Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner: "The timer departement provides: - More y2038 work in the area of ntp and pps. - Optimization of posix cpu timers - New time related selftests - Some new clocksource drivers - The usual pile of fixes, cleanups and improvements" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits) timeconst: Update path in comment timers/x86/hpet: Type adjustments clocksource/drivers/armada-370-xp: Implement ARM delay timer clocksource/drivers/tango_xtal: Add new timer for Tango SoCs clocksource/drivers/imx: Allow timer irq affinity change clocksource/drivers/exynos_mct: Use container_of() instead of this_cpu_ptr() clocksource/drivers/h8300_*: Remove unneeded memset()s clocksource/drivers/sh_cmt: Remove unneeded memset() in sh_cmt_setup() clocksource/drivers/em_sti: Remove unneeded memset()s clocksource/drivers/mediatek: Use GPT as sched clock source clockevents/drivers/mtk: Fix spurious interrupt leading to crash posix_cpu_timer: Reduce unnecessary sighand lock contention posix_cpu_timer: Convert cputimer->running to bool posix_cpu_timer: Check thread timers only when there are active thread timers posix_cpu_timer: Optimize fastpath_timer_check() timers, kselftest: Add 'adjtick' test to validate adjtimex() tick adjustments timers: Use __fls in apply_slack() clocksource: Remove return statement from void functions net: sfc: avoid using timespec ntp/pps: use y2038 safe types in pps_event_time ...
This commit is contained in:
commit
7b2a4306f9
|
@ -63,10 +63,10 @@
|
|||
/* hpet memory map physical address */
|
||||
extern unsigned long hpet_address;
|
||||
extern unsigned long force_hpet_address;
|
||||
extern int boot_hpet_disable;
|
||||
extern bool boot_hpet_disable;
|
||||
extern u8 hpet_blockid;
|
||||
extern int hpet_force_user;
|
||||
extern u8 hpet_msi_disable;
|
||||
extern bool hpet_force_user;
|
||||
extern bool hpet_msi_disable;
|
||||
extern int is_hpet_enabled(void);
|
||||
extern int hpet_enable(void);
|
||||
extern void hpet_disable(void);
|
||||
|
|
|
@ -584,7 +584,7 @@ static void __init intel_graphics_stolen(int num, int slot, int func)
|
|||
static void __init force_disable_hpet(int num, int slot, int func)
|
||||
{
|
||||
#ifdef CONFIG_HPET_TIMER
|
||||
boot_hpet_disable = 1;
|
||||
boot_hpet_disable = true;
|
||||
pr_info("x86/hpet: Will disable the HPET for this platform because it's not reliable\n");
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -37,10 +37,10 @@
|
|||
*/
|
||||
unsigned long hpet_address;
|
||||
u8 hpet_blockid; /* OS timer block num */
|
||||
u8 hpet_msi_disable;
|
||||
bool hpet_msi_disable;
|
||||
|
||||
#ifdef CONFIG_PCI_MSI
|
||||
static unsigned long hpet_num_timers;
|
||||
static unsigned int hpet_num_timers;
|
||||
#endif
|
||||
static void __iomem *hpet_virt_address;
|
||||
|
||||
|
@ -86,9 +86,9 @@ static inline void hpet_clear_mapping(void)
|
|||
/*
|
||||
* HPET command line enable / disable
|
||||
*/
|
||||
int boot_hpet_disable;
|
||||
int hpet_force_user;
|
||||
static int hpet_verbose;
|
||||
bool boot_hpet_disable;
|
||||
bool hpet_force_user;
|
||||
static bool hpet_verbose;
|
||||
|
||||
static int __init hpet_setup(char *str)
|
||||
{
|
||||
|
@ -98,11 +98,11 @@ static int __init hpet_setup(char *str)
|
|||
if (next)
|
||||
*next++ = 0;
|
||||
if (!strncmp("disable", str, 7))
|
||||
boot_hpet_disable = 1;
|
||||
boot_hpet_disable = true;
|
||||
if (!strncmp("force", str, 5))
|
||||
hpet_force_user = 1;
|
||||
hpet_force_user = true;
|
||||
if (!strncmp("verbose", str, 7))
|
||||
hpet_verbose = 1;
|
||||
hpet_verbose = true;
|
||||
str = next;
|
||||
}
|
||||
return 1;
|
||||
|
@ -111,7 +111,7 @@ __setup("hpet=", hpet_setup);
|
|||
|
||||
static int __init disable_hpet(char *str)
|
||||
{
|
||||
boot_hpet_disable = 1;
|
||||
boot_hpet_disable = true;
|
||||
return 1;
|
||||
}
|
||||
__setup("nohpet", disable_hpet);
|
||||
|
@ -124,7 +124,7 @@ static inline int is_hpet_capable(void)
|
|||
/*
|
||||
* HPET timer interrupt enable / disable
|
||||
*/
|
||||
static int hpet_legacy_int_enabled;
|
||||
static bool hpet_legacy_int_enabled;
|
||||
|
||||
/**
|
||||
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
|
||||
|
@ -230,7 +230,7 @@ static struct clock_event_device hpet_clockevent;
|
|||
|
||||
static void hpet_stop_counter(void)
|
||||
{
|
||||
unsigned long cfg = hpet_readl(HPET_CFG);
|
||||
u32 cfg = hpet_readl(HPET_CFG);
|
||||
cfg &= ~HPET_CFG_ENABLE;
|
||||
hpet_writel(cfg, HPET_CFG);
|
||||
}
|
||||
|
@ -272,7 +272,7 @@ static void hpet_enable_legacy_int(void)
|
|||
|
||||
cfg |= HPET_CFG_LEGACY;
|
||||
hpet_writel(cfg, HPET_CFG);
|
||||
hpet_legacy_int_enabled = 1;
|
||||
hpet_legacy_int_enabled = true;
|
||||
}
|
||||
|
||||
static void hpet_legacy_clockevent_register(void)
|
||||
|
@ -983,7 +983,7 @@ void hpet_disable(void)
|
|||
cfg = *hpet_boot_cfg;
|
||||
else if (hpet_legacy_int_enabled) {
|
||||
cfg &= ~HPET_CFG_LEGACY;
|
||||
hpet_legacy_int_enabled = 0;
|
||||
hpet_legacy_int_enabled = false;
|
||||
}
|
||||
cfg &= ~HPET_CFG_ENABLE;
|
||||
hpet_writel(cfg, HPET_CFG);
|
||||
|
@ -1121,8 +1121,7 @@ EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
|
|||
|
||||
static void hpet_disable_rtc_channel(void)
|
||||
{
|
||||
unsigned long cfg;
|
||||
cfg = hpet_readl(HPET_T1_CFG);
|
||||
u32 cfg = hpet_readl(HPET_T1_CFG);
|
||||
cfg &= ~HPET_TN_ENABLE;
|
||||
hpet_writel(cfg, HPET_T1_CFG);
|
||||
}
|
||||
|
|
|
@ -524,7 +524,7 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E6XX_CU,
|
|||
*/
|
||||
static void force_disable_hpet_msi(struct pci_dev *unused)
|
||||
{
|
||||
hpet_msi_disable = 1;
|
||||
hpet_msi_disable = true;
|
||||
}
|
||||
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_SBX00_SMBUS,
|
||||
|
|
|
@ -279,6 +279,10 @@ config CLKSRC_MIPS_GIC
|
|||
depends on MIPS_GIC
|
||||
select CLKSRC_OF
|
||||
|
||||
config CLKSRC_TANGO_XTAL
|
||||
bool
|
||||
select CLKSRC_OF
|
||||
|
||||
config CLKSRC_PXA
|
||||
def_bool y if ARCH_PXA || ARCH_SA1100
|
||||
select CLKSRC_OF if OF
|
||||
|
|
|
@ -56,6 +56,7 @@ obj-$(CONFIG_ARCH_KEYSTONE) += timer-keystone.o
|
|||
obj-$(CONFIG_ARCH_INTEGRATOR_AP) += timer-integrator-ap.o
|
||||
obj-$(CONFIG_CLKSRC_VERSATILE) += versatile.o
|
||||
obj-$(CONFIG_CLKSRC_MIPS_GIC) += mips-gic-timer.o
|
||||
obj-$(CONFIG_CLKSRC_TANGO_XTAL) += tango_xtal.o
|
||||
obj-$(CONFIG_CLKSRC_IMX_GPT) += timer-imx-gpt.o
|
||||
obj-$(CONFIG_ASM9260_TIMER) += asm9260_timer.o
|
||||
obj-$(CONFIG_H8300) += h8300_timer8.o
|
||||
|
|
|
@ -228,7 +228,6 @@ static int em_sti_register_clocksource(struct em_sti_priv *p)
|
|||
{
|
||||
struct clocksource *cs = &p->cs;
|
||||
|
||||
memset(cs, 0, sizeof(*cs));
|
||||
cs->name = dev_name(&p->pdev->dev);
|
||||
cs->rating = 200;
|
||||
cs->read = em_sti_clocksource_read;
|
||||
|
@ -285,7 +284,6 @@ static void em_sti_register_clockevent(struct em_sti_priv *p)
|
|||
{
|
||||
struct clock_event_device *ced = &p->ced;
|
||||
|
||||
memset(ced, 0, sizeof(*ced));
|
||||
ced->name = dev_name(&p->pdev->dev);
|
||||
ced->features = CLOCK_EVT_FEAT_ONESHOT;
|
||||
ced->rating = 200;
|
||||
|
|
|
@ -382,24 +382,28 @@ static void exynos4_mct_tick_start(unsigned long cycles,
|
|||
static int exynos4_tick_set_next_event(unsigned long cycles,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
|
||||
struct mct_clock_event_device *mevt;
|
||||
|
||||
mevt = container_of(evt, struct mct_clock_event_device, evt);
|
||||
exynos4_mct_tick_start(cycles, mevt);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int set_state_shutdown(struct clock_event_device *evt)
|
||||
{
|
||||
exynos4_mct_tick_stop(this_cpu_ptr(&percpu_mct_tick));
|
||||
struct mct_clock_event_device *mevt;
|
||||
|
||||
mevt = container_of(evt, struct mct_clock_event_device, evt);
|
||||
exynos4_mct_tick_stop(mevt);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int set_state_periodic(struct clock_event_device *evt)
|
||||
{
|
||||
struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
|
||||
struct mct_clock_event_device *mevt;
|
||||
unsigned long cycles_per_jiffy;
|
||||
|
||||
mevt = container_of(evt, struct mct_clock_event_device, evt);
|
||||
cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
|
||||
>> evt->shift);
|
||||
exynos4_mct_tick_stop(mevt);
|
||||
|
|
|
@ -153,7 +153,6 @@ static int timer16_setup(struct timer16_priv *p, struct platform_device *pdev)
|
|||
int ret, irq;
|
||||
unsigned int ch;
|
||||
|
||||
memset(p, 0, sizeof(*p));
|
||||
p->pdev = pdev;
|
||||
|
||||
res[REG_CH] = platform_get_resource(p->pdev,
|
||||
|
|
|
@ -215,7 +215,6 @@ static int timer8_setup(struct timer8_priv *p,
|
|||
int irq;
|
||||
int ret;
|
||||
|
||||
memset(p, 0, sizeof(*p));
|
||||
p->pdev = pdev;
|
||||
|
||||
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
|
||||
|
|
|
@ -123,7 +123,6 @@ static int __init tpu_setup(struct tpu_priv *p, struct platform_device *pdev)
|
|||
{
|
||||
struct resource *res[2];
|
||||
|
||||
memset(p, 0, sizeof(*p));
|
||||
p->pdev = pdev;
|
||||
|
||||
res[CH_L] = platform_get_resource(p->pdev, IORESOURCE_MEM, CH_L);
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include <linux/of.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of_irq.h>
|
||||
#include <linux/sched_clock.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define GPT_IRQ_EN_REG 0x00
|
||||
|
@ -59,6 +60,13 @@ struct mtk_clock_event_device {
|
|||
struct clock_event_device dev;
|
||||
};
|
||||
|
||||
static void __iomem *gpt_sched_reg __read_mostly;
|
||||
|
||||
static u64 notrace mtk_read_sched_clock(void)
|
||||
{
|
||||
return readl_relaxed(gpt_sched_reg);
|
||||
}
|
||||
|
||||
static inline struct mtk_clock_event_device *to_mtk_clk(
|
||||
struct clock_event_device *c)
|
||||
{
|
||||
|
@ -141,14 +149,6 @@ static irqreturn_t mtk_timer_interrupt(int irq, void *dev_id)
|
|||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static void mtk_timer_global_reset(struct mtk_clock_event_device *evt)
|
||||
{
|
||||
/* Disable all interrupts */
|
||||
writel(0x0, evt->gpt_base + GPT_IRQ_EN_REG);
|
||||
/* Acknowledge all interrupts */
|
||||
writel(0x3f, evt->gpt_base + GPT_IRQ_ACK_REG);
|
||||
}
|
||||
|
||||
static void
|
||||
mtk_timer_setup(struct mtk_clock_event_device *evt, u8 timer, u8 option)
|
||||
{
|
||||
|
@ -168,6 +168,12 @@ static void mtk_timer_enable_irq(struct mtk_clock_event_device *evt, u8 timer)
|
|||
{
|
||||
u32 val;
|
||||
|
||||
/* Disable all interrupts */
|
||||
writel(0x0, evt->gpt_base + GPT_IRQ_EN_REG);
|
||||
|
||||
/* Acknowledge all spurious pending interrupts */
|
||||
writel(0x3f, evt->gpt_base + GPT_IRQ_ACK_REG);
|
||||
|
||||
val = readl(evt->gpt_base + GPT_IRQ_EN_REG);
|
||||
writel(val | GPT_IRQ_ENABLE(timer),
|
||||
evt->gpt_base + GPT_IRQ_EN_REG);
|
||||
|
@ -220,8 +226,6 @@ static void __init mtk_timer_init(struct device_node *node)
|
|||
}
|
||||
rate = clk_get_rate(clk);
|
||||
|
||||
mtk_timer_global_reset(evt);
|
||||
|
||||
if (request_irq(evt->dev.irq, mtk_timer_interrupt,
|
||||
IRQF_TIMER | IRQF_IRQPOLL, "mtk_timer", evt)) {
|
||||
pr_warn("failed to setup irq %d\n", evt->dev.irq);
|
||||
|
@ -234,6 +238,8 @@ static void __init mtk_timer_init(struct device_node *node)
|
|||
mtk_timer_setup(evt, GPT_CLK_SRC, TIMER_CTRL_OP_FREERUN);
|
||||
clocksource_mmio_init(evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC),
|
||||
node->name, rate, 300, 32, clocksource_mmio_readl_up);
|
||||
gpt_sched_reg = evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC);
|
||||
sched_clock_register(mtk_read_sched_clock, 32, rate);
|
||||
|
||||
/* Configure clock event */
|
||||
mtk_timer_setup(evt, GPT_CLK_EVT, TIMER_CTRL_OP_REPEAT);
|
||||
|
|
|
@ -962,7 +962,6 @@ static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
|
|||
unsigned int i;
|
||||
int ret;
|
||||
|
||||
memset(cmt, 0, sizeof(*cmt));
|
||||
cmt->pdev = pdev;
|
||||
raw_spin_lock_init(&cmt->lock);
|
||||
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
#include <linux/clocksource.h>
|
||||
#include <linux/sched_clock.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/printk.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/clk.h>
|
||||
|
||||
static void __iomem *xtal_in_cnt;
|
||||
static struct delay_timer delay_timer;
|
||||
|
||||
static unsigned long notrace read_xtal_counter(void)
|
||||
{
|
||||
return readl_relaxed(xtal_in_cnt);
|
||||
}
|
||||
|
||||
static u64 notrace read_sched_clock(void)
|
||||
{
|
||||
return read_xtal_counter();
|
||||
}
|
||||
|
||||
static cycle_t read_clocksource(struct clocksource *cs)
|
||||
{
|
||||
return read_xtal_counter();
|
||||
}
|
||||
|
||||
static struct clocksource tango_xtal = {
|
||||
.name = "tango-xtal",
|
||||
.rating = 350,
|
||||
.read = read_clocksource,
|
||||
.mask = CLOCKSOURCE_MASK(32),
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
|
||||
static void __init tango_clocksource_init(struct device_node *np)
|
||||
{
|
||||
struct clk *clk;
|
||||
int xtal_freq, ret;
|
||||
|
||||
xtal_in_cnt = of_iomap(np, 0);
|
||||
if (xtal_in_cnt == NULL) {
|
||||
pr_err("%s: invalid address\n", np->full_name);
|
||||
return;
|
||||
}
|
||||
|
||||
clk = of_clk_get(np, 0);
|
||||
if (IS_ERR(clk)) {
|
||||
pr_err("%s: invalid clock\n", np->full_name);
|
||||
return;
|
||||
}
|
||||
|
||||
xtal_freq = clk_get_rate(clk);
|
||||
delay_timer.freq = xtal_freq;
|
||||
delay_timer.read_current_timer = read_xtal_counter;
|
||||
|
||||
ret = clocksource_register_hz(&tango_xtal, xtal_freq);
|
||||
if (ret != 0) {
|
||||
pr_err("%s: registration failed\n", np->full_name);
|
||||
return;
|
||||
}
|
||||
|
||||
sched_clock_register(read_sched_clock, 32, xtal_freq);
|
||||
register_current_timer_delay(&delay_timer);
|
||||
}
|
||||
|
||||
CLOCKSOURCE_OF_DECLARE(tango, "sigma,tick-counter", tango_clocksource_init);
|
|
@ -45,6 +45,8 @@
|
|||
#include <linux/percpu.h>
|
||||
#include <linux/syscore_ops.h>
|
||||
|
||||
#include <asm/delay.h>
|
||||
|
||||
/*
|
||||
* Timer block registers.
|
||||
*/
|
||||
|
@ -249,6 +251,15 @@ struct syscore_ops armada_370_xp_timer_syscore_ops = {
|
|||
.resume = armada_370_xp_timer_resume,
|
||||
};
|
||||
|
||||
static unsigned long armada_370_delay_timer_read(void)
|
||||
{
|
||||
return ~readl(timer_base + TIMER0_VAL_OFF);
|
||||
}
|
||||
|
||||
static struct delay_timer armada_370_delay_timer = {
|
||||
.read_current_timer = armada_370_delay_timer_read,
|
||||
};
|
||||
|
||||
static void __init armada_370_xp_timer_common_init(struct device_node *np)
|
||||
{
|
||||
u32 clr = 0, set = 0;
|
||||
|
@ -287,6 +298,9 @@ static void __init armada_370_xp_timer_common_init(struct device_node *np)
|
|||
TIMER0_RELOAD_EN | enable_mask,
|
||||
TIMER0_RELOAD_EN | enable_mask);
|
||||
|
||||
armada_370_delay_timer.freq = timer_clk;
|
||||
register_current_timer_delay(&armada_370_delay_timer);
|
||||
|
||||
/*
|
||||
* Set scale and timer for sched_clock.
|
||||
*/
|
||||
|
|
|
@ -305,13 +305,14 @@ static int __init mxc_clockevent_init(struct imx_timer *imxtm)
|
|||
struct irqaction *act = &imxtm->act;
|
||||
|
||||
ced->name = "mxc_timer1";
|
||||
ced->features = CLOCK_EVT_FEAT_ONESHOT;
|
||||
ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
|
||||
ced->set_state_shutdown = mxc_shutdown;
|
||||
ced->set_state_oneshot = mxc_set_oneshot;
|
||||
ced->tick_resume = mxc_shutdown;
|
||||
ced->set_next_event = imxtm->gpt->set_next_event;
|
||||
ced->rating = 200;
|
||||
ced->cpumask = cpumask_of(0);
|
||||
ced->irq = imxtm->irq;
|
||||
clockevents_config_and_register(ced, clk_get_rate(imxtm->clk_per),
|
||||
0xff, 0xfffffffe);
|
||||
|
||||
|
|
|
@ -401,8 +401,8 @@ size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
|
|||
/* For Siena platforms NIC time is s and ns */
|
||||
static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
|
||||
{
|
||||
struct timespec ts = ns_to_timespec(ns);
|
||||
*nic_major = ts.tv_sec;
|
||||
struct timespec64 ts = ns_to_timespec64(ns);
|
||||
*nic_major = (u32)ts.tv_sec;
|
||||
*nic_minor = ts.tv_nsec;
|
||||
}
|
||||
|
||||
|
@ -431,8 +431,8 @@ static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|||
*/
|
||||
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
|
||||
{
|
||||
struct timespec ts = ns_to_timespec(ns);
|
||||
u32 maj = ts.tv_sec;
|
||||
struct timespec64 ts = ns_to_timespec64(ns);
|
||||
u32 maj = (u32)ts.tv_sec;
|
||||
u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
|
||||
(1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
|
||||
|
||||
|
@ -646,28 +646,28 @@ static void efx_ptp_send_times(struct efx_nic *efx,
|
|||
struct pps_event_time *last_time)
|
||||
{
|
||||
struct pps_event_time now;
|
||||
struct timespec limit;
|
||||
struct timespec64 limit;
|
||||
struct efx_ptp_data *ptp = efx->ptp_data;
|
||||
struct timespec start;
|
||||
struct timespec64 start;
|
||||
int *mc_running = ptp->start.addr;
|
||||
|
||||
pps_get_ts(&now);
|
||||
start = now.ts_real;
|
||||
limit = now.ts_real;
|
||||
timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
|
||||
timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
|
||||
|
||||
/* Write host time for specified period or until MC is done */
|
||||
while ((timespec_compare(&now.ts_real, &limit) < 0) &&
|
||||
while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
|
||||
ACCESS_ONCE(*mc_running)) {
|
||||
struct timespec update_time;
|
||||
struct timespec64 update_time;
|
||||
unsigned int host_time;
|
||||
|
||||
/* Don't update continuously to avoid saturating the PCIe bus */
|
||||
update_time = now.ts_real;
|
||||
timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
|
||||
timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
|
||||
do {
|
||||
pps_get_ts(&now);
|
||||
} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
|
||||
} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
|
||||
ACCESS_ONCE(*mc_running));
|
||||
|
||||
/* Synchronise NIC with single word of time only */
|
||||
|
@ -723,7 +723,7 @@ efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
|
|||
struct efx_ptp_data *ptp = efx->ptp_data;
|
||||
u32 last_sec;
|
||||
u32 start_sec;
|
||||
struct timespec delta;
|
||||
struct timespec64 delta;
|
||||
ktime_t mc_time;
|
||||
|
||||
if (number_readings == 0)
|
||||
|
@ -737,14 +737,14 @@ efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
|
|||
*/
|
||||
for (i = 0; i < number_readings; i++) {
|
||||
s32 window, corrected;
|
||||
struct timespec wait;
|
||||
struct timespec64 wait;
|
||||
|
||||
efx_ptp_read_timeset(
|
||||
MCDI_ARRAY_STRUCT_PTR(synch_buf,
|
||||
PTP_OUT_SYNCHRONIZE_TIMESET, i),
|
||||
&ptp->timeset[i]);
|
||||
|
||||
wait = ktime_to_timespec(
|
||||
wait = ktime_to_timespec64(
|
||||
ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
|
||||
window = ptp->timeset[i].window;
|
||||
corrected = window - wait.tv_nsec;
|
||||
|
@ -803,7 +803,7 @@ efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
|
|||
ptp->timeset[last_good].minor, 0);
|
||||
|
||||
/* Calculate delay from NIC top of second to last_time */
|
||||
delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec;
|
||||
delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
|
||||
|
||||
/* Set PPS timestamp to match NIC top of second */
|
||||
ptp->host_time_pps = *last_time;
|
||||
|
|
|
@ -179,8 +179,8 @@ void pps_event(struct pps_device *pps, struct pps_event_time *ts, int event,
|
|||
/* check event type */
|
||||
BUG_ON((event & (PPS_CAPTUREASSERT | PPS_CAPTURECLEAR)) == 0);
|
||||
|
||||
dev_dbg(pps->dev, "PPS event at %ld.%09ld\n",
|
||||
ts->ts_real.tv_sec, ts->ts_real.tv_nsec);
|
||||
dev_dbg(pps->dev, "PPS event at %lld.%09ld\n",
|
||||
(s64)ts->ts_real.tv_sec, ts->ts_real.tv_nsec);
|
||||
|
||||
timespec_to_pps_ktime(&ts_real, ts->ts_real);
|
||||
|
||||
|
|
|
@ -59,7 +59,8 @@ extern struct fs_struct init_fs;
|
|||
.rlim = INIT_RLIMITS, \
|
||||
.cputimer = { \
|
||||
.cputime_atomic = INIT_CPUTIME_ATOMIC, \
|
||||
.running = 0, \
|
||||
.running = false, \
|
||||
.checking_timer = false, \
|
||||
}, \
|
||||
INIT_PREV_CPUTIME(sig) \
|
||||
.cred_guard_mutex = \
|
||||
|
|
|
@ -48,9 +48,9 @@ struct pps_source_info {
|
|||
|
||||
struct pps_event_time {
|
||||
#ifdef CONFIG_NTP_PPS
|
||||
struct timespec ts_raw;
|
||||
struct timespec64 ts_raw;
|
||||
#endif /* CONFIG_NTP_PPS */
|
||||
struct timespec ts_real;
|
||||
struct timespec64 ts_real;
|
||||
};
|
||||
|
||||
/* The main struct */
|
||||
|
@ -105,7 +105,7 @@ extern void pps_event(struct pps_device *pps,
|
|||
struct pps_device *pps_lookup_dev(void const *cookie);
|
||||
|
||||
static inline void timespec_to_pps_ktime(struct pps_ktime *kt,
|
||||
struct timespec ts)
|
||||
struct timespec64 ts)
|
||||
{
|
||||
kt->sec = ts.tv_sec;
|
||||
kt->nsec = ts.tv_nsec;
|
||||
|
@ -115,24 +115,24 @@ static inline void timespec_to_pps_ktime(struct pps_ktime *kt,
|
|||
|
||||
static inline void pps_get_ts(struct pps_event_time *ts)
|
||||
{
|
||||
getnstime_raw_and_real(&ts->ts_raw, &ts->ts_real);
|
||||
ktime_get_raw_and_real_ts64(&ts->ts_raw, &ts->ts_real);
|
||||
}
|
||||
|
||||
#else /* CONFIG_NTP_PPS */
|
||||
|
||||
static inline void pps_get_ts(struct pps_event_time *ts)
|
||||
{
|
||||
getnstimeofday(&ts->ts_real);
|
||||
ktime_get_real_ts64(&ts->ts_real);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_NTP_PPS */
|
||||
|
||||
/* Subtract known time delay from PPS event time(s) */
|
||||
static inline void pps_sub_ts(struct pps_event_time *ts, struct timespec delta)
|
||||
static inline void pps_sub_ts(struct pps_event_time *ts, struct timespec64 delta)
|
||||
{
|
||||
ts->ts_real = timespec_sub(ts->ts_real, delta);
|
||||
ts->ts_real = timespec64_sub(ts->ts_real, delta);
|
||||
#ifdef CONFIG_NTP_PPS
|
||||
ts->ts_raw = timespec_sub(ts->ts_raw, delta);
|
||||
ts->ts_raw = timespec64_sub(ts->ts_raw, delta);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -617,15 +617,18 @@ struct task_cputime_atomic {
|
|||
/**
|
||||
* struct thread_group_cputimer - thread group interval timer counts
|
||||
* @cputime_atomic: atomic thread group interval timers.
|
||||
* @running: non-zero when there are timers running and
|
||||
* @cputime receives updates.
|
||||
* @running: true when there are timers running and
|
||||
* @cputime_atomic receives updates.
|
||||
* @checking_timer: true when a thread in the group is in the
|
||||
* process of checking for thread group timers.
|
||||
*
|
||||
* This structure contains the version of task_cputime, above, that is
|
||||
* used for thread group CPU timer calculations.
|
||||
*/
|
||||
struct thread_group_cputimer {
|
||||
struct task_cputime_atomic cputime_atomic;
|
||||
int running;
|
||||
bool running;
|
||||
bool checking_timer;
|
||||
};
|
||||
|
||||
#include <linux/rwsem.h>
|
||||
|
|
|
@ -263,8 +263,8 @@ extern void timekeeping_inject_sleeptime64(struct timespec64 *delta);
|
|||
/*
|
||||
* PPS accessor
|
||||
*/
|
||||
extern void getnstime_raw_and_real(struct timespec *ts_raw,
|
||||
struct timespec *ts_real);
|
||||
extern void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw,
|
||||
struct timespec64 *ts_real);
|
||||
|
||||
/*
|
||||
* Persistent clock related interfaces
|
||||
|
|
|
@ -152,7 +152,7 @@ extern unsigned long tick_nsec; /* SHIFTED_HZ period (nsec) */
|
|||
#define NTP_INTERVAL_LENGTH (NSEC_PER_SEC/NTP_INTERVAL_FREQ)
|
||||
|
||||
extern int do_adjtimex(struct timex *);
|
||||
extern void hardpps(const struct timespec *, const struct timespec *);
|
||||
extern void hardpps(const struct timespec64 *, const struct timespec64 *);
|
||||
|
||||
int read_current_timer(unsigned long *timer_val);
|
||||
void ntp_notify_cmos_timer(void);
|
||||
|
|
|
@ -1101,7 +1101,7 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig)
|
|||
cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
|
||||
if (cpu_limit != RLIM_INFINITY) {
|
||||
sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
|
||||
sig->cputimer.running = 1;
|
||||
sig->cputimer.running = true;
|
||||
}
|
||||
|
||||
/* The timer lists. */
|
||||
|
|
|
@ -479,7 +479,7 @@ static u32 clocksource_max_adjustment(struct clocksource *cs)
|
|||
* return half the number of nanoseconds the hardware counter can technically
|
||||
* cover. This is done so that we can potentially detect problems caused by
|
||||
* delayed timers or bad hardware, which might result in time intervals that
|
||||
* are larger then what the math used can handle without overflows.
|
||||
* are larger than what the math used can handle without overflows.
|
||||
*/
|
||||
u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
|
||||
{
|
||||
|
@ -595,16 +595,15 @@ static void __clocksource_select(bool skipcur)
|
|||
*/
|
||||
static void clocksource_select(void)
|
||||
{
|
||||
return __clocksource_select(false);
|
||||
__clocksource_select(false);
|
||||
}
|
||||
|
||||
static void clocksource_select_fallback(void)
|
||||
{
|
||||
return __clocksource_select(true);
|
||||
__clocksource_select(true);
|
||||
}
|
||||
|
||||
#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
|
||||
|
||||
static inline void clocksource_select(void) { }
|
||||
static inline void clocksource_select_fallback(void) { }
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@
|
|||
/*
|
||||
* The timer bases:
|
||||
*
|
||||
* There are more clockids then hrtimer bases. Thus, we index
|
||||
* There are more clockids than hrtimer bases. Thus, we index
|
||||
* into the timer bases by the hrtimer_base_type enum. When trying
|
||||
* to reach a base using a clockid, hrtimer_clockid_to_base()
|
||||
* is used to convert from clockid to the proper hrtimer_base_type.
|
||||
|
|
|
@ -99,7 +99,7 @@ static time64_t ntp_next_leap_sec = TIME64_MAX;
|
|||
static int pps_valid; /* signal watchdog counter */
|
||||
static long pps_tf[3]; /* phase median filter */
|
||||
static long pps_jitter; /* current jitter (ns) */
|
||||
static struct timespec pps_fbase; /* beginning of the last freq interval */
|
||||
static struct timespec64 pps_fbase; /* beginning of the last freq interval */
|
||||
static int pps_shift; /* current interval duration (s) (shift) */
|
||||
static int pps_intcnt; /* interval counter */
|
||||
static s64 pps_freq; /* frequency offset (scaled ns/s) */
|
||||
|
@ -509,7 +509,7 @@ static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
|
|||
static void sync_cmos_clock(struct work_struct *work)
|
||||
{
|
||||
struct timespec64 now;
|
||||
struct timespec next;
|
||||
struct timespec64 next;
|
||||
int fail = 1;
|
||||
|
||||
/*
|
||||
|
@ -559,7 +559,7 @@ static void sync_cmos_clock(struct work_struct *work)
|
|||
next.tv_nsec -= NSEC_PER_SEC;
|
||||
}
|
||||
queue_delayed_work(system_power_efficient_wq,
|
||||
&sync_cmos_work, timespec_to_jiffies(&next));
|
||||
&sync_cmos_work, timespec64_to_jiffies(&next));
|
||||
}
|
||||
|
||||
void ntp_notify_cmos_timer(void)
|
||||
|
@ -773,13 +773,13 @@ int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
|
|||
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
|
||||
* while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
|
||||
struct pps_normtime {
|
||||
__kernel_time_t sec; /* seconds */
|
||||
s64 sec; /* seconds */
|
||||
long nsec; /* nanoseconds */
|
||||
};
|
||||
|
||||
/* normalize the timestamp so that nsec is in the
|
||||
( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
|
||||
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
|
||||
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
|
||||
{
|
||||
struct pps_normtime norm = {
|
||||
.sec = ts.tv_sec,
|
||||
|
@ -861,7 +861,7 @@ static long hardpps_update_freq(struct pps_normtime freq_norm)
|
|||
pps_errcnt++;
|
||||
pps_dec_freq_interval();
|
||||
printk_deferred(KERN_ERR
|
||||
"hardpps: PPSERROR: interval too long - %ld s\n",
|
||||
"hardpps: PPSERROR: interval too long - %lld s\n",
|
||||
freq_norm.sec);
|
||||
return 0;
|
||||
}
|
||||
|
@ -948,7 +948,7 @@ static void hardpps_update_phase(long error)
|
|||
* This code is based on David Mills's reference nanokernel
|
||||
* implementation. It was mostly rewritten but keeps the same idea.
|
||||
*/
|
||||
void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
|
||||
{
|
||||
struct pps_normtime pts_norm, freq_norm;
|
||||
|
||||
|
@ -969,7 +969,7 @@ void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
|||
}
|
||||
|
||||
/* ok, now we have a base for frequency calculation */
|
||||
freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
|
||||
freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
|
||||
|
||||
/* check that the signal is in the range
|
||||
* [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
|
||||
|
|
|
@ -9,5 +9,5 @@ extern ktime_t ntp_get_next_leap(void);
|
|||
extern int second_overflow(unsigned long secs);
|
||||
extern int ntp_validate_timex(struct timex *);
|
||||
extern int __do_adjtimex(struct timex *, struct timespec64 *, s32 *);
|
||||
extern void __hardpps(const struct timespec *, const struct timespec *);
|
||||
extern void __hardpps(const struct timespec64 *, const struct timespec64 *);
|
||||
#endif /* _LINUX_NTP_INTERNAL_H */
|
||||
|
|
|
@ -249,7 +249,7 @@ void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
|
|||
* but barriers are not required because update_gt_cputime()
|
||||
* can handle concurrent updates.
|
||||
*/
|
||||
WRITE_ONCE(cputimer->running, 1);
|
||||
WRITE_ONCE(cputimer->running, true);
|
||||
}
|
||||
sample_cputime_atomic(times, &cputimer->cputime_atomic);
|
||||
}
|
||||
|
@ -864,6 +864,13 @@ static void check_thread_timers(struct task_struct *tsk,
|
|||
unsigned long long expires;
|
||||
unsigned long soft;
|
||||
|
||||
/*
|
||||
* If cputime_expires is zero, then there are no active
|
||||
* per thread CPU timers.
|
||||
*/
|
||||
if (task_cputime_zero(&tsk->cputime_expires))
|
||||
return;
|
||||
|
||||
expires = check_timers_list(timers, firing, prof_ticks(tsk));
|
||||
tsk_expires->prof_exp = expires_to_cputime(expires);
|
||||
|
||||
|
@ -911,7 +918,7 @@ static inline void stop_process_timers(struct signal_struct *sig)
|
|||
struct thread_group_cputimer *cputimer = &sig->cputimer;
|
||||
|
||||
/* Turn off cputimer->running. This is done without locking. */
|
||||
WRITE_ONCE(cputimer->running, 0);
|
||||
WRITE_ONCE(cputimer->running, false);
|
||||
}
|
||||
|
||||
static u32 onecputick;
|
||||
|
@ -961,6 +968,19 @@ static void check_process_timers(struct task_struct *tsk,
|
|||
struct task_cputime cputime;
|
||||
unsigned long soft;
|
||||
|
||||
/*
|
||||
* If cputimer is not running, then there are no active
|
||||
* process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
|
||||
*/
|
||||
if (!READ_ONCE(tsk->signal->cputimer.running))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Signify that a thread is checking for process timers.
|
||||
* Write access to this field is protected by the sighand lock.
|
||||
*/
|
||||
sig->cputimer.checking_timer = true;
|
||||
|
||||
/*
|
||||
* Collect the current process totals.
|
||||
*/
|
||||
|
@ -1015,6 +1035,8 @@ static void check_process_timers(struct task_struct *tsk,
|
|||
sig->cputime_expires.sched_exp = sched_expires;
|
||||
if (task_cputime_zero(&sig->cputime_expires))
|
||||
stop_process_timers(sig);
|
||||
|
||||
sig->cputimer.checking_timer = false;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1117,24 +1139,33 @@ static inline int task_cputime_expired(const struct task_cputime *sample,
|
|||
static inline int fastpath_timer_check(struct task_struct *tsk)
|
||||
{
|
||||
struct signal_struct *sig;
|
||||
cputime_t utime, stime;
|
||||
|
||||
task_cputime(tsk, &utime, &stime);
|
||||
|
||||
if (!task_cputime_zero(&tsk->cputime_expires)) {
|
||||
struct task_cputime task_sample = {
|
||||
.utime = utime,
|
||||
.stime = stime,
|
||||
.sum_exec_runtime = tsk->se.sum_exec_runtime
|
||||
};
|
||||
struct task_cputime task_sample;
|
||||
|
||||
task_cputime(tsk, &task_sample.utime, &task_sample.stime);
|
||||
task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
|
||||
if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
|
||||
return 1;
|
||||
}
|
||||
|
||||
sig = tsk->signal;
|
||||
/* Check if cputimer is running. This is accessed without locking. */
|
||||
if (READ_ONCE(sig->cputimer.running)) {
|
||||
/*
|
||||
* Check if thread group timers expired when the cputimer is
|
||||
* running and no other thread in the group is already checking
|
||||
* for thread group cputimers. These fields are read without the
|
||||
* sighand lock. However, this is fine because this is meant to
|
||||
* be a fastpath heuristic to determine whether we should try to
|
||||
* acquire the sighand lock to check/handle timers.
|
||||
*
|
||||
* In the worst case scenario, if 'running' or 'checking_timer' gets
|
||||
* set but the current thread doesn't see the change yet, we'll wait
|
||||
* until the next thread in the group gets a scheduler interrupt to
|
||||
* handle the timer. This isn't an issue in practice because these
|
||||
* types of delays with signals actually getting sent are expected.
|
||||
*/
|
||||
if (READ_ONCE(sig->cputimer.running) &&
|
||||
!READ_ONCE(sig->cputimer.checking_timer)) {
|
||||
struct task_cputime group_sample;
|
||||
|
||||
sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
|
||||
|
@ -1174,12 +1205,8 @@ void run_posix_cpu_timers(struct task_struct *tsk)
|
|||
* put them on the firing list.
|
||||
*/
|
||||
check_thread_timers(tsk, &firing);
|
||||
/*
|
||||
* If there are any active process wide timers (POSIX 1.b, itimers,
|
||||
* RLIMIT_CPU) cputimer must be running.
|
||||
*/
|
||||
if (READ_ONCE(tsk->signal->cputimer.running))
|
||||
check_process_timers(tsk, &firing);
|
||||
|
||||
check_process_timers(tsk, &firing);
|
||||
|
||||
/*
|
||||
* We must release these locks before taking any timer's lock.
|
||||
|
|
|
@ -39,7 +39,7 @@ define fmuls(b,n,d) {
|
|||
}
|
||||
|
||||
define timeconst(hz) {
|
||||
print "/* Automatically generated by kernel/timeconst.bc */\n"
|
||||
print "/* Automatically generated by kernel/time/timeconst.bc */\n"
|
||||
print "/* Time conversion constants for HZ == ", hz, " */\n"
|
||||
print "\n"
|
||||
|
||||
|
|
|
@ -849,7 +849,7 @@ EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
|
|||
#ifdef CONFIG_NTP_PPS
|
||||
|
||||
/**
|
||||
* getnstime_raw_and_real - get day and raw monotonic time in timespec format
|
||||
* ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
|
||||
* @ts_raw: pointer to the timespec to be set to raw monotonic time
|
||||
* @ts_real: pointer to the timespec to be set to the time of day
|
||||
*
|
||||
|
@ -857,7 +857,7 @@ EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
|
|||
* same time atomically and stores the resulting timestamps in timespec
|
||||
* format.
|
||||
*/
|
||||
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
||||
void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
|
||||
{
|
||||
struct timekeeper *tk = &tk_core.timekeeper;
|
||||
unsigned long seq;
|
||||
|
@ -868,7 +868,7 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
|||
do {
|
||||
seq = read_seqcount_begin(&tk_core.seq);
|
||||
|
||||
*ts_raw = timespec64_to_timespec(tk->raw_time);
|
||||
*ts_raw = tk->raw_time;
|
||||
ts_real->tv_sec = tk->xtime_sec;
|
||||
ts_real->tv_nsec = 0;
|
||||
|
||||
|
@ -877,10 +877,10 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
|||
|
||||
} while (read_seqcount_retry(&tk_core.seq, seq));
|
||||
|
||||
timespec_add_ns(ts_raw, nsecs_raw);
|
||||
timespec_add_ns(ts_real, nsecs_real);
|
||||
timespec64_add_ns(ts_raw, nsecs_raw);
|
||||
timespec64_add_ns(ts_real, nsecs_real);
|
||||
}
|
||||
EXPORT_SYMBOL(getnstime_raw_and_real);
|
||||
EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
|
||||
|
||||
#endif /* CONFIG_NTP_PPS */
|
||||
|
||||
|
@ -1674,7 +1674,7 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
|
|||
/**
|
||||
* accumulate_nsecs_to_secs - Accumulates nsecs into secs
|
||||
*
|
||||
* Helper function that accumulates a the nsecs greater then a second
|
||||
* Helper function that accumulates the nsecs greater than a second
|
||||
* from the xtime_nsec field to the xtime_secs field.
|
||||
* It also calls into the NTP code to handle leapsecond processing.
|
||||
*
|
||||
|
@ -1726,7 +1726,7 @@ static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
|
|||
cycle_t interval = tk->cycle_interval << shift;
|
||||
u64 raw_nsecs;
|
||||
|
||||
/* If the offset is smaller then a shifted interval, do nothing */
|
||||
/* If the offset is smaller than a shifted interval, do nothing */
|
||||
if (offset < interval)
|
||||
return offset;
|
||||
|
||||
|
@ -2025,7 +2025,7 @@ int do_adjtimex(struct timex *txc)
|
|||
/**
|
||||
* hardpps() - Accessor function to NTP __hardpps function
|
||||
*/
|
||||
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
|
|
|
@ -461,10 +461,17 @@ void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
|
|||
|
||||
static void timer_stats_account_timer(struct timer_list *timer)
|
||||
{
|
||||
if (likely(!timer->start_site))
|
||||
void *site;
|
||||
|
||||
/*
|
||||
* start_site can be concurrently reset by
|
||||
* timer_stats_timer_clear_start_info()
|
||||
*/
|
||||
site = READ_ONCE(timer->start_site);
|
||||
if (likely(!site))
|
||||
return;
|
||||
|
||||
timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
|
||||
timer_stats_update_stats(timer, timer->start_pid, site,
|
||||
timer->function, timer->start_comm,
|
||||
timer->flags);
|
||||
}
|
||||
|
@ -867,7 +874,7 @@ unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
|
|||
if (mask == 0)
|
||||
return expires;
|
||||
|
||||
bit = find_last_bit(&mask, BITS_PER_LONG);
|
||||
bit = __fls(mask);
|
||||
|
||||
mask = (1UL << bit) - 1;
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ LDFLAGS += -lrt -lpthread
|
|||
TEST_PROGS = posix_timers nanosleep nsleep-lat set-timer-lat mqueue-lat \
|
||||
inconsistency-check raw_skew threadtest rtctest
|
||||
|
||||
TEST_PROGS_EXTENDED = alarmtimer-suspend valid-adjtimex change_skew \
|
||||
TEST_PROGS_EXTENDED = alarmtimer-suspend valid-adjtimex adjtick change_skew \
|
||||
skew_consistency clocksource-switch leap-a-day \
|
||||
leapcrash set-tai set-2038
|
||||
|
||||
|
@ -24,6 +24,7 @@ include ../lib.mk
|
|||
run_destructive_tests: run_tests
|
||||
./alarmtimer-suspend
|
||||
./valid-adjtimex
|
||||
./adjtick
|
||||
./change_skew
|
||||
./skew_consistency
|
||||
./clocksource-switch
|
||||
|
|
|
@ -0,0 +1,221 @@
|
|||
/* adjtimex() tick adjustment test
|
||||
* by: John Stultz <john.stultz@linaro.org>
|
||||
* (C) Copyright Linaro Limited 2015
|
||||
* Licensed under the GPLv2
|
||||
*
|
||||
* To build:
|
||||
* $ gcc adjtick.c -o adjtick -lrt
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/timex.h>
|
||||
#include <time.h>
|
||||
|
||||
#ifdef KTEST
|
||||
#include "../kselftest.h"
|
||||
#else
|
||||
static inline int ksft_exit_pass(void)
|
||||
{
|
||||
exit(0);
|
||||
}
|
||||
static inline int ksft_exit_fail(void)
|
||||
{
|
||||
exit(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
#define CLOCK_MONOTONIC_RAW 4
|
||||
|
||||
#define NSEC_PER_SEC 1000000000LL
|
||||
#define USEC_PER_SEC 1000000
|
||||
|
||||
#define MILLION 1000000
|
||||
|
||||
long systick;
|
||||
|
||||
long long llabs(long long val)
|
||||
{
|
||||
if (val < 0)
|
||||
val = -val;
|
||||
return val;
|
||||
}
|
||||
|
||||
unsigned long long ts_to_nsec(struct timespec ts)
|
||||
{
|
||||
return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
|
||||
}
|
||||
|
||||
struct timespec nsec_to_ts(long long ns)
|
||||
{
|
||||
struct timespec ts;
|
||||
|
||||
ts.tv_sec = ns/NSEC_PER_SEC;
|
||||
ts.tv_nsec = ns%NSEC_PER_SEC;
|
||||
|
||||
return ts;
|
||||
}
|
||||
|
||||
long long diff_timespec(struct timespec start, struct timespec end)
|
||||
{
|
||||
long long start_ns, end_ns;
|
||||
|
||||
start_ns = ts_to_nsec(start);
|
||||
end_ns = ts_to_nsec(end);
|
||||
|
||||
return end_ns - start_ns;
|
||||
}
|
||||
|
||||
void get_monotonic_and_raw(struct timespec *mon, struct timespec *raw)
|
||||
{
|
||||
struct timespec start, mid, end;
|
||||
long long diff = 0, tmp;
|
||||
int i;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, mon);
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, raw);
|
||||
|
||||
/* Try to get a more tightly bound pairing */
|
||||
for (i = 0; i < 3; i++) {
|
||||
long long newdiff;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, &mid);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
newdiff = diff_timespec(start, end);
|
||||
if (diff == 0 || newdiff < diff) {
|
||||
diff = newdiff;
|
||||
*raw = mid;
|
||||
tmp = (ts_to_nsec(start) + ts_to_nsec(end))/2;
|
||||
*mon = nsec_to_ts(tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
long long get_ppm_drift(void)
|
||||
{
|
||||
struct timespec mon_start, raw_start, mon_end, raw_end;
|
||||
long long delta1, delta2, eppm;
|
||||
|
||||
get_monotonic_and_raw(&mon_start, &raw_start);
|
||||
|
||||
sleep(15);
|
||||
|
||||
get_monotonic_and_raw(&mon_end, &raw_end);
|
||||
|
||||
delta1 = diff_timespec(mon_start, mon_end);
|
||||
delta2 = diff_timespec(raw_start, raw_end);
|
||||
|
||||
eppm = (delta1*MILLION)/delta2 - MILLION;
|
||||
|
||||
return eppm;
|
||||
}
|
||||
|
||||
int check_tick_adj(long tickval)
|
||||
{
|
||||
long long eppm, ppm;
|
||||
struct timex tx1;
|
||||
|
||||
tx1.modes = ADJ_TICK;
|
||||
tx1.modes |= ADJ_OFFSET;
|
||||
tx1.modes |= ADJ_FREQUENCY;
|
||||
tx1.modes |= ADJ_STATUS;
|
||||
|
||||
tx1.status = STA_PLL;
|
||||
tx1.offset = 0;
|
||||
tx1.freq = 0;
|
||||
tx1.tick = tickval;
|
||||
|
||||
adjtimex(&tx1);
|
||||
|
||||
sleep(1);
|
||||
|
||||
ppm = ((long long)tickval * MILLION)/systick - MILLION;
|
||||
printf("Estimating tick (act: %ld usec, %lld ppm): ", tickval, ppm);
|
||||
|
||||
eppm = get_ppm_drift();
|
||||
printf("%lld usec, %lld ppm", systick + (systick * eppm / MILLION), eppm);
|
||||
|
||||
tx1.modes = 0;
|
||||
adjtimex(&tx1);
|
||||
|
||||
if (tx1.offset || tx1.freq || tx1.tick != tickval) {
|
||||
printf(" [ERROR]\n");
|
||||
printf("\tUnexpected adjtimex return values, make sure ntpd is not running.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we use 100ppm difference as an error bound.
|
||||
* We likely should see better, but some coarse clocksources
|
||||
* cannot match the HZ tick size accurately, so we have a
|
||||
* internal correction factor that doesn't scale exactly
|
||||
* with the adjustment, resulting in > 10ppm error during
|
||||
* a 10% adjustment. 100ppm also gives us more breathing
|
||||
* room for interruptions during the measurement.
|
||||
*/
|
||||
if (llabs(eppm - ppm) > 100) {
|
||||
printf(" [FAILED]\n");
|
||||
return -1;
|
||||
}
|
||||
printf(" [OK]\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argv, char **argc)
|
||||
{
|
||||
struct timespec raw;
|
||||
long tick, max, interval, err;
|
||||
struct timex tx1;
|
||||
|
||||
err = 0;
|
||||
setbuf(stdout, NULL);
|
||||
|
||||
if (clock_gettime(CLOCK_MONOTONIC_RAW, &raw)) {
|
||||
printf("ERR: NO CLOCK_MONOTONIC_RAW\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
printf("Each iteration takes about 15 seconds\n");
|
||||
|
||||
systick = sysconf(_SC_CLK_TCK);
|
||||
systick = USEC_PER_SEC/sysconf(_SC_CLK_TCK);
|
||||
max = systick/10; /* +/- 10% */
|
||||
interval = max/4; /* in 4 steps each side */
|
||||
|
||||
for (tick = (systick - max); tick < (systick + max); tick += interval) {
|
||||
if (check_tick_adj(tick)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset things to zero */
|
||||
tx1.modes = ADJ_TICK;
|
||||
tx1.modes |= ADJ_OFFSET;
|
||||
tx1.modes |= ADJ_FREQUENCY;
|
||||
|
||||
tx1.offset = 0;
|
||||
tx1.freq = 0;
|
||||
tx1.tick = systick;
|
||||
|
||||
adjtimex(&tx1);
|
||||
|
||||
if (err)
|
||||
return ksft_exit_fail();
|
||||
|
||||
return ksft_exit_pass();
|
||||
}
|
Loading…
Reference in New Issue