH_TAG_ERR cpu_to_le32(BIT(26))
|
||||
|
||||
/**
|
||||
* Command token(CT) is a set of hardware instructions that
|
||||
* are used to control engine's processing flow of AES.
|
||||
* mtk_aes_info - hardware information of AES
|
||||
* @cmd: command token, hardware instruction
|
||||
* @tfm: transform state of cipher algorithm.
|
||||
* @state: contains keys and initial vectors.
|
||||
*
|
||||
* Transform information(TFM) is used to define AES state and
|
||||
* contains all keys and initial vectors.
|
||||
*
|
||||
* The engine requires CT and TFM to do:
|
||||
* - Commands decoding and control of the engine's data path.
|
||||
* - Coordinating hardware data fetch and store operations.
|
||||
* - Result token construction and output.
|
||||
*
|
||||
* Memory map of GCM's TFM:
|
||||
* Memory layout of GCM buffer:
|
||||
* /-----------\
|
||||
* | AES KEY | 128/196/256 bits
|
||||
* |-----------|
|
||||
|
@ -92,14 +84,16 @@
|
|||
* |-----------|
|
||||
* | IVs | 4 * 4 bytes
|
||||
* \-----------/
|
||||
*
|
||||
* The engine requires all these info to do:
|
||||
* - Commands decoding and control of the engine's data path.
|
||||
* - Coordinating hardware data fetch and store operations.
|
||||
* - Result token construction and output.
|
||||
*/
|
||||
struct mtk_aes_ct {
|
||||
__le32 cmd[AES_CT_SIZE_GCM_IN];
|
||||
};
|
||||
|
||||
struct mtk_aes_tfm {
|
||||
__le32 ctrl[2];
|
||||
__le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE * 2)];
|
||||
struct mtk_aes_info {
|
||||
__le32 cmd[AES_MAX_CT_SIZE];
|
||||
__le32 tfm[2];
|
||||
__le32 state[AES_MAX_STATE_BUF_SIZE];
|
||||
};
|
||||
|
||||
struct mtk_aes_reqctx {
|
||||
|
@ -109,11 +103,12 @@ struct mtk_aes_reqctx {
|
|||
struct mtk_aes_base_ctx {
|
||||
struct mtk_cryp *cryp;
|
||||
u32 keylen;
|
||||
__le32 keymode;
|
||||
|
||||
mtk_aes_fn start;
|
||||
|
||||
struct mtk_aes_ct ct;
|
||||
struct mtk_aes_info info;
|
||||
dma_addr_t ct_dma;
|
||||
struct mtk_aes_tfm tfm;
|
||||
dma_addr_t tfm_dma;
|
||||
|
||||
__le32 ct_hdr;
|
||||
|
@ -250,6 +245,22 @@ static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
|
|||
sg->length += dma->remainder;
|
||||
}
|
||||
|
||||
static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < SIZE_IN_WORDS(size); i++)
|
||||
dst[i] = cpu_to_le32(src[i]);
|
||||
}
|
||||
|
||||
static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < SIZE_IN_WORDS(size); i++)
|
||||
dst[i] = cpu_to_be32(src[i]);
|
||||
}
|
||||
|
||||
static inline int mtk_aes_complete(struct mtk_cryp *cryp,
|
||||
struct mtk_aes_rec *aes,
|
||||
int err)
|
||||
|
@ -331,9 +342,7 @@ static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|||
{
|
||||
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
||||
|
||||
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
|
||||
DMA_TO_DEVICE);
|
||||
dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
|
||||
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
|
||||
DMA_TO_DEVICE);
|
||||
|
||||
if (aes->src.sg == aes->dst.sg) {
|
||||
|
@ -364,16 +373,14 @@ static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|||
static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
||||
{
|
||||
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
||||
struct mtk_aes_info *info = &ctx->info;
|
||||
|
||||
ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct),
|
||||
ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
|
||||
DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
|
||||
goto exit;
|
||||
|
||||
ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm),
|
||||
DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma)))
|
||||
goto tfm_map_err;
|
||||
ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
|
||||
|
||||
if (aes->src.sg == aes->dst.sg) {
|
||||
aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
|
||||
|
@ -400,11 +407,7 @@ static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|||
return mtk_aes_xmit(cryp, aes);
|
||||
|
||||
sg_map_err:
|
||||
dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
|
||||
DMA_TO_DEVICE);
|
||||
tfm_map_err:
|
||||
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
|
||||
DMA_TO_DEVICE);
|
||||
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
|
||||
exit:
|
||||
return mtk_aes_complete(cryp, aes, -EINVAL);
|
||||
}
|
||||
|
@ -415,50 +418,43 @@ static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
|
|||
{
|
||||
struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
|
||||
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
||||
struct mtk_aes_info *info = &ctx->info;
|
||||
u32 cnt = 0;
|
||||
|
||||
ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
|
||||
ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len);
|
||||
ctx->ct.cmd[1] = AES_CMD1;
|
||||
info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
|
||||
info->cmd[cnt++] = AES_CMD1;
|
||||
|
||||
info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
|
||||
if (aes->flags & AES_FLAGS_ENCRYPT)
|
||||
ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT;
|
||||
info->tfm[0] |= AES_TFM_BASIC_OUT;
|
||||
else
|
||||
ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN;
|
||||
info->tfm[0] |= AES_TFM_BASIC_IN;
|
||||
|
||||
if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
|
||||
else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
|
||||
else
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
|
||||
switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
|
||||
case AES_FLAGS_CBC:
|
||||
info->tfm[1] = AES_TFM_CBC;
|
||||
break;
|
||||
case AES_FLAGS_ECB:
|
||||
info->tfm[1] = AES_TFM_ECB;
|
||||
goto ecb;
|
||||
case AES_FLAGS_CTR:
|
||||
info->tfm[1] = AES_TFM_CTR_LOAD;
|
||||
goto ctr;
|
||||
|
||||
if (aes->flags & AES_FLAGS_CBC) {
|
||||
const u32 *iv = (const u32 *)req->info;
|
||||
u32 *iv_state = ctx->tfm.state + ctx->keylen;
|
||||
int i;
|
||||
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
|
||||
SIZE_IN_WORDS(AES_BLOCK_SIZE));
|
||||
ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV;
|
||||
|
||||
for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
|
||||
iv_state[i] = cpu_to_le32(iv[i]);
|
||||
|
||||
ctx->ct.cmd[2] = AES_CMD2;
|
||||
ctx->ct_size = AES_CT_SIZE_CBC;
|
||||
} else if (aes->flags & AES_FLAGS_ECB) {
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen);
|
||||
ctx->tfm.ctrl[1] = AES_TFM_ECB;
|
||||
|
||||
ctx->ct_size = AES_CT_SIZE_ECB;
|
||||
} else if (aes->flags & AES_FLAGS_CTR) {
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
|
||||
SIZE_IN_WORDS(AES_BLOCK_SIZE));
|
||||
ctx->tfm.ctrl[1] = AES_TFM_CTR_LOAD | AES_TFM_FULL_IV;
|
||||
|
||||
ctx->ct.cmd[2] = AES_CMD2;
|
||||
ctx->ct_size = AES_CT_SIZE_CTR;
|
||||
default:
|
||||
/* Should not happen... */
|
||||
return;
|
||||
}
|
||||
|
||||
mtk_aes_write_state_le(info->state + ctx->keylen, req->info,
|
||||
AES_BLOCK_SIZE);
|
||||
ctr:
|
||||
info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE));
|
||||
info->tfm[1] |= AES_TFM_FULL_IV;
|
||||
info->cmd[cnt++] = AES_CMD2;
|
||||
ecb:
|
||||
ctx->ct_size = cnt;
|
||||
}
|
||||
|
||||
static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
|
||||
|
@ -572,8 +568,7 @@ static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|||
struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
|
||||
struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
|
||||
struct scatterlist *src, *dst;
|
||||
int i;
|
||||
u32 start, end, ctr, blocks, *iv_state;
|
||||
u32 start, end, ctr, blocks;
|
||||
size_t datalen;
|
||||
bool fragmented = false;
|
||||
|
||||
|
@ -602,9 +597,8 @@ static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|||
scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
|
||||
|
||||
/* Write IVs into transform state buffer. */
|
||||
iv_state = ctx->tfm.state + ctx->keylen;
|
||||
for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
|
||||
iv_state[i] = cpu_to_le32(cctx->iv[i]);
|
||||
mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv,
|
||||
AES_BLOCK_SIZE);
|
||||
|
||||
if (unlikely(fragmented)) {
|
||||
/*
|
||||
|
@ -639,21 +633,25 @@ static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
|
|||
const u8 *key, u32 keylen)
|
||||
{
|
||||
struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
||||
const u32 *aes_key = (const u32 *)key;
|
||||
u32 *key_state = ctx->tfm.state;
|
||||
int i;
|
||||
|
||||
if (keylen != AES_KEYSIZE_128 &&
|
||||
keylen != AES_KEYSIZE_192 &&
|
||||
keylen != AES_KEYSIZE_256) {
|
||||
switch (keylen) {
|
||||
case AES_KEYSIZE_128:
|
||||
ctx->keymode = AES_TFM_128BITS;
|
||||
break;
|
||||
case AES_KEYSIZE_192:
|
||||
ctx->keymode = AES_TFM_192BITS;
|
||||
break;
|
||||
case AES_KEYSIZE_256:
|
||||
ctx->keymode = AES_TFM_256BITS;
|
||||
break;
|
||||
|
||||
default:
|
||||
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ctx->keylen = SIZE_IN_WORDS(keylen);
|
||||
|
||||
for (i = 0; i < ctx->keylen; i++)
|
||||
key_state[i] = cpu_to_le32(aes_key[i]);
|
||||
mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -825,45 +823,35 @@ static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
|
|||
struct aead_request *req = aead_request_cast(aes->areq);
|
||||
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
||||
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
|
||||
const u32 *iv = (const u32 *)req->iv;
|
||||
u32 *iv_state = ctx->tfm.state + ctx->keylen +
|
||||
SIZE_IN_WORDS(AES_BLOCK_SIZE);
|
||||
struct mtk_aes_info *info = &ctx->info;
|
||||
u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
|
||||
int i;
|
||||
u32 cnt = 0;
|
||||
|
||||
ctx->ct_hdr = AES_CT_CTRL_HDR | len;
|
||||
|
||||
ctx->ct.cmd[0] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
|
||||
ctx->ct.cmd[1] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
|
||||
ctx->ct.cmd[2] = AES_GCM_CMD2;
|
||||
ctx->ct.cmd[3] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
|
||||
info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
|
||||
info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
|
||||
info->cmd[cnt++] = AES_GCM_CMD2;
|
||||
info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
|
||||
|
||||
if (aes->flags & AES_FLAGS_ENCRYPT) {
|
||||
ctx->ct.cmd[4] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
|
||||
ctx->ct_size = AES_CT_SIZE_GCM_OUT;
|
||||
ctx->tfm.ctrl[0] = AES_TFM_GCM_OUT;
|
||||
info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
|
||||
info->tfm[0] = AES_TFM_GCM_OUT;
|
||||
} else {
|
||||
ctx->ct.cmd[4] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
|
||||
ctx->ct.cmd[5] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
|
||||
ctx->ct_size = AES_CT_SIZE_GCM_IN;
|
||||
ctx->tfm.ctrl[0] = AES_TFM_GCM_IN;
|
||||
info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
|
||||
info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
|
||||
info->tfm[0] = AES_TFM_GCM_IN;
|
||||
}
|
||||
ctx->ct_size = cnt;
|
||||
|
||||
if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
|
||||
else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
|
||||
else
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
|
||||
info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
|
||||
ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
|
||||
ctx->keymode;
|
||||
info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
|
||||
AES_TFM_ENC_HASH;
|
||||
|
||||
ctx->tfm.ctrl[0] |= AES_TFM_GHASH_DIG | AES_TFM_GHASH |
|
||||
AES_TFM_SIZE(ctx->keylen + SIZE_IN_WORDS(
|
||||
AES_BLOCK_SIZE + ivsize));
|
||||
ctx->tfm.ctrl[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE |
|
||||
AES_TFM_3IV | AES_TFM_ENC_HASH;
|
||||
|
||||
for (i = 0; i < SIZE_IN_WORDS(ivsize); i++)
|
||||
iv_state[i] = cpu_to_le32(iv[i]);
|
||||
mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS(
|
||||
AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize);
|
||||
}
|
||||
|
||||
static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
|
||||
|
@ -979,24 +967,26 @@ static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
|
|||
struct scatterlist sg[1];
|
||||
struct skcipher_request req;
|
||||
} *data;
|
||||
const u32 *aes_key;
|
||||
u32 *key_state, *hash_state;
|
||||
int err, i;
|
||||
int err;
|
||||
|
||||
if (keylen != AES_KEYSIZE_256 &&
|
||||
keylen != AES_KEYSIZE_192 &&
|
||||
keylen != AES_KEYSIZE_128) {
|
||||
switch (keylen) {
|
||||
case AES_KEYSIZE_128:
|
||||
ctx->keymode = AES_TFM_128BITS;
|
||||
break;
|
||||
case AES_KEYSIZE_192:
|
||||
ctx->keymode = AES_TFM_192BITS;
|
||||
break;
|
||||
case AES_KEYSIZE_256:
|
||||
ctx->keymode = AES_TFM_256BITS;
|
||||
break;
|
||||
|
||||
default:
|
||||
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
key_state = ctx->tfm.state;
|
||||
aes_key = (u32 *)key;
|
||||
ctx->keylen = SIZE_IN_WORDS(keylen);
|
||||
|
||||
for (i = 0; i < ctx->keylen; i++)
|
||||
ctx->tfm.state[i] = cpu_to_le32(aes_key[i]);
|
||||
|
||||
/* Same as crypto_gcm_setkey() from crypto/gcm.c */
|
||||
crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
|
||||
crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
|
||||
|
@ -1031,10 +1021,11 @@ static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
|
|||
if (err)
|
||||
goto out;
|
||||
|
||||
hash_state = key_state + ctx->keylen;
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
hash_state[i] = cpu_to_be32(data->hash[i]);
|
||||
/* Write key into state buffer */
|
||||
mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
|
||||
/* Write key(H) into state buffer */
|
||||
mtk_aes_write_state_be(ctx->info.state + ctx->keylen, data->hash,
|
||||
AES_BLOCK_SIZE);
|
||||
out:
|
||||
kzfree(data);
|
||||
return err;
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#define SHA_OP_FINAL 2
|
||||
|
||||
#define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
|
||||
#define SHA_MAX_DIGEST_BUF_SIZE 32
|
||||
|
||||
/* SHA command token */
|
||||
#define SHA_CT_SIZE 5
|
||||
|
@ -33,7 +34,6 @@
|
|||
|
||||
/* SHA transform information */
|
||||
#define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
|
||||
#define SHA_TFM_INNER_DIG cpu_to_le32(0x1 << 21)
|
||||
#define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
|
||||
#define SHA_TFM_START cpu_to_le32(0x1 << 4)
|
||||
#define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
|
||||
|
@ -60,31 +60,17 @@
|
|||
#define SHA_FLAGS_PAD BIT(10)
|
||||
|
||||
/**
|
||||
* mtk_sha_ct is a set of hardware instructions(command token)
|
||||
* that are used to control engine's processing flow of SHA,
|
||||
* and it contains the first two words of transform state.
|
||||
*/
|
||||
struct mtk_sha_ct {
|
||||
__le32 ctrl[2];
|
||||
__le32 cmd[3];
|
||||
};
|
||||
|
||||
/**
|
||||
* mtk_sha_tfm is used to define SHA transform state
|
||||
* and store result digest that produced by engine.
|
||||
*/
|
||||
struct mtk_sha_tfm {
|
||||
__le32 ctrl[2];
|
||||
__le32 digest[SIZE_IN_WORDS(SHA512_DIGEST_SIZE)];
|
||||
};
|
||||
|
||||
/**
|
||||
* mtk_sha_info consists of command token and transform state
|
||||
* of SHA, its role is similar to mtk_aes_info.
|
||||
* mtk_sha_info - hardware information of AES
|
||||
* @cmd: command token, hardware instruction
|
||||
* @tfm: transform state of cipher algorithm.
|
||||
* @state: contains keys and initial vectors.
|
||||
*
|
||||
*/
|
||||
struct mtk_sha_info {
|
||||
struct mtk_sha_ct ct;
|
||||
struct mtk_sha_tfm tfm;
|
||||
__le32 ctrl[2];
|
||||
__le32 cmd[3];
|
||||
__le32 tfm[2];
|
||||
__le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
|
||||
};
|
||||
|
||||
struct mtk_sha_reqctx {
|
||||
|
@ -93,7 +79,6 @@ struct mtk_sha_reqctx {
|
|||
unsigned long op;
|
||||
|
||||
u64 digcnt;
|
||||
bool start;
|
||||
size_t bufcnt;
|
||||
dma_addr_t dma_addr;
|
||||
|
||||
|
@ -265,7 +250,9 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
|
|||
bits[1] = cpu_to_be64(size << 3);
|
||||
bits[0] = cpu_to_be64(size >> 61);
|
||||
|
||||
if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
|
||||
switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
|
||||
case SHA_FLAGS_SHA384:
|
||||
case SHA_FLAGS_SHA512:
|
||||
index = ctx->bufcnt & 0x7f;
|
||||
padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
|
||||
*(ctx->buffer + ctx->bufcnt) = 0x80;
|
||||
|
@ -273,7 +260,9 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
|
|||
memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
|
||||
ctx->bufcnt += padlen + 16;
|
||||
ctx->flags |= SHA_FLAGS_PAD;
|
||||
} else {
|
||||
break;
|
||||
|
||||
default:
|
||||
index = ctx->bufcnt & 0x3f;
|
||||
padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
|
||||
*(ctx->buffer + ctx->bufcnt) = 0x80;
|
||||
|
@ -281,36 +270,35 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
|
|||
memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
|
||||
ctx->bufcnt += padlen + 8;
|
||||
ctx->flags |= SHA_FLAGS_PAD;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize basic transform information of SHA */
|
||||
static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
|
||||
{
|
||||
struct mtk_sha_ct *ct = &ctx->info.ct;
|
||||
struct mtk_sha_tfm *tfm = &ctx->info.tfm;
|
||||
struct mtk_sha_info *info = &ctx->info;
|
||||
|
||||
ctx->ct_hdr = SHA_CT_CTRL_HDR;
|
||||
ctx->ct_size = SHA_CT_SIZE;
|
||||
|
||||
tfm->ctrl[0] = SHA_TFM_HASH | SHA_TFM_INNER_DIG |
|
||||
SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
|
||||
info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
|
||||
|
||||
switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
|
||||
case SHA_FLAGS_SHA1:
|
||||
tfm->ctrl[0] |= SHA_TFM_SHA1;
|
||||
info->tfm[0] |= SHA_TFM_SHA1;
|
||||
break;
|
||||
case SHA_FLAGS_SHA224:
|
||||
tfm->ctrl[0] |= SHA_TFM_SHA224;
|
||||
info->tfm[0] |= SHA_TFM_SHA224;
|
||||
break;
|
||||
case SHA_FLAGS_SHA256:
|
||||
tfm->ctrl[0] |= SHA_TFM_SHA256;
|
||||
info->tfm[0] |= SHA_TFM_SHA256;
|
||||
break;
|
||||
case SHA_FLAGS_SHA384:
|
||||
tfm->ctrl[0] |= SHA_TFM_SHA384;
|
||||
info->tfm[0] |= SHA_TFM_SHA384;
|
||||
break;
|
||||
case SHA_FLAGS_SHA512:
|
||||
tfm->ctrl[0] |= SHA_TFM_SHA512;
|
||||
info->tfm[0] |= SHA_TFM_SHA512;
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -318,13 +306,13 @@ static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
|
|||
return;
|
||||
}
|
||||
|
||||
tfm->ctrl[1] = SHA_TFM_HASH_STORE;
|
||||
ct->ctrl[0] = tfm->ctrl[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
|
||||
ct->ctrl[1] = tfm->ctrl[1];
|
||||
info->tfm[1] = SHA_TFM_HASH_STORE;
|
||||
info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
|
||||
info->ctrl[1] = info->tfm[1];
|
||||
|
||||
ct->cmd[0] = SHA_CMD0;
|
||||
ct->cmd[1] = SHA_CMD1;
|
||||
ct->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
|
||||
info->cmd[0] = SHA_CMD0;
|
||||
info->cmd[1] = SHA_CMD1;
|
||||
info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -337,17 +325,15 @@ static int mtk_sha_info_update(struct mtk_cryp *cryp,
|
|||
{
|
||||
struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
|
||||
struct mtk_sha_info *info = &ctx->info;
|
||||
struct mtk_sha_ct *ct = &info->ct;
|
||||
|
||||
if (ctx->start)
|
||||
ctx->start = false;
|
||||
else
|
||||
ct->ctrl[0] &= ~SHA_TFM_START;
|
||||
|
||||
ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
|
||||
ctx->ct_hdr |= cpu_to_le32(len1 + len2);
|
||||
ct->cmd[0] &= ~SHA_DATA_LEN_MSK;
|
||||
ct->cmd[0] |= cpu_to_le32(len1 + len2);
|
||||
info->cmd[0] &= ~SHA_DATA_LEN_MSK;
|
||||
info->cmd[0] |= cpu_to_le32(len1 + len2);
|
||||
|
||||
/* Setting SHA_TFM_START only for the first iteration */
|
||||
if (ctx->digcnt)
|
||||
info->ctrl[0] &= ~SHA_TFM_START;
|
||||
|
||||
ctx->digcnt += len1;
|
||||
|
||||
|
@ -357,7 +343,8 @@ static int mtk_sha_info_update(struct mtk_cryp *cryp,
|
|||
dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
|
||||
return -EINVAL;
|
||||
}
|
||||
ctx->tfm_dma = ctx->ct_dma + sizeof(*ct);
|
||||
|
||||
ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -422,7 +409,6 @@ static int mtk_sha_init(struct ahash_request *req)
|
|||
ctx->bufcnt = 0;
|
||||
ctx->digcnt = 0;
|
||||
ctx->buffer = tctx->buf;
|
||||
ctx->start = true;
|
||||
|
||||
if (tctx->flags & SHA_FLAGS_HMAC) {
|
||||
struct mtk_sha_hmac_ctx *bctx = tctx->base;
|
||||
|
@ -635,7 +621,7 @@ static int mtk_sha_final_req(struct mtk_cryp *cryp,
|
|||
static int mtk_sha_finish(struct ahash_request *req)
|
||||
{
|
||||
struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
|
||||
u32 *digest = ctx->info.tfm.digest;
|
||||
__le32 *digest = ctx->info.digest;
|
||||
u32 *result = (u32 *)req->result;
|
||||
int i;
|
||||
|
||||
|
|
Loading…
Reference in New Issue