lguest: use native_set_* macros, which properly handle 64-bit entries when PAE is activated
Some cleanups and replace direct assignment with native_set_* macros which properly handle 64-bit entries when PAE is activated Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
parent
ed1dc77810
commit
90603d15fa
|
@ -525,7 +525,7 @@ static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
|
|||
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
native_set_pte(ptep, pteval);
|
||||
lguest_pte_update(mm, addr, ptep);
|
||||
}
|
||||
|
||||
|
@ -534,9 +534,9 @@ static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|||
* changed. */
|
||||
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
||||
{
|
||||
*pmdp = pmdval;
|
||||
native_set_pmd(pmdp, pmdval);
|
||||
lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
|
||||
}
|
||||
|
||||
/* There are a couple of legacy places where the kernel sets a PTE, but we
|
||||
|
@ -550,7 +550,7 @@ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|||
* which brings boot back to 0.25 seconds. */
|
||||
static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
native_set_pte(ptep, pteval);
|
||||
if (cr3_changed)
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
|
|
@ -90,7 +90,7 @@ static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
|
|||
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
||||
/* You should never call this if the PGD entry wasn't valid */
|
||||
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
||||
return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
|
||||
return &page[pte_index(vaddr)];
|
||||
}
|
||||
|
||||
/* These two functions just like the above two, except they access the Guest
|
||||
|
@ -105,7 +105,7 @@ static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
|
|||
{
|
||||
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
||||
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
||||
return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
|
||||
return gpage + pte_index(vaddr) * sizeof(pte_t);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -171,7 +171,7 @@ static void release_pte(pte_t pte)
|
|||
/* Remember that get_user_pages_fast() took a reference to the page, in
|
||||
* get_pfn()? We have to put it back now. */
|
||||
if (pte_flags(pte) & _PAGE_PRESENT)
|
||||
put_page(pfn_to_page(pte_pfn(pte)));
|
||||
put_page(pte_page(pte));
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -273,7 +273,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
* table entry, even if the Guest says it's writable. That way
|
||||
* we will come back here when a write does actually occur, so
|
||||
* we can update the Guest's _PAGE_DIRTY flag. */
|
||||
*spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
|
||||
native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
|
||||
|
||||
/* Finally, we write the Guest PTE entry back: we've set the
|
||||
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
|
||||
|
@ -323,7 +323,7 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
}
|
||||
|
||||
/*H:450 If we chase down the release_pgd() code, it looks like this: */
|
||||
static void release_pgd(struct lguest *lg, pgd_t *spgd)
|
||||
static void release_pgd(pgd_t *spgd)
|
||||
{
|
||||
/* If the entry's not present, there's nothing to release. */
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
|
@ -350,7 +350,7 @@ static void flush_user_mappings(struct lguest *lg, int idx)
|
|||
unsigned int i;
|
||||
/* Release every pgd entry up to the kernel's address. */
|
||||
for (i = 0; i < pgd_index(lg->kernel_address); i++)
|
||||
release_pgd(lg, lg->pgdirs[idx].pgdir + i);
|
||||
release_pgd(lg->pgdirs[idx].pgdir + i);
|
||||
}
|
||||
|
||||
/*H:440 (v) Flushing (throwing away) page tables,
|
||||
|
@ -431,7 +431,7 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
|
||||
/*H:430 (iv) Switching page tables
|
||||
*
|
||||
* Now we've seen all the page table setting and manipulation, let's see what
|
||||
* Now we've seen all the page table setting and manipulation, let's see
|
||||
* what happens when the Guest changes page tables (ie. changes the top-level
|
||||
* pgdir). This occurs on almost every context switch. */
|
||||
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
|
||||
|
@ -463,7 +463,7 @@ static void release_all_pagetables(struct lguest *lg)
|
|||
if (lg->pgdirs[i].pgdir)
|
||||
/* Every PGD entry except the Switcher at the top */
|
||||
for (j = 0; j < SWITCHER_PGD_INDEX; j++)
|
||||
release_pgd(lg, lg->pgdirs[i].pgdir + j);
|
||||
release_pgd(lg->pgdirs[i].pgdir + j);
|
||||
}
|
||||
|
||||
/* We also throw away everything when a Guest tells us it's changed a kernel
|
||||
|
@ -581,7 +581,7 @@ void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
|||
pgdir = find_pgdir(lg, gpgdir);
|
||||
if (pgdir < ARRAY_SIZE(lg->pgdirs))
|
||||
/* ... throw it away. */
|
||||
release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
|
||||
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
|
||||
}
|
||||
|
||||
/* Once we know how much memory we have we can construct simple identity
|
||||
|
@ -726,8 +726,9 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|||
* page is already mapped there, we don't have to copy them out
|
||||
* again. */
|
||||
pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
|
||||
regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
|
||||
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
|
||||
native_set_pte(®s_pte, pfn_pte(pfn, PAGE_KERNEL));
|
||||
native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
|
||||
regs_pte);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -752,21 +753,21 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
|
|||
|
||||
/* The first entries are easy: they map the Switcher code. */
|
||||
for (i = 0; i < pages; i++) {
|
||||
pte[i] = mk_pte(switcher_page[i],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
native_set_pte(&pte[i], mk_pte(switcher_page[i],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
}
|
||||
|
||||
/* The only other thing we map is this CPU's pair of pages. */
|
||||
i = pages + cpu*2;
|
||||
|
||||
/* First page (Guest registers) is writable from the Guest */
|
||||
pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
|
||||
native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
|
||||
|
||||
/* The second page contains the "struct lguest_ro_state", and is
|
||||
* read-only. */
|
||||
pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
}
|
||||
|
||||
/* We've made it through the page table code. Perhaps our tired brains are
|
||||
|
|
Loading…
Reference in New Issue