[PATCH] Uninline jiffies.h functions
There are loads of fat functions hidden in jiffies.h. Uninline them. No code changes. [jeremy@goop.org: export fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
f4304ab215
commit
8b9365d753
|
@ -259,207 +259,23 @@ static inline u64 get_jiffies_64(void)
|
|||
#endif
|
||||
|
||||
/*
|
||||
* Convert jiffies to milliseconds and back.
|
||||
*
|
||||
* Avoid unnecessary multiplications/divisions in the
|
||||
* two most common HZ cases:
|
||||
* Convert various time units to each other:
|
||||
*/
|
||||
static inline unsigned int jiffies_to_msecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (MSEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
return (j * MSEC_PER_SEC) / HZ;
|
||||
#endif
|
||||
}
|
||||
extern unsigned int jiffies_to_msecs(const unsigned long j);
|
||||
extern unsigned int jiffies_to_usecs(const unsigned long j);
|
||||
extern unsigned long msecs_to_jiffies(const unsigned int m);
|
||||
extern unsigned long usecs_to_jiffies(const unsigned int u);
|
||||
extern unsigned long timespec_to_jiffies(const struct timespec *value);
|
||||
extern void jiffies_to_timespec(const unsigned long jiffies,
|
||||
struct timespec *value);
|
||||
extern unsigned long timeval_to_jiffies(const struct timeval *value);
|
||||
extern void jiffies_to_timeval(const unsigned long jiffies,
|
||||
struct timeval *value);
|
||||
extern clock_t jiffies_to_clock_t(long x);
|
||||
extern unsigned long clock_t_to_jiffies(unsigned long x);
|
||||
extern u64 jiffies_64_to_clock_t(u64 x);
|
||||
extern u64 nsec_to_clock_t(u64 x);
|
||||
|
||||
static inline unsigned int jiffies_to_usecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
||||
return (USEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
||||
return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
|
||||
#else
|
||||
return (j * USEC_PER_SEC) / HZ;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline unsigned long msecs_to_jiffies(const unsigned int m)
|
||||
{
|
||||
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return m * (HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline unsigned long usecs_to_jiffies(const unsigned int u)
|
||||
{
|
||||
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
||||
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
|
||||
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
||||
return u * (HZ / USEC_PER_SEC);
|
||||
#else
|
||||
return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
||||
* that a remainder subtract here would not do the right thing as the
|
||||
* resolution values don't fall on second boundries. I.e. the line:
|
||||
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
||||
*
|
||||
* Rather, we just shift the bits off the right.
|
||||
*
|
||||
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
||||
* value to a scaled second value.
|
||||
*/
|
||||
static __inline__ unsigned long
|
||||
timespec_to_jiffies(const struct timespec *value)
|
||||
{
|
||||
unsigned long sec = value->tv_sec;
|
||||
long nsec = value->tv_nsec + TICK_NSEC - 1;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
nsec = 0;
|
||||
}
|
||||
return (((u64)sec * SEC_CONVERSION) +
|
||||
(((u64)nsec * NSEC_CONVERSION) >>
|
||||
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u64 nsec = (u64)jiffies * TICK_NSEC;
|
||||
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
|
||||
}
|
||||
|
||||
/* Same for "timeval"
|
||||
*
|
||||
* Well, almost. The problem here is that the real system resolution is
|
||||
* in nanoseconds and the value being converted is in micro seconds.
|
||||
* Also for some machines (those that use HZ = 1024, in-particular),
|
||||
* there is a LARGE error in the tick size in microseconds.
|
||||
|
||||
* The solution we use is to do the rounding AFTER we convert the
|
||||
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
|
||||
* Instruction wise, this should cost only an additional add with carry
|
||||
* instruction above the way it was done above.
|
||||
*/
|
||||
static __inline__ unsigned long
|
||||
timeval_to_jiffies(const struct timeval *value)
|
||||
{
|
||||
unsigned long sec = value->tv_sec;
|
||||
long usec = value->tv_usec;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
usec = 0;
|
||||
}
|
||||
return (((u64)sec * SEC_CONVERSION) +
|
||||
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
|
||||
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
}
|
||||
|
||||
static __inline__ void
|
||||
jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u64 nsec = (u64)jiffies * TICK_NSEC;
|
||||
long tv_usec;
|
||||
|
||||
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
|
||||
tv_usec /= NSEC_PER_USEC;
|
||||
value->tv_usec = tv_usec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert jiffies/jiffies_64 to clock_t and back.
|
||||
*/
|
||||
static inline clock_t jiffies_to_clock_t(long x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
return x / (HZ / USER_HZ);
|
||||
#else
|
||||
u64 tmp = (u64)x * TICK_NSEC;
|
||||
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
|
||||
return (long)tmp;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline unsigned long clock_t_to_jiffies(unsigned long x)
|
||||
{
|
||||
#if (HZ % USER_HZ)==0
|
||||
if (x >= ~0UL / (HZ / USER_HZ))
|
||||
return ~0UL;
|
||||
return x * (HZ / USER_HZ);
|
||||
#else
|
||||
u64 jif;
|
||||
|
||||
/* Don't worry about loss of precision here .. */
|
||||
if (x >= ~0UL / HZ * USER_HZ)
|
||||
return ~0UL;
|
||||
|
||||
/* .. but do try to contain it here */
|
||||
jif = x * (u64) HZ;
|
||||
do_div(jif, USER_HZ);
|
||||
return jif;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline u64 jiffies_64_to_clock_t(u64 x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
do_div(x, HZ / USER_HZ);
|
||||
#else
|
||||
/*
|
||||
* There are better ways that don't overflow early,
|
||||
* but even this doesn't overflow in hundreds of years
|
||||
* in 64 bits, so..
|
||||
*/
|
||||
x *= TICK_NSEC;
|
||||
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
static inline u64 nsec_to_clock_t(u64 x)
|
||||
{
|
||||
#if (NSEC_PER_SEC % USER_HZ) == 0
|
||||
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
||||
#elif (USER_HZ % 512) == 0
|
||||
x *= USER_HZ/512;
|
||||
do_div(x, (NSEC_PER_SEC / 512));
|
||||
#else
|
||||
/*
|
||||
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
||||
* overflow after 64.99 years.
|
||||
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
||||
*/
|
||||
x *= 9;
|
||||
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2))
|
||||
/ USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
#define TIMESTAMP_SIZE 30
|
||||
|
||||
#endif
|
||||
|
|
213
kernel/time.c
213
kernel/time.c
|
@ -470,6 +470,219 @@ struct timeval ns_to_timeval(const s64 nsec)
|
|||
return tv;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert jiffies to milliseconds and back.
|
||||
*
|
||||
* Avoid unnecessary multiplications/divisions in the
|
||||
* two most common HZ cases:
|
||||
*/
|
||||
unsigned int jiffies_to_msecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (MSEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
return (j * MSEC_PER_SEC) / HZ;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_msecs);
|
||||
|
||||
unsigned int jiffies_to_usecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
||||
return (USEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
||||
return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
|
||||
#else
|
||||
return (j * USEC_PER_SEC) / HZ;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_usecs);
|
||||
|
||||
unsigned long msecs_to_jiffies(const unsigned int m)
|
||||
{
|
||||
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return m * (HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(msecs_to_jiffies);
|
||||
|
||||
unsigned long usecs_to_jiffies(const unsigned int u)
|
||||
{
|
||||
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
||||
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
|
||||
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
||||
return u * (HZ / USEC_PER_SEC);
|
||||
#else
|
||||
return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(usecs_to_jiffies);
|
||||
|
||||
/*
|
||||
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
||||
* that a remainder subtract here would not do the right thing as the
|
||||
* resolution values don't fall on second boundries. I.e. the line:
|
||||
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
||||
*
|
||||
* Rather, we just shift the bits off the right.
|
||||
*
|
||||
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
||||
* value to a scaled second value.
|
||||
*/
|
||||
unsigned long
|
||||
timespec_to_jiffies(const struct timespec *value)
|
||||
{
|
||||
unsigned long sec = value->tv_sec;
|
||||
long nsec = value->tv_nsec + TICK_NSEC - 1;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
nsec = 0;
|
||||
}
|
||||
return (((u64)sec * SEC_CONVERSION) +
|
||||
(((u64)nsec * NSEC_CONVERSION) >>
|
||||
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
|
||||
}
|
||||
EXPORT_SYMBOL(timespec_to_jiffies);
|
||||
|
||||
void
|
||||
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u64 nsec = (u64)jiffies * TICK_NSEC;
|
||||
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_timespec);
|
||||
|
||||
/* Same for "timeval"
|
||||
*
|
||||
* Well, almost. The problem here is that the real system resolution is
|
||||
* in nanoseconds and the value being converted is in micro seconds.
|
||||
* Also for some machines (those that use HZ = 1024, in-particular),
|
||||
* there is a LARGE error in the tick size in microseconds.
|
||||
|
||||
* The solution we use is to do the rounding AFTER we convert the
|
||||
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
|
||||
* Instruction wise, this should cost only an additional add with carry
|
||||
* instruction above the way it was done above.
|
||||
*/
|
||||
unsigned long
|
||||
timeval_to_jiffies(const struct timeval *value)
|
||||
{
|
||||
unsigned long sec = value->tv_sec;
|
||||
long usec = value->tv_usec;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
usec = 0;
|
||||
}
|
||||
return (((u64)sec * SEC_CONVERSION) +
|
||||
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
|
||||
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
}
|
||||
|
||||
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u64 nsec = (u64)jiffies * TICK_NSEC;
|
||||
long tv_usec;
|
||||
|
||||
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
|
||||
tv_usec /= NSEC_PER_USEC;
|
||||
value->tv_usec = tv_usec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert jiffies/jiffies_64 to clock_t and back.
|
||||
*/
|
||||
clock_t jiffies_to_clock_t(long x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
return x / (HZ / USER_HZ);
|
||||
#else
|
||||
u64 tmp = (u64)x * TICK_NSEC;
|
||||
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
|
||||
return (long)tmp;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_clock_t);
|
||||
|
||||
unsigned long clock_t_to_jiffies(unsigned long x)
|
||||
{
|
||||
#if (HZ % USER_HZ)==0
|
||||
if (x >= ~0UL / (HZ / USER_HZ))
|
||||
return ~0UL;
|
||||
return x * (HZ / USER_HZ);
|
||||
#else
|
||||
u64 jif;
|
||||
|
||||
/* Don't worry about loss of precision here .. */
|
||||
if (x >= ~0UL / HZ * USER_HZ)
|
||||
return ~0UL;
|
||||
|
||||
/* .. but do try to contain it here */
|
||||
jif = x * (u64) HZ;
|
||||
do_div(jif, USER_HZ);
|
||||
return jif;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(clock_t_to_jiffies);
|
||||
|
||||
u64 jiffies_64_to_clock_t(u64 x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
do_div(x, HZ / USER_HZ);
|
||||
#else
|
||||
/*
|
||||
* There are better ways that don't overflow early,
|
||||
* but even this doesn't overflow in hundreds of years
|
||||
* in 64 bits, so..
|
||||
*/
|
||||
x *= TICK_NSEC;
|
||||
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
||||
|
||||
u64 nsec_to_clock_t(u64 x)
|
||||
{
|
||||
#if (NSEC_PER_SEC % USER_HZ) == 0
|
||||
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
||||
#elif (USER_HZ % 512) == 0
|
||||
x *= USER_HZ/512;
|
||||
do_div(x, (NSEC_PER_SEC / 512));
|
||||
#else
|
||||
/*
|
||||
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
||||
* overflow after 64.99 years.
|
||||
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
||||
*/
|
||||
x *= 9;
|
||||
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
|
||||
USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
#if (BITS_PER_LONG < 64)
|
||||
u64 get_jiffies_64(void)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue