staging: et131x: Remove duplicate code for fbr[0, 1]
Several places in et131x.c code is duplicated for fbr[0] and fbr[1]. Remove the duplicate lines and use loops to run over both indicies. Signed-off-by: Mark Einon <mark.einon@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
c4ff7ef5cf
commit
788ca84ac7
|
@ -176,8 +176,8 @@ MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere S
|
|||
#define PARM_DMA_CACHE_DEF 0
|
||||
|
||||
/* RX defines */
|
||||
#define FBR_CHUNKS 32
|
||||
#define MAX_DESC_PER_RING_RX 1024
|
||||
#define FBR_CHUNKS 32
|
||||
#define MAX_DESC_PER_RING_RX 1024
|
||||
|
||||
/* number of RFDs - default and min */
|
||||
#define RFD_LOW_WATER_MARK 40
|
||||
|
@ -1847,6 +1847,7 @@ static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
|
|||
u32 entry;
|
||||
u32 psr_num_des;
|
||||
unsigned long flags;
|
||||
u8 id;
|
||||
|
||||
/* Halt RXDMA to perform the reconfigure. */
|
||||
et131x_rx_dma_disable(adapter);
|
||||
|
@ -1874,57 +1875,53 @@ static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
|
|||
/* These local variables track the PSR in the adapter structure */
|
||||
rx_local->local_psr_full = 0;
|
||||
|
||||
/* Now's the best time to initialize FBR1 contents */
|
||||
fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
|
||||
for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
|
||||
fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
|
||||
fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
|
||||
fbr_entry->word2 = entry;
|
||||
fbr_entry++;
|
||||
for (id = 0; id < NUM_FBRS; id++) {
|
||||
u32 *num_des;
|
||||
u32 *full_offset;
|
||||
u32 *min_des;
|
||||
u32 *base_hi;
|
||||
u32 *base_lo;
|
||||
|
||||
if (id == 0) {
|
||||
num_des = &rx_dma->fbr1_num_des;
|
||||
full_offset = &rx_dma->fbr1_full_offset;
|
||||
min_des = &rx_dma->fbr1_min_des;
|
||||
base_hi = &rx_dma->fbr1_base_hi;
|
||||
base_lo = &rx_dma->fbr1_base_lo;
|
||||
} else {
|
||||
num_des = &rx_dma->fbr0_num_des;
|
||||
full_offset = &rx_dma->fbr0_full_offset;
|
||||
min_des = &rx_dma->fbr0_min_des;
|
||||
base_hi = &rx_dma->fbr0_base_hi;
|
||||
base_lo = &rx_dma->fbr0_base_lo;
|
||||
}
|
||||
|
||||
/* Now's the best time to initialize FBR contents */
|
||||
fbr_entry = (struct fbr_desc *) rx_local->fbr[id]->ring_virtaddr;
|
||||
for (entry = 0; entry < rx_local->fbr[id]->num_entries; entry++) {
|
||||
fbr_entry->addr_hi = rx_local->fbr[id]->bus_high[entry];
|
||||
fbr_entry->addr_lo = rx_local->fbr[id]->bus_low[entry];
|
||||
fbr_entry->word2 = entry;
|
||||
fbr_entry++;
|
||||
}
|
||||
|
||||
/* Set the address and parameters of Free buffer ring 1 and 0
|
||||
* into the 1310's registers
|
||||
*/
|
||||
writel(upper_32_bits(rx_local->fbr[id]->ring_physaddr), base_hi);
|
||||
writel(lower_32_bits(rx_local->fbr[id]->ring_physaddr), base_lo);
|
||||
writel(rx_local->fbr[id]->num_entries - 1, num_des);
|
||||
writel(ET_DMA10_WRAP, full_offset);
|
||||
|
||||
/* This variable tracks the free buffer ring 1 full position,
|
||||
* so it has to match the above.
|
||||
*/
|
||||
rx_local->fbr[id]->local_full = ET_DMA10_WRAP;
|
||||
writel(((rx_local->fbr[id]->num_entries *
|
||||
LO_MARK_PERCENT_FOR_RX) / 100) - 1,
|
||||
min_des);
|
||||
}
|
||||
|
||||
/* Set the address and parameters of Free buffer ring 1 (and 0 if
|
||||
* required) into the 1310's registers
|
||||
*/
|
||||
writel(upper_32_bits(rx_local->fbr[0]->ring_physaddr),
|
||||
&rx_dma->fbr1_base_hi);
|
||||
writel(lower_32_bits(rx_local->fbr[0]->ring_physaddr),
|
||||
&rx_dma->fbr1_base_lo);
|
||||
writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
|
||||
writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
|
||||
|
||||
/* This variable tracks the free buffer ring 1 full position, so it
|
||||
* has to match the above.
|
||||
*/
|
||||
rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
|
||||
writel(
|
||||
((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
|
||||
&rx_dma->fbr1_min_des);
|
||||
|
||||
/* Now's the best time to initialize FBR0 contents */
|
||||
fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
|
||||
for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
|
||||
fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
|
||||
fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
|
||||
fbr_entry->word2 = entry;
|
||||
fbr_entry++;
|
||||
}
|
||||
|
||||
writel(upper_32_bits(rx_local->fbr[1]->ring_physaddr),
|
||||
&rx_dma->fbr0_base_hi);
|
||||
writel(lower_32_bits(rx_local->fbr[1]->ring_physaddr),
|
||||
&rx_dma->fbr0_base_lo);
|
||||
writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
|
||||
writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
|
||||
|
||||
/* This variable tracks the free buffer ring 0 full position, so it
|
||||
* has to match the above.
|
||||
*/
|
||||
rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
|
||||
writel(
|
||||
((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
|
||||
&rx_dma->fbr0_min_des);
|
||||
|
||||
/* Program the number of packets we will receive before generating an
|
||||
* interrupt.
|
||||
* For version B silicon, this value gets updated once autoneg is
|
||||
|
@ -2258,7 +2255,8 @@ static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
|
|||
* @mask: correct mask
|
||||
*/
|
||||
static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
|
||||
dma_addr_t *phys_addr, dma_addr_t *offset,
|
||||
dma_addr_t *phys_addr,
|
||||
dma_addr_t *offset,
|
||||
u64 mask)
|
||||
{
|
||||
u64 new_addr = *phys_addr & ~mask;
|
||||
|
@ -2286,6 +2284,7 @@ static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
|
|||
*/
|
||||
static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
|
||||
{
|
||||
u8 id;
|
||||
u32 i, j;
|
||||
u32 bufsize;
|
||||
u32 pktstat_ringsize, fbr_chunksize;
|
||||
|
@ -2337,158 +2336,95 @@ static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
|
|||
adapter->rx_ring.fbr[1]->num_entries +
|
||||
adapter->rx_ring.fbr[0]->num_entries;
|
||||
|
||||
/* Allocate an area of memory for Free Buffer Ring 1 */
|
||||
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
|
||||
0xfff;
|
||||
rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
|
||||
for (id = 0; id < NUM_FBRS; id++) {
|
||||
/* Allocate an area of memory for Free Buffer Ring */
|
||||
bufsize = (sizeof(struct fbr_desc) *
|
||||
rx_ring->fbr[id]->num_entries) + 0xfff;
|
||||
rx_ring->fbr[id]->ring_virtaddr =
|
||||
dma_alloc_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
&rx_ring->fbr[0]->ring_physaddr,
|
||||
&rx_ring->fbr[id]->ring_physaddr,
|
||||
GFP_KERNEL);
|
||||
if (!rx_ring->fbr[0]->ring_virtaddr) {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
"Cannot alloc memory for Free Buffer Ring 1\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* Align Free Buffer Ring 1 on a 4K boundary */
|
||||
et131x_align_allocated_memory(adapter,
|
||||
&rx_ring->fbr[0]->ring_physaddr,
|
||||
&rx_ring->fbr[0]->offset, 0x0FFF);
|
||||
|
||||
rx_ring->fbr[0]->ring_virtaddr =
|
||||
(void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
|
||||
rx_ring->fbr[0]->offset);
|
||||
|
||||
/* Allocate an area of memory for Free Buffer Ring 0 */
|
||||
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
|
||||
0xfff;
|
||||
rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
&rx_ring->fbr[1]->ring_physaddr,
|
||||
GFP_KERNEL);
|
||||
if (!rx_ring->fbr[1]->ring_virtaddr) {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
"Cannot alloc memory for Free Buffer Ring 0\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* Align Free Buffer Ring 0 on a 4K boundary */
|
||||
et131x_align_allocated_memory(adapter,
|
||||
&rx_ring->fbr[1]->ring_physaddr,
|
||||
&rx_ring->fbr[1]->offset, 0x0FFF);
|
||||
|
||||
rx_ring->fbr[1]->ring_virtaddr =
|
||||
(void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
|
||||
rx_ring->fbr[1]->offset);
|
||||
|
||||
for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
|
||||
dma_addr_t fbr1_tmp_physaddr;
|
||||
dma_addr_t fbr1_offset;
|
||||
u32 fbr1_align;
|
||||
|
||||
/* This code allocates an area of memory big enough for N
|
||||
* free buffers + (buffer_size - 1) so that the buffers can
|
||||
* be aligned on 4k boundaries. If each buffer were aligned
|
||||
* to a buffer_size boundary, the effect would be to double
|
||||
* the size of FBR0. By allocating N buffers at once, we
|
||||
* reduce this overhead.
|
||||
*/
|
||||
if (rx_ring->fbr[0]->buffsize > 4096)
|
||||
fbr1_align = 4096;
|
||||
else
|
||||
fbr1_align = rx_ring->fbr[0]->buffsize;
|
||||
|
||||
fbr_chunksize =
|
||||
(FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
|
||||
rx_ring->fbr[0]->mem_virtaddrs[i] =
|
||||
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
|
||||
&rx_ring->fbr[0]->mem_physaddrs[i],
|
||||
GFP_KERNEL);
|
||||
|
||||
if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
|
||||
if (!rx_ring->fbr[id]->ring_virtaddr) {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
"Could not alloc memory\n");
|
||||
"Cannot alloc memory for Free Buffer Ring %d\n", id);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* See NOTE in "Save Physical Address" comment above */
|
||||
fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
|
||||
|
||||
/* Align Free Buffer Ring on a 4K boundary */
|
||||
et131x_align_allocated_memory(adapter,
|
||||
&fbr1_tmp_physaddr,
|
||||
&fbr1_offset, (fbr1_align - 1));
|
||||
&rx_ring->fbr[id]->ring_physaddr,
|
||||
&rx_ring->fbr[id]->offset, 0x0FFF);
|
||||
|
||||
for (j = 0; j < FBR_CHUNKS; j++) {
|
||||
u32 index = (i * FBR_CHUNKS) + j;
|
||||
|
||||
/* Save the Virtual address of this index for quick
|
||||
* access later
|
||||
*/
|
||||
rx_ring->fbr[0]->virt[index] =
|
||||
(u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
|
||||
(j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
|
||||
|
||||
/* now store the physical address in the descriptor
|
||||
* so the device can access it
|
||||
*/
|
||||
rx_ring->fbr[0]->bus_high[index] =
|
||||
upper_32_bits(fbr1_tmp_physaddr);
|
||||
rx_ring->fbr[0]->bus_low[index] =
|
||||
lower_32_bits(fbr1_tmp_physaddr);
|
||||
|
||||
fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
|
||||
|
||||
rx_ring->fbr[0]->buffer1[index] =
|
||||
rx_ring->fbr[0]->virt[index];
|
||||
rx_ring->fbr[0]->buffer2[index] =
|
||||
rx_ring->fbr[0]->virt[index] - 4;
|
||||
}
|
||||
rx_ring->fbr[id]->ring_virtaddr =
|
||||
(void *)((u8 *) rx_ring->fbr[id]->ring_virtaddr +
|
||||
rx_ring->fbr[id]->offset);
|
||||
}
|
||||
|
||||
/* Same for FBR0 (if in use) */
|
||||
for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
|
||||
dma_addr_t fbr0_tmp_physaddr;
|
||||
dma_addr_t fbr0_offset;
|
||||
for (id = 0; id < NUM_FBRS; id++) {
|
||||
for (i = 0; i < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS); i++) {
|
||||
dma_addr_t fbr_tmp_physaddr;
|
||||
dma_addr_t fbr_offset;
|
||||
u32 fbr_align;
|
||||
|
||||
fbr_chunksize =
|
||||
((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
|
||||
rx_ring->fbr[1]->mem_virtaddrs[i] =
|
||||
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
|
||||
&rx_ring->fbr[1]->mem_physaddrs[i],
|
||||
GFP_KERNEL);
|
||||
/* This code allocates an area of memory big enough for
|
||||
* N free buffers + (buffer_size - 1) so that the
|
||||
* buffers can be aligned on 4k boundaries. If each
|
||||
* buffer were aligned to a buffer_size boundary, the
|
||||
* effect would be to double the size of FBR0. By
|
||||
* allocating N buffers at once, we reduce this overhead
|
||||
*/
|
||||
if (id == 0 && rx_ring->fbr[id]->buffsize > 4096)
|
||||
fbr_align = 4096;
|
||||
else
|
||||
fbr_align = rx_ring->fbr[id]->buffsize;
|
||||
|
||||
if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
"Could not alloc memory\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
fbr_chunksize = (FBR_CHUNKS *
|
||||
rx_ring->fbr[id]->buffsize) + fbr_align - 1;
|
||||
rx_ring->fbr[id]->mem_virtaddrs[i] = dma_alloc_coherent(
|
||||
&adapter->pdev->dev, fbr_chunksize,
|
||||
&rx_ring->fbr[id]->mem_physaddrs[i],
|
||||
GFP_KERNEL);
|
||||
|
||||
/* See NOTE in "Save Physical Address" comment above */
|
||||
fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
|
||||
if (!rx_ring->fbr[id]->mem_virtaddrs[i]) {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
"Could not alloc memory\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
et131x_align_allocated_memory(adapter,
|
||||
&fbr0_tmp_physaddr,
|
||||
&fbr0_offset,
|
||||
rx_ring->fbr[1]->buffsize - 1);
|
||||
/* See NOTE in "Save Physical Address" comment above */
|
||||
fbr_tmp_physaddr = rx_ring->fbr[id]->mem_physaddrs[i];
|
||||
|
||||
for (j = 0; j < FBR_CHUNKS; j++) {
|
||||
u32 index = (i * FBR_CHUNKS) + j;
|
||||
et131x_align_allocated_memory(adapter,
|
||||
&fbr_tmp_physaddr,
|
||||
&fbr_offset,
|
||||
(fbr_align - 1));
|
||||
|
||||
rx_ring->fbr[1]->virt[index] =
|
||||
(u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
|
||||
(j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
|
||||
for (j = 0; j < FBR_CHUNKS; j++) {
|
||||
u32 index = (i * FBR_CHUNKS) + j;
|
||||
|
||||
rx_ring->fbr[1]->bus_high[index] =
|
||||
upper_32_bits(fbr0_tmp_physaddr);
|
||||
rx_ring->fbr[1]->bus_low[index] =
|
||||
lower_32_bits(fbr0_tmp_physaddr);
|
||||
/* Save the Virtual address of this index for
|
||||
* quick access later
|
||||
*/
|
||||
rx_ring->fbr[id]->virt[index] =
|
||||
(u8 *) rx_ring->fbr[id]->mem_virtaddrs[i] +
|
||||
(j * rx_ring->fbr[id]->buffsize) + fbr_offset;
|
||||
|
||||
fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
|
||||
/* now store the physical address in the
|
||||
* descriptor so the device can access it
|
||||
*/
|
||||
rx_ring->fbr[id]->bus_high[index] =
|
||||
upper_32_bits(fbr_tmp_physaddr);
|
||||
rx_ring->fbr[id]->bus_low[index] =
|
||||
lower_32_bits(fbr_tmp_physaddr);
|
||||
|
||||
rx_ring->fbr[1]->buffer1[index] =
|
||||
rx_ring->fbr[1]->virt[index];
|
||||
rx_ring->fbr[1]->buffer2[index] =
|
||||
rx_ring->fbr[1]->virt[index] - 4;
|
||||
fbr_tmp_physaddr += rx_ring->fbr[id]->buffsize;
|
||||
|
||||
rx_ring->fbr[id]->buffer1[index] =
|
||||
rx_ring->fbr[id]->virt[index];
|
||||
rx_ring->fbr[id]->buffer2[index] =
|
||||
rx_ring->fbr[id]->virt[index] - 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2557,6 +2493,7 @@ static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
|
|||
*/
|
||||
static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
|
||||
{
|
||||
u8 id;
|
||||
u32 index;
|
||||
u32 bufsize;
|
||||
u32 pktstat_ringsize;
|
||||
|
@ -2578,80 +2515,48 @@ static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
|
|||
kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
|
||||
}
|
||||
|
||||
/* Free Free Buffer Ring 1 */
|
||||
if (rx_ring->fbr[0]->ring_virtaddr) {
|
||||
/* First the packet memory */
|
||||
for (index = 0; index <
|
||||
(rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
|
||||
if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
|
||||
u32 fbr1_align;
|
||||
/* Free Free Buffer Rings */
|
||||
for (id = 0; id < NUM_FBRS; id++) {
|
||||
if (rx_ring->fbr[id]->ring_virtaddr) {
|
||||
/* First the packet memory */
|
||||
for (index = 0; index <
|
||||
(rx_ring->fbr[id]->num_entries / FBR_CHUNKS);
|
||||
index++) {
|
||||
if (rx_ring->fbr[id]->mem_virtaddrs[index]) {
|
||||
u32 fbr_align;
|
||||
|
||||
if (rx_ring->fbr[0]->buffsize > 4096)
|
||||
fbr1_align = 4096;
|
||||
else
|
||||
fbr1_align = rx_ring->fbr[0]->buffsize;
|
||||
if (rx_ring->fbr[id]->buffsize > 4096)
|
||||
fbr_align = 4096;
|
||||
else
|
||||
fbr_align = rx_ring->fbr[id]->buffsize;
|
||||
|
||||
bufsize =
|
||||
(rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
|
||||
fbr1_align - 1;
|
||||
bufsize =
|
||||
(rx_ring->fbr[id]->buffsize * FBR_CHUNKS) +
|
||||
fbr_align - 1;
|
||||
|
||||
dma_free_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
rx_ring->fbr[0]->mem_virtaddrs[index],
|
||||
rx_ring->fbr[0]->mem_physaddrs[index]);
|
||||
dma_free_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
rx_ring->fbr[id]->mem_virtaddrs[index],
|
||||
rx_ring->fbr[id]->mem_physaddrs[index]);
|
||||
|
||||
rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
|
||||
rx_ring->fbr[id]->mem_virtaddrs[index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now the FIFO itself */
|
||||
rx_ring->fbr[id]->ring_virtaddr = (void *)((u8 *)
|
||||
rx_ring->fbr[id]->ring_virtaddr - rx_ring->fbr[id]->offset);
|
||||
|
||||
bufsize =
|
||||
(sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries) +
|
||||
0xfff;
|
||||
|
||||
dma_free_coherent(&adapter->pdev->dev, bufsize,
|
||||
rx_ring->fbr[id]->ring_virtaddr,
|
||||
rx_ring->fbr[id]->ring_physaddr);
|
||||
|
||||
rx_ring->fbr[id]->ring_virtaddr = NULL;
|
||||
}
|
||||
|
||||
/* Now the FIFO itself */
|
||||
rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
|
||||
rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
|
||||
|
||||
bufsize =
|
||||
(sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
|
||||
0xfff;
|
||||
|
||||
dma_free_coherent(&adapter->pdev->dev, bufsize,
|
||||
rx_ring->fbr[0]->ring_virtaddr,
|
||||
rx_ring->fbr[0]->ring_physaddr);
|
||||
|
||||
rx_ring->fbr[0]->ring_virtaddr = NULL;
|
||||
}
|
||||
|
||||
/* Now the same for Free Buffer Ring 0 */
|
||||
if (rx_ring->fbr[1]->ring_virtaddr) {
|
||||
/* First the packet memory */
|
||||
for (index = 0; index <
|
||||
(rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
|
||||
if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
|
||||
bufsize =
|
||||
(rx_ring->fbr[1]->buffsize *
|
||||
(FBR_CHUNKS + 1)) - 1;
|
||||
|
||||
dma_free_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
rx_ring->fbr[1]->mem_virtaddrs[index],
|
||||
rx_ring->fbr[1]->mem_physaddrs[index]);
|
||||
|
||||
rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now the FIFO itself */
|
||||
rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
|
||||
rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
|
||||
|
||||
bufsize =
|
||||
(sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
|
||||
0xfff;
|
||||
|
||||
dma_free_coherent(&adapter->pdev->dev,
|
||||
bufsize,
|
||||
rx_ring->fbr[1]->ring_virtaddr,
|
||||
rx_ring->fbr[1]->ring_physaddr);
|
||||
|
||||
rx_ring->fbr[1]->ring_virtaddr = NULL;
|
||||
}
|
||||
|
||||
/* Free Packet Status Ring */
|
||||
|
@ -2780,43 +2685,36 @@ static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
|
|||
if (
|
||||
(ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
|
||||
(ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
|
||||
u32 *offset;
|
||||
u8 id;
|
||||
struct fbr_desc *next;
|
||||
|
||||
spin_lock_irqsave(&adapter->fbr_lock, flags);
|
||||
|
||||
if (ring_index == 1) {
|
||||
struct fbr_desc *next = (struct fbr_desc *)
|
||||
(rx_local->fbr[0]->ring_virtaddr) +
|
||||
INDEX10(rx_local->fbr[0]->local_full);
|
||||
|
||||
/* Handle the Free Buffer Ring advancement here. Write
|
||||
* the PA / Buffer Index for the returned buffer into
|
||||
* the oldest (next to be freed)FBR entry
|
||||
*/
|
||||
next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
|
||||
next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
|
||||
next->word2 = buff_index;
|
||||
|
||||
writel(bump_free_buff_ring(
|
||||
&rx_local->fbr[0]->local_full,
|
||||
rx_local->fbr[0]->num_entries - 1),
|
||||
&rx_dma->fbr1_full_offset);
|
||||
id = 0;
|
||||
offset = &rx_dma->fbr1_full_offset;
|
||||
} else {
|
||||
struct fbr_desc *next = (struct fbr_desc *)
|
||||
rx_local->fbr[1]->ring_virtaddr +
|
||||
INDEX10(rx_local->fbr[1]->local_full);
|
||||
|
||||
/* Handle the Free Buffer Ring advancement here. Write
|
||||
* the PA / Buffer Index for the returned buffer into
|
||||
* the oldest (next to be freed) FBR entry
|
||||
*/
|
||||
next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
|
||||
next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
|
||||
next->word2 = buff_index;
|
||||
|
||||
writel(bump_free_buff_ring(
|
||||
&rx_local->fbr[1]->local_full,
|
||||
rx_local->fbr[1]->num_entries - 1),
|
||||
&rx_dma->fbr0_full_offset);
|
||||
id = 1;
|
||||
offset = &rx_dma->fbr0_full_offset;
|
||||
}
|
||||
|
||||
next = (struct fbr_desc *) (rx_local->fbr[id]->ring_virtaddr) +
|
||||
INDEX10(rx_local->fbr[id]->local_full);
|
||||
|
||||
/* Handle the Free Buffer Ring advancement here. Write
|
||||
* the PA / Buffer Index for the returned buffer into
|
||||
* the oldest (next to be freed)FBR entry
|
||||
*/
|
||||
next->addr_hi = rx_local->fbr[id]->bus_high[buff_index];
|
||||
next->addr_lo = rx_local->fbr[id]->bus_low[buff_index];
|
||||
next->word2 = buff_index;
|
||||
|
||||
writel(bump_free_buff_ring(
|
||||
&rx_local->fbr[id]->local_full,
|
||||
rx_local->fbr[id]->num_entries - 1),
|
||||
offset);
|
||||
|
||||
spin_unlock_irqrestore(&adapter->fbr_lock, flags);
|
||||
} else {
|
||||
dev_err(&adapter->pdev->dev,
|
||||
|
|
Loading…
Reference in New Issue