mm: Implement new pkey_mprotect() system call
pkey_mprotect() is just like mprotect, except it also takes a protection key as an argument. On systems that do not support protection keys, it still works, but requires that key=0. Otherwise it does exactly what mprotect does. I expect it to get used like this, if you want to guarantee that any mapping you create can *never* be accessed without the right protection keys set up. int real_prot = PROT_READ|PROT_WRITE; pkey = pkey_alloc(0, PKEY_DENY_ACCESS); ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey); This way, there is *no* window where the mapping is accessible since it was always either PROT_NONE or had a protection key set that denied all access. We settled on 'unsigned long' for the type of the key here. We only need 4 bits on x86 today, but I figured that other architectures might need some more space. Semantically, we have a bit of a problem if we combine this syscall with our previously-introduced execute-only support: What do we do when we mix execute-only pkey use with pkey_mprotect() use? For instance: pkey_mprotect(ptr, PAGE_SIZE, PROT_WRITE, 6); // set pkey=6 mprotect(ptr, PAGE_SIZE, PROT_EXEC); // set pkey=X_ONLY_PKEY? mprotect(ptr, PAGE_SIZE, PROT_WRITE); // is pkey=6 again? To solve that, we make the plain-mprotect()-initiated execute-only support only apply to VMAs that have the default protection key (0) set on them. Proposed semantics: 1. protection key 0 is special and represents the default, "unassigned" protection key. It is always allocated. 2. mprotect() never affects a mapping's pkey_mprotect()-assigned protection key. A protection key of 0 (even if set explicitly) represents an unassigned protection key. 2a. mprotect(PROT_EXEC) on a mapping with an assigned protection key may or may not result in a mapping with execute-only properties. pkey_mprotect() plus pkey_set() on all threads should be used to _guarantee_ execute-only semantics if this is not a strong enough semantic. 3. mprotect(PROT_EXEC) may result in an "execute-only" mapping. The kernel will internally attempt to allocate and dedicate a protection key for the purpose of execute-only mappings. This may not be possible in cases where there are no free protection keys available. It can also happen, of course, in situations where there is no hardware support for protection keys. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: linux-arch@vger.kernel.org Cc: Dave Hansen <dave@sr71.net> Cc: arnd@arndb.de Cc: linux-api@vger.kernel.org Cc: linux-mm@kvack.org Cc: luto@kernel.org Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/20160729163012.3DDD36C4@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
e8c6226d48
commit
7d06d9c9bd
|
@ -4,6 +4,7 @@
|
|||
#include <asm/desc.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/mm_types.h>
|
||||
#include <linux/pkeys.h>
|
||||
|
||||
#include <trace/events/tlb.h>
|
||||
|
||||
|
@ -195,16 +196,20 @@ static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
|
|||
mpx_notify_unmap(mm, vma, start, end);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
||||
static inline int vma_pkey(struct vm_area_struct *vma)
|
||||
{
|
||||
u16 pkey = 0;
|
||||
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
||||
unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
|
||||
VM_PKEY_BIT2 | VM_PKEY_BIT3;
|
||||
pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
|
||||
#endif
|
||||
return pkey;
|
||||
|
||||
return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
|
||||
}
|
||||
#else
|
||||
static inline int vma_pkey(struct vm_area_struct *vma)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline bool __pkru_allows_pkey(u16 pkey, bool write)
|
||||
{
|
||||
|
|
|
@ -1,7 +1,12 @@
|
|||
#ifndef _ASM_X86_PKEYS_H
|
||||
#define _ASM_X86_PKEYS_H
|
||||
|
||||
#define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? 16 : 1)
|
||||
#define PKEY_DEDICATED_EXECUTE_ONLY 15
|
||||
/*
|
||||
* Consider the PKEY_DEDICATED_EXECUTE_ONLY key unavailable.
|
||||
*/
|
||||
#define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? \
|
||||
PKEY_DEDICATED_EXECUTE_ONLY : 1)
|
||||
|
||||
extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||||
unsigned long init_val);
|
||||
|
@ -10,7 +15,6 @@ extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
|||
* Try to dedicate one of the protection keys to be used as an
|
||||
* execute-only protection key.
|
||||
*/
|
||||
#define PKEY_DEDICATED_EXECUTE_ONLY 15
|
||||
extern int __execute_only_pkey(struct mm_struct *mm);
|
||||
static inline int execute_only_pkey(struct mm_struct *mm)
|
||||
{
|
||||
|
@ -31,4 +35,7 @@ static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma,
|
|||
return __arch_override_mprotect_pkey(vma, prot, pkey);
|
||||
}
|
||||
|
||||
extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||||
unsigned long init_val);
|
||||
|
||||
#endif /*_ASM_X86_PKEYS_H */
|
||||
|
|
|
@ -18,16 +18,4 @@
|
|||
#define PKEY_DEDICATED_EXECUTE_ONLY 0
|
||||
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
|
||||
|
||||
/*
|
||||
* This is called from mprotect_pkey().
|
||||
*
|
||||
* Returns true if the protection keys is valid.
|
||||
*/
|
||||
static inline bool validate_pkey(int pkey)
|
||||
{
|
||||
if (pkey < 0)
|
||||
return false;
|
||||
return (pkey < arch_max_pkey());
|
||||
}
|
||||
|
||||
#endif /* _LINUX_PKEYS_H */
|
||||
|
|
|
@ -352,8 +352,11 @@ fail:
|
|||
return error;
|
||||
}
|
||||
|
||||
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
||||
unsigned long, prot)
|
||||
/*
|
||||
* pkey==-1 when doing a legacy mprotect()
|
||||
*/
|
||||
static int do_mprotect_pkey(unsigned long start, size_t len,
|
||||
unsigned long prot, int pkey)
|
||||
{
|
||||
unsigned long nstart, end, tmp, reqprot;
|
||||
struct vm_area_struct *vma, *prev;
|
||||
|
@ -361,6 +364,12 @@ SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
|||
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
|
||||
const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
|
||||
(prot & PROT_READ);
|
||||
/*
|
||||
* A temporary safety check since we are not validating
|
||||
* the pkey before we introduce the allocation code.
|
||||
*/
|
||||
if (pkey != -1)
|
||||
return -EINVAL;
|
||||
|
||||
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
|
||||
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
|
||||
|
@ -409,7 +418,7 @@ SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
|||
|
||||
for (nstart = start ; ; ) {
|
||||
unsigned long newflags;
|
||||
int pkey = arch_override_mprotect_pkey(vma, prot, -1);
|
||||
int new_vma_pkey;
|
||||
|
||||
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
|
||||
|
||||
|
@ -417,7 +426,8 @@ SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
|||
if (rier && (vma->vm_flags & VM_MAYEXEC))
|
||||
prot |= PROT_EXEC;
|
||||
|
||||
newflags = calc_vm_prot_bits(prot, pkey);
|
||||
new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
|
||||
newflags = calc_vm_prot_bits(prot, new_vma_pkey);
|
||||
newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
|
||||
|
||||
/* newflags >> 4 shift VM_MAY% in place of VM_% */
|
||||
|
@ -454,3 +464,15 @@ out:
|
|||
up_write(¤t->mm->mmap_sem);
|
||||
return error;
|
||||
}
|
||||
|
||||
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
||||
unsigned long, prot)
|
||||
{
|
||||
return do_mprotect_pkey(start, len, prot, -1);
|
||||
}
|
||||
|
||||
SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
|
||||
unsigned long, prot, int, pkey)
|
||||
{
|
||||
return do_mprotect_pkey(start, len, prot, pkey);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue