perf timechart: Introduce tool struct

To avoid having all those global variables and to use the interface to
event processing that is based on passing a 'perf_tool' struct that
should be embedded in a per tool specific struct passed to all the
sample processing callbacks.

There are some more globals to move, next patches will do it.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislav Fomichev <stfomichev@yandex-team.ru>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-0iah65pq796ezbk5u1lzwy1k@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Arnaldo Carvalho de Melo 2013-11-28 11:25:19 -03:00
parent 6f9a317f2a
commit 985b12e633
1 changed files with 114 additions and 102 deletions

View File

@ -41,19 +41,18 @@
#define SUPPORT_OLD_POWER_EVENTS 1 #define SUPPORT_OLD_POWER_EVENTS 1
#define PWR_EVENT_EXIT -1 #define PWR_EVENT_EXIT -1
static int proc_num = 15; struct timechart {
struct perf_tool tool;
static unsigned int numcpus; int proc_num;
static u64 min_freq; /* Lowest CPU frequency seen */ unsigned int numcpus;
static u64 max_freq; /* Highest CPU frequency seen */ u64 min_freq, /* Lowest CPU frequency seen */
static u64 turbo_frequency; max_freq, /* Highest CPU frequency seen */
turbo_frequency,
static u64 first_time, last_time; first_time, last_time;
bool power_only,
static bool power_only; tasks_only,
static bool tasks_only; with_backtrace;
static bool with_backtrace; };
struct per_pidcomm; struct per_pidcomm;
struct cpu_sample; struct cpu_sample;
@ -326,7 +325,7 @@ static void c_state_end(int cpu, u64 timestamp)
power_events = pwr; power_events = pwr;
} }
static void p_state_change(int cpu, u64 timestamp, u64 new_freq) static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
{ {
struct power_event *pwr; struct power_event *pwr;
@ -345,21 +344,21 @@ static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
pwr->next = power_events; pwr->next = power_events;
if (!pwr->start_time) if (!pwr->start_time)
pwr->start_time = first_time; pwr->start_time = tchart->first_time;
power_events = pwr; power_events = pwr;
cpus_pstate_state[cpu] = new_freq; cpus_pstate_state[cpu] = new_freq;
cpus_pstate_start_times[cpu] = timestamp; cpus_pstate_start_times[cpu] = timestamp;
if ((u64)new_freq > max_freq) if ((u64)new_freq > tchart->max_freq)
max_freq = new_freq; tchart->max_freq = new_freq;
if (new_freq < min_freq || min_freq == 0) if (new_freq < tchart->min_freq || tchart->min_freq == 0)
min_freq = new_freq; tchart->min_freq = new_freq;
if (new_freq == max_freq - 1000) if (new_freq == tchart->max_freq - 1000)
turbo_frequency = max_freq; tchart->turbo_frequency = tchart->max_freq;
} }
static void sched_wakeup(int cpu, u64 timestamp, int waker, int wakee, static void sched_wakeup(int cpu, u64 timestamp, int waker, int wakee,
@ -506,36 +505,40 @@ exit:
return p; return p;
} }
typedef int (*tracepoint_handler)(struct perf_evsel *evsel, typedef int (*tracepoint_handler)(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace); const char *backtrace);
static int process_sample_event(struct perf_tool *tool __maybe_unused, static int process_sample_event(struct perf_tool *tool,
union perf_event *event, union perf_event *event,
struct perf_sample *sample, struct perf_sample *sample,
struct perf_evsel *evsel, struct perf_evsel *evsel,
struct machine *machine __maybe_unused) struct machine *machine)
{ {
struct timechart *tchart = container_of(tool, struct timechart, tool);
if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
if (!first_time || first_time > sample->time) if (!tchart->first_time || tchart->first_time > sample->time)
first_time = sample->time; tchart->first_time = sample->time;
if (last_time < sample->time) if (tchart->last_time < sample->time)
last_time = sample->time; tchart->last_time = sample->time;
} }
if (sample->cpu > numcpus) if (sample->cpu > tchart->numcpus)
numcpus = sample->cpu; tchart->numcpus = sample->cpu;
if (evsel->handler != NULL) { if (evsel->handler != NULL) {
tracepoint_handler f = evsel->handler; tracepoint_handler f = evsel->handler;
return f(evsel, sample, cat_backtrace(event, sample, machine)); return f(tchart, evsel, sample, cat_backtrace(event, sample, machine));
} }
return 0; return 0;
} }
static int static int
process_sample_cpu_idle(struct perf_evsel *evsel, process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace __maybe_unused) const char *backtrace __maybe_unused)
{ {
@ -550,19 +553,21 @@ process_sample_cpu_idle(struct perf_evsel *evsel,
} }
static int static int
process_sample_cpu_frequency(struct perf_evsel *evsel, process_sample_cpu_frequency(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace __maybe_unused) const char *backtrace __maybe_unused)
{ {
u32 state = perf_evsel__intval(evsel, sample, "state"); u32 state = perf_evsel__intval(evsel, sample, "state");
u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
p_state_change(cpu_id, sample->time, state); p_state_change(tchart, cpu_id, sample->time, state);
return 0; return 0;
} }
static int static int
process_sample_sched_wakeup(struct perf_evsel *evsel, process_sample_sched_wakeup(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace) const char *backtrace)
{ {
@ -575,7 +580,8 @@ process_sample_sched_wakeup(struct perf_evsel *evsel,
} }
static int static int
process_sample_sched_switch(struct perf_evsel *evsel, process_sample_sched_switch(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace) const char *backtrace)
{ {
@ -590,7 +596,8 @@ process_sample_sched_switch(struct perf_evsel *evsel,
#ifdef SUPPORT_OLD_POWER_EVENTS #ifdef SUPPORT_OLD_POWER_EVENTS
static int static int
process_sample_power_start(struct perf_evsel *evsel, process_sample_power_start(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace __maybe_unused) const char *backtrace __maybe_unused)
{ {
@ -602,7 +609,8 @@ process_sample_power_start(struct perf_evsel *evsel,
} }
static int static int
process_sample_power_end(struct perf_evsel *evsel __maybe_unused, process_sample_power_end(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace __maybe_unused) const char *backtrace __maybe_unused)
{ {
@ -611,14 +619,15 @@ process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
} }
static int static int
process_sample_power_frequency(struct perf_evsel *evsel, process_sample_power_frequency(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample, struct perf_sample *sample,
const char *backtrace __maybe_unused) const char *backtrace __maybe_unused)
{ {
u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
u64 value = perf_evsel__intval(evsel, sample, "value"); u64 value = perf_evsel__intval(evsel, sample, "value");
p_state_change(cpu_id, sample->time, value); p_state_change(tchart, cpu_id, sample->time, value);
return 0; return 0;
} }
#endif /* SUPPORT_OLD_POWER_EVENTS */ #endif /* SUPPORT_OLD_POWER_EVENTS */
@ -627,12 +636,12 @@ process_sample_power_frequency(struct perf_evsel *evsel,
* After the last sample we need to wrap up the current C/P state * After the last sample we need to wrap up the current C/P state
* and close out each CPU for these. * and close out each CPU for these.
*/ */
static void end_sample_processing(void) static void end_sample_processing(struct timechart *tchart)
{ {
u64 cpu; u64 cpu;
struct power_event *pwr; struct power_event *pwr;
for (cpu = 0; cpu <= numcpus; cpu++) { for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
/* C state */ /* C state */
#if 0 #if 0
pwr = zalloc(sizeof(*pwr)); pwr = zalloc(sizeof(*pwr));
@ -641,7 +650,7 @@ static void end_sample_processing(void)
pwr->state = cpus_cstate_state[cpu]; pwr->state = cpus_cstate_state[cpu];
pwr->start_time = cpus_cstate_start_times[cpu]; pwr->start_time = cpus_cstate_start_times[cpu];
pwr->end_time = last_time; pwr->end_time = tchart->last_time;
pwr->cpu = cpu; pwr->cpu = cpu;
pwr->type = CSTATE; pwr->type = CSTATE;
pwr->next = power_events; pwr->next = power_events;
@ -656,15 +665,15 @@ static void end_sample_processing(void)
pwr->state = cpus_pstate_state[cpu]; pwr->state = cpus_pstate_state[cpu];
pwr->start_time = cpus_pstate_start_times[cpu]; pwr->start_time = cpus_pstate_start_times[cpu];
pwr->end_time = last_time; pwr->end_time = tchart->last_time;
pwr->cpu = cpu; pwr->cpu = cpu;
pwr->type = PSTATE; pwr->type = PSTATE;
pwr->next = power_events; pwr->next = power_events;
if (!pwr->start_time) if (!pwr->start_time)
pwr->start_time = first_time; pwr->start_time = tchart->first_time;
if (!pwr->state) if (!pwr->state)
pwr->state = min_freq; pwr->state = tchart->min_freq;
power_events = pwr; power_events = pwr;
} }
} }
@ -718,7 +727,7 @@ static void sort_pids(void)
} }
static void draw_c_p_states(void) static void draw_c_p_states(struct timechart *tchart)
{ {
struct power_event *pwr; struct power_event *pwr;
pwr = power_events; pwr = power_events;
@ -736,7 +745,7 @@ static void draw_c_p_states(void)
while (pwr) { while (pwr) {
if (pwr->type == PSTATE) { if (pwr->type == PSTATE) {
if (!pwr->state) if (!pwr->state)
pwr->state = min_freq; pwr->state = tchart->min_freq;
svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
} }
pwr = pwr->next; pwr = pwr->next;
@ -833,14 +842,14 @@ static void draw_cpu_usage(void)
} }
} }
static void draw_process_bars(void) static void draw_process_bars(struct timechart *tchart)
{ {
struct per_pid *p; struct per_pid *p;
struct per_pidcomm *c; struct per_pidcomm *c;
struct cpu_sample *sample; struct cpu_sample *sample;
int Y = 0; int Y = 0;
Y = 2 * numcpus + 2; Y = 2 * tchart->numcpus + 2;
p = all_data; p = all_data;
while (p) { while (p) {
@ -922,7 +931,7 @@ static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
return 0; return 0;
} }
static int determine_display_tasks_filtered(void) static int determine_display_tasks_filtered(struct timechart *tchart)
{ {
struct per_pid *p; struct per_pid *p;
struct per_pidcomm *c; struct per_pidcomm *c;
@ -932,11 +941,11 @@ static int determine_display_tasks_filtered(void)
while (p) { while (p) {
p->display = 0; p->display = 0;
if (p->start_time == 1) if (p->start_time == 1)
p->start_time = first_time; p->start_time = tchart->first_time;
/* no exit marker, task kept running to the end */ /* no exit marker, task kept running to the end */
if (p->end_time == 0) if (p->end_time == 0)
p->end_time = last_time; p->end_time = tchart->last_time;
c = p->all; c = p->all;
@ -944,7 +953,7 @@ static int determine_display_tasks_filtered(void)
c->display = 0; c->display = 0;
if (c->start_time == 1) if (c->start_time == 1)
c->start_time = first_time; c->start_time = tchart->first_time;
if (passes_filter(p, c)) { if (passes_filter(p, c)) {
c->display = 1; c->display = 1;
@ -953,7 +962,7 @@ static int determine_display_tasks_filtered(void)
} }
if (c->end_time == 0) if (c->end_time == 0)
c->end_time = last_time; c->end_time = tchart->last_time;
c = c->next; c = c->next;
} }
@ -962,24 +971,24 @@ static int determine_display_tasks_filtered(void)
return count; return count;
} }
static int determine_display_tasks(u64 threshold) static int determine_display_tasks(struct timechart *tchart, u64 threshold)
{ {
struct per_pid *p; struct per_pid *p;
struct per_pidcomm *c; struct per_pidcomm *c;
int count = 0; int count = 0;
if (process_filter) if (process_filter)
return determine_display_tasks_filtered(); return determine_display_tasks_filtered(tchart);
p = all_data; p = all_data;
while (p) { while (p) {
p->display = 0; p->display = 0;
if (p->start_time == 1) if (p->start_time == 1)
p->start_time = first_time; p->start_time = tchart->first_time;
/* no exit marker, task kept running to the end */ /* no exit marker, task kept running to the end */
if (p->end_time == 0) if (p->end_time == 0)
p->end_time = last_time; p->end_time = tchart->last_time;
if (p->total_time >= threshold) if (p->total_time >= threshold)
p->display = 1; p->display = 1;
@ -989,7 +998,7 @@ static int determine_display_tasks(u64 threshold)
c->display = 0; c->display = 0;
if (c->start_time == 1) if (c->start_time == 1)
c->start_time = first_time; c->start_time = tchart->first_time;
if (c->total_time >= threshold) { if (c->total_time >= threshold) {
c->display = 1; c->display = 1;
@ -997,7 +1006,7 @@ static int determine_display_tasks(u64 threshold)
} }
if (c->end_time == 0) if (c->end_time == 0)
c->end_time = last_time; c->end_time = tchart->last_time;
c = c->next; c = c->next;
} }
@ -1010,52 +1019,45 @@ static int determine_display_tasks(u64 threshold)
#define TIME_THRESH 10000000 #define TIME_THRESH 10000000
static void write_svg_file(const char *filename) static void write_svg_file(struct timechart *tchart, const char *filename)
{ {
u64 i; u64 i;
int count; int count;
int thresh = TIME_THRESH; int thresh = TIME_THRESH;
numcpus++; tchart->numcpus++;
if (power_only) if (tchart->power_only)
proc_num = 0; tchart->proc_num = 0;
/* We'd like to show at least proc_num tasks; /* We'd like to show at least proc_num tasks;
* be less picky if we have fewer */ * be less picky if we have fewer */
do { do {
count = determine_display_tasks(thresh); count = determine_display_tasks(tchart, thresh);
thresh /= 10; thresh /= 10;
} while (!process_filter && thresh && count < proc_num); } while (!process_filter && thresh && count < tchart->proc_num);
open_svg(filename, numcpus, count, first_time, last_time); open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
svg_time_grid(); svg_time_grid();
svg_legenda(); svg_legenda();
for (i = 0; i < numcpus; i++) for (i = 0; i < tchart->numcpus; i++)
svg_cpu_box(i, max_freq, turbo_frequency); svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
draw_cpu_usage(); draw_cpu_usage();
if (proc_num) if (tchart->proc_num)
draw_process_bars(); draw_process_bars(tchart);
if (!tasks_only) if (!tchart->tasks_only)
draw_c_p_states(); draw_c_p_states(tchart);
if (proc_num) if (tchart->proc_num)
draw_wakeups(); draw_wakeups();
svg_close(); svg_close();
} }
static int __cmd_timechart(const char *output_name) static int __cmd_timechart(struct timechart *tchart, const char *output_name)
{ {
struct perf_tool perf_timechart = {
.comm = process_comm_event,
.fork = process_fork_event,
.exit = process_exit_event,
.sample = process_sample_event,
.ordered_samples = true,
};
const struct perf_evsel_str_handler power_tracepoints[] = { const struct perf_evsel_str_handler power_tracepoints[] = {
{ "power:cpu_idle", process_sample_cpu_idle }, { "power:cpu_idle", process_sample_cpu_idle },
{ "power:cpu_frequency", process_sample_cpu_frequency }, { "power:cpu_frequency", process_sample_cpu_frequency },
@ -1073,7 +1075,7 @@ static int __cmd_timechart(const char *output_name)
}; };
struct perf_session *session = perf_session__new(&file, false, struct perf_session *session = perf_session__new(&file, false,
&perf_timechart); &tchart->tool);
int ret = -EINVAL; int ret = -EINVAL;
if (session == NULL) if (session == NULL)
@ -1088,24 +1090,24 @@ static int __cmd_timechart(const char *output_name)
goto out_delete; goto out_delete;
} }
ret = perf_session__process_events(session, &perf_timechart); ret = perf_session__process_events(session, &tchart->tool);
if (ret) if (ret)
goto out_delete; goto out_delete;
end_sample_processing(); end_sample_processing(tchart);
sort_pids(); sort_pids();
write_svg_file(output_name); write_svg_file(tchart, output_name);
pr_info("Written %2.1f seconds of trace to %s.\n", pr_info("Written %2.1f seconds of trace to %s.\n",
(last_time - first_time) / 1000000000.0, output_name); (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
out_delete: out_delete:
perf_session__delete(session); perf_session__delete(session);
return ret; return ret;
} }
static int __cmd_record(int argc, const char **argv) static int timechart__record(struct timechart *tchart, int argc, const char **argv)
{ {
unsigned int rec_argc, i, j; unsigned int rec_argc, i, j;
const char **rec_argv; const char **rec_argv;
@ -1153,15 +1155,15 @@ static int __cmd_record(int argc, const char **argv)
} }
#endif #endif
if (power_only) if (tchart->power_only)
tasks_args_nr = 0; tasks_args_nr = 0;
if (tasks_only) { if (tchart->tasks_only) {
power_args_nr = 0; power_args_nr = 0;
old_power_args_nr = 0; old_power_args_nr = 0;
} }
if (!with_backtrace) if (!tchart->with_backtrace)
backtrace_args_no = 0; backtrace_args_no = 0;
record_elems = common_args_nr + tasks_args_nr + record_elems = common_args_nr + tasks_args_nr +
@ -1207,20 +1209,30 @@ parse_process(const struct option *opt __maybe_unused, const char *arg,
int cmd_timechart(int argc, const char **argv, int cmd_timechart(int argc, const char **argv,
const char *prefix __maybe_unused) const char *prefix __maybe_unused)
{ {
struct timechart tchart = {
.tool = {
.comm = process_comm_event,
.fork = process_fork_event,
.exit = process_exit_event,
.sample = process_sample_event,
.ordered_samples = true,
},
.proc_num = 15,
};
const char *output_name = "output.svg"; const char *output_name = "output.svg";
const struct option timechart_options[] = { const struct option timechart_options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_INTEGER('w', "width", &svg_page_width, "page width"), OPT_INTEGER('w', "width", &svg_page_width, "page width"),
OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"), OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
OPT_BOOLEAN('T', "tasks-only", &tasks_only, OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
"output processes data only"), "output processes data only"),
OPT_CALLBACK('p', "process", NULL, "process", OPT_CALLBACK('p', "process", NULL, "process",
"process selector. Pass a pid or process name.", "process selector. Pass a pid or process name.",
parse_process), parse_process),
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
"Look for files with symbols relative to this directory"), "Look for files with symbols relative to this directory"),
OPT_INTEGER('n', "proc-num", &proc_num, OPT_INTEGER('n', "proc-num", &tchart.proc_num,
"min. number of tasks to print"), "min. number of tasks to print"),
OPT_END() OPT_END()
}; };
@ -1230,10 +1242,10 @@ int cmd_timechart(int argc, const char **argv,
}; };
const struct option record_options[] = { const struct option record_options[] = {
OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"), OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
OPT_BOOLEAN('T', "tasks-only", &tasks_only, OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
"output processes data only"), "output processes data only"),
OPT_BOOLEAN('g', "callchain", &with_backtrace, "record callchain"), OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
OPT_END() OPT_END()
}; };
const char * const record_usage[] = { const char * const record_usage[] = {
@ -1243,7 +1255,7 @@ int cmd_timechart(int argc, const char **argv,
argc = parse_options(argc, argv, timechart_options, timechart_usage, argc = parse_options(argc, argv, timechart_options, timechart_usage,
PARSE_OPT_STOP_AT_NON_OPTION); PARSE_OPT_STOP_AT_NON_OPTION);
if (power_only && tasks_only) { if (tchart.power_only && tchart.tasks_only) {
pr_err("-P and -T options cannot be used at the same time.\n"); pr_err("-P and -T options cannot be used at the same time.\n");
return -1; return -1;
} }
@ -1254,16 +1266,16 @@ int cmd_timechart(int argc, const char **argv,
argc = parse_options(argc, argv, record_options, record_usage, argc = parse_options(argc, argv, record_options, record_usage,
PARSE_OPT_STOP_AT_NON_OPTION); PARSE_OPT_STOP_AT_NON_OPTION);
if (power_only && tasks_only) { if (tchart.power_only && tchart.tasks_only) {
pr_err("-P and -T options cannot be used at the same time.\n"); pr_err("-P and -T options cannot be used at the same time.\n");
return -1; return -1;
} }
return __cmd_record(argc, argv); return timechart__record(&tchart, argc, argv);
} else if (argc) } else if (argc)
usage_with_options(timechart_usage, timechart_options); usage_with_options(timechart_usage, timechart_options);
setup_pager(); setup_pager();
return __cmd_timechart(output_name); return __cmd_timechart(&tchart, output_name);
} }