irqchip: add a SiFive PLIC driver
Add a driver for the SiFive implementation of the RISC-V Platform Level Interrupt Controller (PLIC). The PLIC connects global interrupt sources to the local interrupt controller on each hart. This driver is based on the driver in the RISC-V tree from Palmer Dabbelt, but has been almost entirely rewritten since, and includes many fixes from Atish Patra. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Atish Patra <atish.patra@wdc.com> [Binding update by Palmer] Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This commit is contained in:
parent
94f592f0e5
commit
8237f8bc4f
|
@ -76,3 +76,4 @@ CONFIG_ROOT_NFS=y
|
|||
CONFIG_CRYPTO_USER_API_HASH=y
|
||||
CONFIG_MODULES=y
|
||||
CONFIG_MODULE_UNLOAD=y
|
||||
CONFIG_SIFIVE_PLIC=y
|
||||
|
|
|
@ -372,3 +372,15 @@ config QCOM_PDC
|
|||
IRQs for Qualcomm Technologies Inc (QTI) mobile chips.
|
||||
|
||||
endmenu
|
||||
|
||||
config SIFIVE_PLIC
|
||||
bool "SiFive Platform-Level Interrupt Controller"
|
||||
depends on RISCV
|
||||
help
|
||||
This enables support for the PLIC chip found in SiFive (and
|
||||
potentially other) RISC-V systems. The PLIC controls devices
|
||||
interrupts and connects them to each core's local interrupt
|
||||
controller. Aside from timer and software interrupts, all other
|
||||
interrupt sources are subordinate to the PLIC.
|
||||
|
||||
If you don't know what to do here, say Y.
|
||||
|
|
|
@ -87,3 +87,4 @@ obj-$(CONFIG_MESON_IRQ_GPIO) += irq-meson-gpio.o
|
|||
obj-$(CONFIG_GOLDFISH_PIC) += irq-goldfish-pic.o
|
||||
obj-$(CONFIG_NDS32) += irq-ativic32.o
|
||||
obj-$(CONFIG_QCOM_PDC) += qcom-pdc.o
|
||||
obj-$(CONFIG_SIFIVE_PLIC) += irq-sifive-plic.o
|
||||
|
|
|
@ -0,0 +1,260 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2017 SiFive
|
||||
* Copyright (C) 2018 Christoph Hellwig
|
||||
*/
|
||||
#define pr_fmt(fmt) "plic: " fmt
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/irqchip.h>
|
||||
#include <linux/irqdomain.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of_irq.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/spinlock.h>
|
||||
|
||||
/*
|
||||
* This driver implements a version of the RISC-V PLIC with the actual layout
|
||||
* specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
|
||||
*
|
||||
* https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
|
||||
*
|
||||
* The largest number supported by devices marked as 'sifive,plic-1.0.0', is
|
||||
* 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
|
||||
* Spec.
|
||||
*/
|
||||
|
||||
#define MAX_DEVICES 1024
|
||||
#define MAX_CONTEXTS 15872
|
||||
|
||||
/*
|
||||
* Each interrupt source has a priority register associated with it.
|
||||
* We always hardwire it to one in Linux.
|
||||
*/
|
||||
#define PRIORITY_BASE 0
|
||||
#define PRIORITY_PER_ID 4
|
||||
|
||||
/*
|
||||
* Each hart context has a vector of interrupt enable bits associated with it.
|
||||
* There's one bit for each interrupt source.
|
||||
*/
|
||||
#define ENABLE_BASE 0x2000
|
||||
#define ENABLE_PER_HART 0x80
|
||||
|
||||
/*
|
||||
* Each hart context has a set of control registers associated with it. Right
|
||||
* now there's only two: a source priority threshold over which the hart will
|
||||
* take an interrupt, and a register to claim interrupts.
|
||||
*/
|
||||
#define CONTEXT_BASE 0x200000
|
||||
#define CONTEXT_PER_HART 0x1000
|
||||
#define CONTEXT_THRESHOLD 0x00
|
||||
#define CONTEXT_CLAIM 0x04
|
||||
|
||||
static void __iomem *plic_regs;
|
||||
|
||||
struct plic_handler {
|
||||
bool present;
|
||||
int ctxid;
|
||||
};
|
||||
static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
|
||||
|
||||
static inline void __iomem *plic_hart_offset(int ctxid)
|
||||
{
|
||||
return plic_regs + CONTEXT_BASE + ctxid * CONTEXT_PER_HART;
|
||||
}
|
||||
|
||||
static inline u32 __iomem *plic_enable_base(int ctxid)
|
||||
{
|
||||
return plic_regs + ENABLE_BASE + ctxid * ENABLE_PER_HART;
|
||||
}
|
||||
|
||||
/*
|
||||
* Protect mask operations on the registers given that we can't assume that
|
||||
* atomic memory operations work on them.
|
||||
*/
|
||||
static DEFINE_RAW_SPINLOCK(plic_toggle_lock);
|
||||
|
||||
static inline void plic_toggle(int ctxid, int hwirq, int enable)
|
||||
{
|
||||
u32 __iomem *reg = plic_enable_base(ctxid) + (hwirq / 32);
|
||||
u32 hwirq_mask = 1 << (hwirq % 32);
|
||||
|
||||
raw_spin_lock(&plic_toggle_lock);
|
||||
if (enable)
|
||||
writel(readl(reg) | hwirq_mask, reg);
|
||||
else
|
||||
writel(readl(reg) & ~hwirq_mask, reg);
|
||||
raw_spin_unlock(&plic_toggle_lock);
|
||||
}
|
||||
|
||||
static inline void plic_irq_toggle(struct irq_data *d, int enable)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
writel(enable, plic_regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
|
||||
for_each_cpu(cpu, irq_data_get_affinity_mask(d)) {
|
||||
struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
|
||||
|
||||
if (handler->present)
|
||||
plic_toggle(handler->ctxid, d->hwirq, enable);
|
||||
}
|
||||
}
|
||||
|
||||
static void plic_irq_enable(struct irq_data *d)
|
||||
{
|
||||
plic_irq_toggle(d, 1);
|
||||
}
|
||||
|
||||
static void plic_irq_disable(struct irq_data *d)
|
||||
{
|
||||
plic_irq_toggle(d, 0);
|
||||
}
|
||||
|
||||
static struct irq_chip plic_chip = {
|
||||
.name = "SiFive PLIC",
|
||||
/*
|
||||
* There is no need to mask/unmask PLIC interrupts. They are "masked"
|
||||
* by reading claim and "unmasked" when writing it back.
|
||||
*/
|
||||
.irq_enable = plic_irq_enable,
|
||||
.irq_disable = plic_irq_disable,
|
||||
};
|
||||
|
||||
static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
|
||||
irq_hw_number_t hwirq)
|
||||
{
|
||||
irq_set_chip_and_handler(irq, &plic_chip, handle_simple_irq);
|
||||
irq_set_chip_data(irq, NULL);
|
||||
irq_set_noprobe(irq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct irq_domain_ops plic_irqdomain_ops = {
|
||||
.map = plic_irqdomain_map,
|
||||
.xlate = irq_domain_xlate_onecell,
|
||||
};
|
||||
|
||||
static struct irq_domain *plic_irqdomain;
|
||||
|
||||
/*
|
||||
* Handling an interrupt is a two-step process: first you claim the interrupt
|
||||
* by reading the claim register, then you complete the interrupt by writing
|
||||
* that source ID back to the same claim register. This automatically enables
|
||||
* and disables the interrupt, so there's nothing else to do.
|
||||
*/
|
||||
static void plic_handle_irq(struct pt_regs *regs)
|
||||
{
|
||||
struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
|
||||
void __iomem *claim = plic_hart_offset(handler->ctxid) + CONTEXT_CLAIM;
|
||||
irq_hw_number_t hwirq;
|
||||
|
||||
WARN_ON_ONCE(!handler->present);
|
||||
|
||||
csr_clear(sie, SIE_SEIE);
|
||||
while ((hwirq = readl(claim))) {
|
||||
int irq = irq_find_mapping(plic_irqdomain, hwirq);
|
||||
|
||||
if (unlikely(irq <= 0))
|
||||
pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
|
||||
hwirq);
|
||||
else
|
||||
generic_handle_irq(irq);
|
||||
writel(hwirq, claim);
|
||||
}
|
||||
csr_set(sie, SIE_SEIE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Walk up the DT tree until we find an active RISC-V core (HART) node and
|
||||
* extract the cpuid from it.
|
||||
*/
|
||||
static int plic_find_hart_id(struct device_node *node)
|
||||
{
|
||||
for (; node; node = node->parent) {
|
||||
if (of_device_is_compatible(node, "riscv"))
|
||||
return riscv_of_processor_hart(node);
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int __init plic_init(struct device_node *node,
|
||||
struct device_node *parent)
|
||||
{
|
||||
int error = 0, nr_handlers, nr_mapped = 0, i;
|
||||
u32 nr_irqs;
|
||||
|
||||
if (plic_regs) {
|
||||
pr_warn("PLIC already present.\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
plic_regs = of_iomap(node, 0);
|
||||
if (WARN_ON(!plic_regs))
|
||||
return -EIO;
|
||||
|
||||
error = -EINVAL;
|
||||
of_property_read_u32(node, "riscv,ndev", &nr_irqs);
|
||||
if (WARN_ON(!nr_irqs))
|
||||
goto out_iounmap;
|
||||
|
||||
nr_handlers = of_irq_count(node);
|
||||
if (WARN_ON(!nr_handlers))
|
||||
goto out_iounmap;
|
||||
if (WARN_ON(nr_handlers < num_possible_cpus()))
|
||||
goto out_iounmap;
|
||||
|
||||
error = -ENOMEM;
|
||||
plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
|
||||
&plic_irqdomain_ops, NULL);
|
||||
if (WARN_ON(!plic_irqdomain))
|
||||
goto out_iounmap;
|
||||
|
||||
for (i = 0; i < nr_handlers; i++) {
|
||||
struct of_phandle_args parent;
|
||||
struct plic_handler *handler;
|
||||
irq_hw_number_t hwirq;
|
||||
int cpu;
|
||||
|
||||
if (of_irq_parse_one(node, i, &parent)) {
|
||||
pr_err("failed to parse parent for context %d.\n", i);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* skip context holes */
|
||||
if (parent.args[0] == -1)
|
||||
continue;
|
||||
|
||||
cpu = plic_find_hart_id(parent.np);
|
||||
if (cpu < 0) {
|
||||
pr_warn("failed to parse hart ID for context %d.\n", i);
|
||||
continue;
|
||||
}
|
||||
|
||||
handler = per_cpu_ptr(&plic_handlers, cpu);
|
||||
handler->present = true;
|
||||
handler->ctxid = i;
|
||||
|
||||
/* priority must be > threshold to trigger an interrupt */
|
||||
writel(0, plic_hart_offset(i) + CONTEXT_THRESHOLD);
|
||||
for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
|
||||
plic_toggle(i, hwirq, 0);
|
||||
nr_mapped++;
|
||||
}
|
||||
|
||||
pr_info("mapped %d interrupts to %d (out of %d) handlers.\n",
|
||||
nr_irqs, nr_mapped, nr_handlers);
|
||||
set_handle_irq(plic_handle_irq);
|
||||
return 0;
|
||||
|
||||
out_iounmap:
|
||||
iounmap(plic_regs);
|
||||
return error;
|
||||
}
|
||||
|
||||
IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
|
||||
IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
|
Loading…
Reference in New Issue