ipc/sem.c: document and update memory barriers
Document and update the memory barriers in ipc/sem.c: - Add smp_store_release() to wake_up_sem_queue_prepare() and document why it is needed. - Read q->status using READ_ONCE+smp_acquire__after_ctrl_dep(). as the pair for the barrier inside wake_up_sem_queue_prepare(). - Add comments to all barriers, and mention the rules in the block regarding locking. - Switch to using wake_q_add_safe(). Link: http://lkml.kernel.org/r/20191020123305.14715-6-manfred@colorfullife.com Signed-off-by: Manfred Spraul <manfred@colorfullife.com> Cc: Waiman Long <longman@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: <1vier1@web.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
0d97a82ba8
commit
8116b54e7e
66
ipc/sem.c
66
ipc/sem.c
|
@ -205,15 +205,38 @@ static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
|
|||
*
|
||||
* Memory ordering:
|
||||
* Most ordering is enforced by using spin_lock() and spin_unlock().
|
||||
* The special case is use_global_lock:
|
||||
*
|
||||
* Exceptions:
|
||||
* 1) use_global_lock: (SEM_BARRIER_1)
|
||||
* Setting it from non-zero to 0 is a RELEASE, this is ensured by
|
||||
* using smp_store_release().
|
||||
* using smp_store_release(): Immediately after setting it to 0,
|
||||
* a simple op can start.
|
||||
* Testing if it is non-zero is an ACQUIRE, this is ensured by using
|
||||
* smp_load_acquire().
|
||||
* Setting it from 0 to non-zero must be ordered with regards to
|
||||
* this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
|
||||
* is inside a spin_lock() and after a write from 0 to non-zero a
|
||||
* spin_lock()+spin_unlock() is done.
|
||||
*
|
||||
* 2) queue.status: (SEM_BARRIER_2)
|
||||
* Initialization is done while holding sem_lock(), so no further barrier is
|
||||
* required.
|
||||
* Setting it to a result code is a RELEASE, this is ensured by both a
|
||||
* smp_store_release() (for case a) and while holding sem_lock()
|
||||
* (for case b).
|
||||
* The AQUIRE when reading the result code without holding sem_lock() is
|
||||
* achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
|
||||
* (case a above).
|
||||
* Reading the result code while holding sem_lock() needs no further barriers,
|
||||
* the locks inside sem_lock() enforce ordering (case b above)
|
||||
*
|
||||
* 3) current->state:
|
||||
* current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
|
||||
* The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
|
||||
* happen immediately after calling wake_q_add. As wake_q_add_safe() is called
|
||||
* when holding sem_lock(), no further barriers are required.
|
||||
*
|
||||
* See also ipc/mqueue.c for more details on the covered races.
|
||||
*/
|
||||
|
||||
#define sc_semmsl sem_ctls[0]
|
||||
|
@ -344,12 +367,8 @@ static void complexmode_tryleave(struct sem_array *sma)
|
|||
return;
|
||||
}
|
||||
if (sma->use_global_lock == 1) {
|
||||
/*
|
||||
* Immediately after setting use_global_lock to 0,
|
||||
* a simple op can start. Thus: all memory writes
|
||||
* performed by the current operation must be visible
|
||||
* before we set use_global_lock to 0.
|
||||
*/
|
||||
|
||||
/* See SEM_BARRIER_1 for purpose/pairing */
|
||||
smp_store_release(&sma->use_global_lock, 0);
|
||||
} else {
|
||||
sma->use_global_lock--;
|
||||
|
@ -400,7 +419,7 @@ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
|
|||
*/
|
||||
spin_lock(&sem->lock);
|
||||
|
||||
/* pairs with smp_store_release() */
|
||||
/* see SEM_BARRIER_1 for purpose/pairing */
|
||||
if (!smp_load_acquire(&sma->use_global_lock)) {
|
||||
/* fast path successful! */
|
||||
return sops->sem_num;
|
||||
|
@ -766,15 +785,12 @@ would_block:
|
|||
static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
|
||||
struct wake_q_head *wake_q)
|
||||
{
|
||||
wake_q_add(wake_q, q->sleeper);
|
||||
/*
|
||||
* Rely on the above implicit barrier, such that we can
|
||||
* ensure that we hold reference to the task before setting
|
||||
* q->status. Otherwise we could race with do_exit if the
|
||||
* task is awoken by an external event before calling
|
||||
* wake_up_process().
|
||||
*/
|
||||
WRITE_ONCE(q->status, error);
|
||||
get_task_struct(q->sleeper);
|
||||
|
||||
/* see SEM_BARRIER_2 for purpuse/pairing */
|
||||
smp_store_release(&q->status, error);
|
||||
|
||||
wake_q_add_safe(wake_q, q->sleeper);
|
||||
}
|
||||
|
||||
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
|
||||
|
@ -2148,9 +2164,11 @@ static long do_semtimedop(int semid, struct sembuf __user *tsops,
|
|||
}
|
||||
|
||||
do {
|
||||
/* memory ordering ensured by the lock in sem_lock() */
|
||||
WRITE_ONCE(queue.status, -EINTR);
|
||||
queue.sleeper = current;
|
||||
|
||||
/* memory ordering is ensured by the lock in sem_lock() */
|
||||
__set_current_state(TASK_INTERRUPTIBLE);
|
||||
sem_unlock(sma, locknum);
|
||||
rcu_read_unlock();
|
||||
|
@ -2173,13 +2191,8 @@ static long do_semtimedop(int semid, struct sembuf __user *tsops,
|
|||
*/
|
||||
error = READ_ONCE(queue.status);
|
||||
if (error != -EINTR) {
|
||||
/*
|
||||
* User space could assume that semop() is a memory
|
||||
* barrier: Without the mb(), the cpu could
|
||||
* speculatively read in userspace stale data that was
|
||||
* overwritten by the previous owner of the semaphore.
|
||||
*/
|
||||
smp_mb();
|
||||
/* see SEM_BARRIER_2 for purpose/pairing */
|
||||
smp_acquire__after_ctrl_dep();
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
|
@ -2189,6 +2202,9 @@ static long do_semtimedop(int semid, struct sembuf __user *tsops,
|
|||
if (!ipc_valid_object(&sma->sem_perm))
|
||||
goto out_unlock_free;
|
||||
|
||||
/*
|
||||
* No necessity for any barrier: We are protect by sem_lock()
|
||||
*/
|
||||
error = READ_ONCE(queue.status);
|
||||
|
||||
/*
|
||||
|
|
Loading…
Reference in New Issue