locking/percpu-rwsem: Optimize readers and reduce global impact
Currently the percpu-rwsem switches to (global) atomic ops while a writer is waiting; which could be quite a while and slows down releasing the readers. This patch cures this problem by ordering the reader-state vs reader-count (see the comments in __percpu_down_read() and percpu_down_write()). This changes a global atomic op into a full memory barrier, which doesn't have the global cacheline contention. This also enables using the percpu-rwsem with rcu_sync disabled in order to bias the implementation differently, reducing the writer latency by adding some cost to readers. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Fixed modular build. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
08be8f63c4
commit
80127a3968
|
@ -10,30 +10,96 @@
|
|||
|
||||
struct percpu_rw_semaphore {
|
||||
struct rcu_sync rss;
|
||||
unsigned int __percpu *fast_read_ctr;
|
||||
unsigned int __percpu *read_count;
|
||||
struct rw_semaphore rw_sem;
|
||||
atomic_t slow_read_ctr;
|
||||
wait_queue_head_t write_waitq;
|
||||
wait_queue_head_t writer;
|
||||
int readers_block;
|
||||
};
|
||||
|
||||
extern void percpu_down_read(struct percpu_rw_semaphore *);
|
||||
extern int percpu_down_read_trylock(struct percpu_rw_semaphore *);
|
||||
extern void percpu_up_read(struct percpu_rw_semaphore *);
|
||||
extern int __percpu_down_read(struct percpu_rw_semaphore *, int);
|
||||
extern void __percpu_up_read(struct percpu_rw_semaphore *);
|
||||
|
||||
static inline void percpu_down_read(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
might_sleep();
|
||||
|
||||
rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 0, _RET_IP_);
|
||||
|
||||
preempt_disable();
|
||||
/*
|
||||
* We are in an RCU-sched read-side critical section, so the writer
|
||||
* cannot both change sem->state from readers_fast and start checking
|
||||
* counters while we are here. So if we see !sem->state, we know that
|
||||
* the writer won't be checking until we're past the preempt_enable()
|
||||
* and that one the synchronize_sched() is done, the writer will see
|
||||
* anything we did within this RCU-sched read-size critical section.
|
||||
*/
|
||||
__this_cpu_inc(*sem->read_count);
|
||||
if (unlikely(!rcu_sync_is_idle(&sem->rss)))
|
||||
__percpu_down_read(sem, false); /* Unconditional memory barrier */
|
||||
preempt_enable();
|
||||
/*
|
||||
* The barrier() from preempt_enable() prevents the compiler from
|
||||
* bleeding the critical section out.
|
||||
*/
|
||||
}
|
||||
|
||||
static inline int percpu_down_read_trylock(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
int ret = 1;
|
||||
|
||||
preempt_disable();
|
||||
/*
|
||||
* Same as in percpu_down_read().
|
||||
*/
|
||||
__this_cpu_inc(*sem->read_count);
|
||||
if (unlikely(!rcu_sync_is_idle(&sem->rss)))
|
||||
ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */
|
||||
preempt_enable();
|
||||
/*
|
||||
* The barrier() from preempt_enable() prevents the compiler from
|
||||
* bleeding the critical section out.
|
||||
*/
|
||||
|
||||
if (ret)
|
||||
rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 1, _RET_IP_);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void percpu_up_read(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
/*
|
||||
* The barrier() in preempt_disable() prevents the compiler from
|
||||
* bleeding the critical section out.
|
||||
*/
|
||||
preempt_disable();
|
||||
/*
|
||||
* Same as in percpu_down_read().
|
||||
*/
|
||||
if (likely(rcu_sync_is_idle(&sem->rss)))
|
||||
__this_cpu_dec(*sem->read_count);
|
||||
else
|
||||
__percpu_up_read(sem); /* Unconditional memory barrier */
|
||||
preempt_enable();
|
||||
|
||||
rwsem_release(&sem->rw_sem.dep_map, 1, _RET_IP_);
|
||||
}
|
||||
|
||||
extern void percpu_down_write(struct percpu_rw_semaphore *);
|
||||
extern void percpu_up_write(struct percpu_rw_semaphore *);
|
||||
|
||||
extern int __percpu_init_rwsem(struct percpu_rw_semaphore *,
|
||||
const char *, struct lock_class_key *);
|
||||
|
||||
extern void percpu_free_rwsem(struct percpu_rw_semaphore *);
|
||||
|
||||
#define percpu_init_rwsem(brw) \
|
||||
#define percpu_init_rwsem(sem) \
|
||||
({ \
|
||||
static struct lock_class_key rwsem_key; \
|
||||
__percpu_init_rwsem(brw, #brw, &rwsem_key); \
|
||||
__percpu_init_rwsem(sem, #sem, &rwsem_key); \
|
||||
})
|
||||
|
||||
|
||||
#define percpu_rwsem_is_held(sem) lockdep_is_held(&(sem)->rw_sem)
|
||||
|
||||
static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem,
|
||||
|
|
|
@ -8,152 +8,186 @@
|
|||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
|
||||
int __percpu_init_rwsem(struct percpu_rw_semaphore *brw,
|
||||
int __percpu_init_rwsem(struct percpu_rw_semaphore *sem,
|
||||
const char *name, struct lock_class_key *rwsem_key)
|
||||
{
|
||||
brw->fast_read_ctr = alloc_percpu(int);
|
||||
if (unlikely(!brw->fast_read_ctr))
|
||||
sem->read_count = alloc_percpu(int);
|
||||
if (unlikely(!sem->read_count))
|
||||
return -ENOMEM;
|
||||
|
||||
/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */
|
||||
__init_rwsem(&brw->rw_sem, name, rwsem_key);
|
||||
rcu_sync_init(&brw->rss, RCU_SCHED_SYNC);
|
||||
atomic_set(&brw->slow_read_ctr, 0);
|
||||
init_waitqueue_head(&brw->write_waitq);
|
||||
rcu_sync_init(&sem->rss, RCU_SCHED_SYNC);
|
||||
__init_rwsem(&sem->rw_sem, name, rwsem_key);
|
||||
init_waitqueue_head(&sem->writer);
|
||||
sem->readers_block = 0;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__percpu_init_rwsem);
|
||||
|
||||
void percpu_free_rwsem(struct percpu_rw_semaphore *brw)
|
||||
void percpu_free_rwsem(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
/*
|
||||
* XXX: temporary kludge. The error path in alloc_super()
|
||||
* assumes that percpu_free_rwsem() is safe after kzalloc().
|
||||
*/
|
||||
if (!brw->fast_read_ctr)
|
||||
if (!sem->read_count)
|
||||
return;
|
||||
|
||||
rcu_sync_dtor(&brw->rss);
|
||||
free_percpu(brw->fast_read_ctr);
|
||||
brw->fast_read_ctr = NULL; /* catch use after free bugs */
|
||||
rcu_sync_dtor(&sem->rss);
|
||||
free_percpu(sem->read_count);
|
||||
sem->read_count = NULL; /* catch use after free bugs */
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(percpu_free_rwsem);
|
||||
|
||||
/*
|
||||
* This is the fast-path for down_read/up_read. If it succeeds we rely
|
||||
* on the barriers provided by rcu_sync_enter/exit; see the comments in
|
||||
* percpu_down_write() and percpu_up_write().
|
||||
*
|
||||
* If this helper fails the callers rely on the normal rw_semaphore and
|
||||
* atomic_dec_and_test(), so in this case we have the necessary barriers.
|
||||
*/
|
||||
static bool update_fast_ctr(struct percpu_rw_semaphore *brw, unsigned int val)
|
||||
{
|
||||
bool success;
|
||||
|
||||
preempt_disable();
|
||||
success = rcu_sync_is_idle(&brw->rss);
|
||||
if (likely(success))
|
||||
__this_cpu_add(*brw->fast_read_ctr, val);
|
||||
preempt_enable();
|
||||
|
||||
return success;
|
||||
}
|
||||
|
||||
/*
|
||||
* Like the normal down_read() this is not recursive, the writer can
|
||||
* come after the first percpu_down_read() and create the deadlock.
|
||||
*
|
||||
* Note: returns with lock_is_held(brw->rw_sem) == T for lockdep,
|
||||
* percpu_up_read() does rwsem_release(). This pairs with the usage
|
||||
* of ->rw_sem in percpu_down/up_write().
|
||||
*/
|
||||
void percpu_down_read(struct percpu_rw_semaphore *brw)
|
||||
{
|
||||
might_sleep();
|
||||
rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 0, _RET_IP_);
|
||||
|
||||
if (likely(update_fast_ctr(brw, +1)))
|
||||
return;
|
||||
|
||||
/* Avoid rwsem_acquire_read() and rwsem_release() */
|
||||
__down_read(&brw->rw_sem);
|
||||
atomic_inc(&brw->slow_read_ctr);
|
||||
__up_read(&brw->rw_sem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(percpu_down_read);
|
||||
|
||||
int percpu_down_read_trylock(struct percpu_rw_semaphore *brw)
|
||||
{
|
||||
if (unlikely(!update_fast_ctr(brw, +1))) {
|
||||
if (!__down_read_trylock(&brw->rw_sem))
|
||||
return 0;
|
||||
atomic_inc(&brw->slow_read_ctr);
|
||||
__up_read(&brw->rw_sem);
|
||||
}
|
||||
|
||||
rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 1, _RET_IP_);
|
||||
return 1;
|
||||
}
|
||||
|
||||
void percpu_up_read(struct percpu_rw_semaphore *brw)
|
||||
{
|
||||
rwsem_release(&brw->rw_sem.dep_map, 1, _RET_IP_);
|
||||
|
||||
if (likely(update_fast_ctr(brw, -1)))
|
||||
return;
|
||||
|
||||
/* false-positive is possible but harmless */
|
||||
if (atomic_dec_and_test(&brw->slow_read_ctr))
|
||||
wake_up_all(&brw->write_waitq);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(percpu_up_read);
|
||||
|
||||
static int clear_fast_ctr(struct percpu_rw_semaphore *brw)
|
||||
{
|
||||
unsigned int sum = 0;
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
sum += per_cpu(*brw->fast_read_ctr, cpu);
|
||||
per_cpu(*brw->fast_read_ctr, cpu) = 0;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
void percpu_down_write(struct percpu_rw_semaphore *brw)
|
||||
int __percpu_down_read(struct percpu_rw_semaphore *sem, int try)
|
||||
{
|
||||
/*
|
||||
* Make rcu_sync_is_idle() == F and thus disable the fast-path in
|
||||
* percpu_down_read() and percpu_up_read(), and wait for gp pass.
|
||||
* Due to having preemption disabled the decrement happens on
|
||||
* the same CPU as the increment, avoiding the
|
||||
* increment-on-one-CPU-and-decrement-on-another problem.
|
||||
*
|
||||
* The latter synchronises us with the preceding readers which used
|
||||
* the fast-past, so we can not miss the result of __this_cpu_add()
|
||||
* or anything else inside their criticial sections.
|
||||
* If the reader misses the writer's assignment of readers_block, then
|
||||
* the writer is guaranteed to see the reader's increment.
|
||||
*
|
||||
* Conversely, any readers that increment their sem->read_count after
|
||||
* the writer looks are guaranteed to see the readers_block value,
|
||||
* which in turn means that they are guaranteed to immediately
|
||||
* decrement their sem->read_count, so that it doesn't matter that the
|
||||
* writer missed them.
|
||||
*/
|
||||
rcu_sync_enter(&brw->rss);
|
||||
|
||||
/* exclude other writers, and block the new readers completely */
|
||||
down_write(&brw->rw_sem);
|
||||
smp_mb(); /* A matches D */
|
||||
|
||||
/* nobody can use fast_read_ctr, move its sum into slow_read_ctr */
|
||||
atomic_add(clear_fast_ctr(brw), &brw->slow_read_ctr);
|
||||
/*
|
||||
* If !readers_block the critical section starts here, matched by the
|
||||
* release in percpu_up_write().
|
||||
*/
|
||||
if (likely(!smp_load_acquire(&sem->readers_block)))
|
||||
return 1;
|
||||
|
||||
/* wait for all readers to complete their percpu_up_read() */
|
||||
wait_event(brw->write_waitq, !atomic_read(&brw->slow_read_ctr));
|
||||
/*
|
||||
* Per the above comment; we still have preemption disabled and
|
||||
* will thus decrement on the same CPU as we incremented.
|
||||
*/
|
||||
__percpu_up_read(sem);
|
||||
|
||||
if (try)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* We either call schedule() in the wait, or we'll fall through
|
||||
* and reschedule on the preempt_enable() in percpu_down_read().
|
||||
*/
|
||||
preempt_enable_no_resched();
|
||||
|
||||
/*
|
||||
* Avoid lockdep for the down/up_read() we already have them.
|
||||
*/
|
||||
__down_read(&sem->rw_sem);
|
||||
this_cpu_inc(*sem->read_count);
|
||||
__up_read(&sem->rw_sem);
|
||||
|
||||
preempt_disable();
|
||||
return 1;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__percpu_down_read);
|
||||
|
||||
void __percpu_up_read(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
smp_mb(); /* B matches C */
|
||||
/*
|
||||
* In other words, if they see our decrement (presumably to aggregate
|
||||
* zero, as that is the only time it matters) they will also see our
|
||||
* critical section.
|
||||
*/
|
||||
__this_cpu_dec(*sem->read_count);
|
||||
|
||||
/* Prod writer to recheck readers_active */
|
||||
wake_up(&sem->writer);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__percpu_up_read);
|
||||
|
||||
#define per_cpu_sum(var) \
|
||||
({ \
|
||||
typeof(var) __sum = 0; \
|
||||
int cpu; \
|
||||
compiletime_assert_atomic_type(__sum); \
|
||||
for_each_possible_cpu(cpu) \
|
||||
__sum += per_cpu(var, cpu); \
|
||||
__sum; \
|
||||
})
|
||||
|
||||
/*
|
||||
* Return true if the modular sum of the sem->read_count per-CPU variable is
|
||||
* zero. If this sum is zero, then it is stable due to the fact that if any
|
||||
* newly arriving readers increment a given counter, they will immediately
|
||||
* decrement that same counter.
|
||||
*/
|
||||
static bool readers_active_check(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
if (per_cpu_sum(*sem->read_count) != 0)
|
||||
return false;
|
||||
|
||||
/*
|
||||
* If we observed the decrement; ensure we see the entire critical
|
||||
* section.
|
||||
*/
|
||||
|
||||
smp_mb(); /* C matches B */
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void percpu_down_write(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
/* Notify readers to take the slow path. */
|
||||
rcu_sync_enter(&sem->rss);
|
||||
|
||||
down_write(&sem->rw_sem);
|
||||
|
||||
/*
|
||||
* Notify new readers to block; up until now, and thus throughout the
|
||||
* longish rcu_sync_enter() above, new readers could still come in.
|
||||
*/
|
||||
WRITE_ONCE(sem->readers_block, 1);
|
||||
|
||||
smp_mb(); /* D matches A */
|
||||
|
||||
/*
|
||||
* If they don't see our writer of readers_block, then we are
|
||||
* guaranteed to see their sem->read_count increment, and therefore
|
||||
* will wait for them.
|
||||
*/
|
||||
|
||||
/* Wait for all now active readers to complete. */
|
||||
wait_event(sem->writer, readers_active_check(sem));
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(percpu_down_write);
|
||||
|
||||
void percpu_up_write(struct percpu_rw_semaphore *brw)
|
||||
void percpu_up_write(struct percpu_rw_semaphore *sem)
|
||||
{
|
||||
/* release the lock, but the readers can't use the fast-path */
|
||||
up_write(&brw->rw_sem);
|
||||
/*
|
||||
* Enable the fast-path in percpu_down_read() and percpu_up_read()
|
||||
* but only after another gp pass; this adds the necessary barrier
|
||||
* to ensure the reader can't miss the changes done by us.
|
||||
* Signal the writer is done, no fast path yet.
|
||||
*
|
||||
* One reason that we cannot just immediately flip to readers_fast is
|
||||
* that new readers might fail to see the results of this writer's
|
||||
* critical section.
|
||||
*
|
||||
* Therefore we force it through the slow path which guarantees an
|
||||
* acquire and thereby guarantees the critical section's consistency.
|
||||
*/
|
||||
rcu_sync_exit(&brw->rss);
|
||||
smp_store_release(&sem->readers_block, 0);
|
||||
|
||||
/*
|
||||
* Release the write lock, this will allow readers back in the game.
|
||||
*/
|
||||
up_write(&sem->rw_sem);
|
||||
|
||||
/*
|
||||
* Once this completes (at least one RCU-sched grace period hence) the
|
||||
* reader fast path will be available again. Safe to use outside the
|
||||
* exclusive write lock because its counting.
|
||||
*/
|
||||
rcu_sync_exit(&sem->rss);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(percpu_up_write);
|
||||
|
|
|
@ -68,6 +68,8 @@ void rcu_sync_lockdep_assert(struct rcu_sync *rsp)
|
|||
RCU_LOCKDEP_WARN(!gp_ops[rsp->gp_type].held(),
|
||||
"suspicious rcu_sync_is_idle() usage");
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(rcu_sync_lockdep_assert);
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
|
Loading…
Reference in New Issue