staging: et131x: Remove duplicate code for fbr[0, 1]

Several places in et131x.c code is duplicated for fbr[0] and fbr[1].
Remove the duplicate lines and use loops to run over both indicies.

Signed-off-by: Mark Einon <mark.einon@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Mark Einon 2012-10-30 18:38:54 +00:00 committed by Greg Kroah-Hartman
parent c4ff7ef5cf
commit 788ca84ac7
1 changed files with 183 additions and 285 deletions

View File

@ -176,8 +176,8 @@ MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere S
#define PARM_DMA_CACHE_DEF 0
/* RX defines */
#define FBR_CHUNKS 32
#define MAX_DESC_PER_RING_RX 1024
#define FBR_CHUNKS 32
#define MAX_DESC_PER_RING_RX 1024
/* number of RFDs - default and min */
#define RFD_LOW_WATER_MARK 40
@ -1847,6 +1847,7 @@ static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
u32 entry;
u32 psr_num_des;
unsigned long flags;
u8 id;
/* Halt RXDMA to perform the reconfigure. */
et131x_rx_dma_disable(adapter);
@ -1874,57 +1875,53 @@ static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
/* These local variables track the PSR in the adapter structure */
rx_local->local_psr_full = 0;
/* Now's the best time to initialize FBR1 contents */
fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
for (id = 0; id < NUM_FBRS; id++) {
u32 *num_des;
u32 *full_offset;
u32 *min_des;
u32 *base_hi;
u32 *base_lo;
if (id == 0) {
num_des = &rx_dma->fbr1_num_des;
full_offset = &rx_dma->fbr1_full_offset;
min_des = &rx_dma->fbr1_min_des;
base_hi = &rx_dma->fbr1_base_hi;
base_lo = &rx_dma->fbr1_base_lo;
} else {
num_des = &rx_dma->fbr0_num_des;
full_offset = &rx_dma->fbr0_full_offset;
min_des = &rx_dma->fbr0_min_des;
base_hi = &rx_dma->fbr0_base_hi;
base_lo = &rx_dma->fbr0_base_lo;
}
/* Now's the best time to initialize FBR contents */
fbr_entry = (struct fbr_desc *) rx_local->fbr[id]->ring_virtaddr;
for (entry = 0; entry < rx_local->fbr[id]->num_entries; entry++) {
fbr_entry->addr_hi = rx_local->fbr[id]->bus_high[entry];
fbr_entry->addr_lo = rx_local->fbr[id]->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
}
/* Set the address and parameters of Free buffer ring 1 and 0
* into the 1310's registers
*/
writel(upper_32_bits(rx_local->fbr[id]->ring_physaddr), base_hi);
writel(lower_32_bits(rx_local->fbr[id]->ring_physaddr), base_lo);
writel(rx_local->fbr[id]->num_entries - 1, num_des);
writel(ET_DMA10_WRAP, full_offset);
/* This variable tracks the free buffer ring 1 full position,
* so it has to match the above.
*/
rx_local->fbr[id]->local_full = ET_DMA10_WRAP;
writel(((rx_local->fbr[id]->num_entries *
LO_MARK_PERCENT_FOR_RX) / 100) - 1,
min_des);
}
/* Set the address and parameters of Free buffer ring 1 (and 0 if
* required) into the 1310's registers
*/
writel(upper_32_bits(rx_local->fbr[0]->ring_physaddr),
&rx_dma->fbr1_base_hi);
writel(lower_32_bits(rx_local->fbr[0]->ring_physaddr),
&rx_dma->fbr1_base_lo);
writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
/* This variable tracks the free buffer ring 1 full position, so it
* has to match the above.
*/
rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
writel(
((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr1_min_des);
/* Now's the best time to initialize FBR0 contents */
fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
}
writel(upper_32_bits(rx_local->fbr[1]->ring_physaddr),
&rx_dma->fbr0_base_hi);
writel(lower_32_bits(rx_local->fbr[1]->ring_physaddr),
&rx_dma->fbr0_base_lo);
writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
/* This variable tracks the free buffer ring 0 full position, so it
* has to match the above.
*/
rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
writel(
((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr0_min_des);
/* Program the number of packets we will receive before generating an
* interrupt.
* For version B silicon, this value gets updated once autoneg is
@ -2258,7 +2255,8 @@ static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
* @mask: correct mask
*/
static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
dma_addr_t *phys_addr, dma_addr_t *offset,
dma_addr_t *phys_addr,
dma_addr_t *offset,
u64 mask)
{
u64 new_addr = *phys_addr & ~mask;
@ -2286,6 +2284,7 @@ static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
*/
static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
{
u8 id;
u32 i, j;
u32 bufsize;
u32 pktstat_ringsize, fbr_chunksize;
@ -2337,158 +2336,95 @@ static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
adapter->rx_ring.fbr[1]->num_entries +
adapter->rx_ring.fbr[0]->num_entries;
/* Allocate an area of memory for Free Buffer Ring 1 */
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
0xfff;
rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
for (id = 0; id < NUM_FBRS; id++) {
/* Allocate an area of memory for Free Buffer Ring */
bufsize = (sizeof(struct fbr_desc) *
rx_ring->fbr[id]->num_entries) + 0xfff;
rx_ring->fbr[id]->ring_virtaddr =
dma_alloc_coherent(&adapter->pdev->dev,
bufsize,
&rx_ring->fbr[0]->ring_physaddr,
&rx_ring->fbr[id]->ring_physaddr,
GFP_KERNEL);
if (!rx_ring->fbr[0]->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 1\n");
return -ENOMEM;
}
/* Align Free Buffer Ring 1 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->fbr[0]->ring_physaddr,
&rx_ring->fbr[0]->offset, 0x0FFF);
rx_ring->fbr[0]->ring_virtaddr =
(void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
rx_ring->fbr[0]->offset);
/* Allocate an area of memory for Free Buffer Ring 0 */
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
0xfff;
rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
bufsize,
&rx_ring->fbr[1]->ring_physaddr,
GFP_KERNEL);
if (!rx_ring->fbr[1]->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 0\n");
return -ENOMEM;
}
/* Align Free Buffer Ring 0 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->fbr[1]->ring_physaddr,
&rx_ring->fbr[1]->offset, 0x0FFF);
rx_ring->fbr[1]->ring_virtaddr =
(void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
rx_ring->fbr[1]->offset);
for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
dma_addr_t fbr1_tmp_physaddr;
dma_addr_t fbr1_offset;
u32 fbr1_align;
/* This code allocates an area of memory big enough for N
* free buffers + (buffer_size - 1) so that the buffers can
* be aligned on 4k boundaries. If each buffer were aligned
* to a buffer_size boundary, the effect would be to double
* the size of FBR0. By allocating N buffers at once, we
* reduce this overhead.
*/
if (rx_ring->fbr[0]->buffsize > 4096)
fbr1_align = 4096;
else
fbr1_align = rx_ring->fbr[0]->buffsize;
fbr_chunksize =
(FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
rx_ring->fbr[0]->mem_virtaddrs[i] =
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
&rx_ring->fbr[0]->mem_physaddrs[i],
GFP_KERNEL);
if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
if (!rx_ring->fbr[id]->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
"Cannot alloc memory for Free Buffer Ring %d\n", id);
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
/* Align Free Buffer Ring on a 4K boundary */
et131x_align_allocated_memory(adapter,
&fbr1_tmp_physaddr,
&fbr1_offset, (fbr1_align - 1));
&rx_ring->fbr[id]->ring_physaddr,
&rx_ring->fbr[id]->offset, 0x0FFF);
for (j = 0; j < FBR_CHUNKS; j++) {
u32 index = (i * FBR_CHUNKS) + j;
/* Save the Virtual address of this index for quick
* access later
*/
rx_ring->fbr[0]->virt[index] =
(u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
(j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
/* now store the physical address in the descriptor
* so the device can access it
*/
rx_ring->fbr[0]->bus_high[index] =
upper_32_bits(fbr1_tmp_physaddr);
rx_ring->fbr[0]->bus_low[index] =
lower_32_bits(fbr1_tmp_physaddr);
fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
rx_ring->fbr[0]->buffer1[index] =
rx_ring->fbr[0]->virt[index];
rx_ring->fbr[0]->buffer2[index] =
rx_ring->fbr[0]->virt[index] - 4;
}
rx_ring->fbr[id]->ring_virtaddr =
(void *)((u8 *) rx_ring->fbr[id]->ring_virtaddr +
rx_ring->fbr[id]->offset);
}
/* Same for FBR0 (if in use) */
for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
dma_addr_t fbr0_tmp_physaddr;
dma_addr_t fbr0_offset;
for (id = 0; id < NUM_FBRS; id++) {
for (i = 0; i < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS); i++) {
dma_addr_t fbr_tmp_physaddr;
dma_addr_t fbr_offset;
u32 fbr_align;
fbr_chunksize =
((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
rx_ring->fbr[1]->mem_virtaddrs[i] =
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
&rx_ring->fbr[1]->mem_physaddrs[i],
GFP_KERNEL);
/* This code allocates an area of memory big enough for
* N free buffers + (buffer_size - 1) so that the
* buffers can be aligned on 4k boundaries. If each
* buffer were aligned to a buffer_size boundary, the
* effect would be to double the size of FBR0. By
* allocating N buffers at once, we reduce this overhead
*/
if (id == 0 && rx_ring->fbr[id]->buffsize > 4096)
fbr_align = 4096;
else
fbr_align = rx_ring->fbr[id]->buffsize;
if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
fbr_chunksize = (FBR_CHUNKS *
rx_ring->fbr[id]->buffsize) + fbr_align - 1;
rx_ring->fbr[id]->mem_virtaddrs[i] = dma_alloc_coherent(
&adapter->pdev->dev, fbr_chunksize,
&rx_ring->fbr[id]->mem_physaddrs[i],
GFP_KERNEL);
/* See NOTE in "Save Physical Address" comment above */
fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
if (!rx_ring->fbr[id]->mem_virtaddrs[i]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
et131x_align_allocated_memory(adapter,
&fbr0_tmp_physaddr,
&fbr0_offset,
rx_ring->fbr[1]->buffsize - 1);
/* See NOTE in "Save Physical Address" comment above */
fbr_tmp_physaddr = rx_ring->fbr[id]->mem_physaddrs[i];
for (j = 0; j < FBR_CHUNKS; j++) {
u32 index = (i * FBR_CHUNKS) + j;
et131x_align_allocated_memory(adapter,
&fbr_tmp_physaddr,
&fbr_offset,
(fbr_align - 1));
rx_ring->fbr[1]->virt[index] =
(u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
(j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
for (j = 0; j < FBR_CHUNKS; j++) {
u32 index = (i * FBR_CHUNKS) + j;
rx_ring->fbr[1]->bus_high[index] =
upper_32_bits(fbr0_tmp_physaddr);
rx_ring->fbr[1]->bus_low[index] =
lower_32_bits(fbr0_tmp_physaddr);
/* Save the Virtual address of this index for
* quick access later
*/
rx_ring->fbr[id]->virt[index] =
(u8 *) rx_ring->fbr[id]->mem_virtaddrs[i] +
(j * rx_ring->fbr[id]->buffsize) + fbr_offset;
fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
/* now store the physical address in the
* descriptor so the device can access it
*/
rx_ring->fbr[id]->bus_high[index] =
upper_32_bits(fbr_tmp_physaddr);
rx_ring->fbr[id]->bus_low[index] =
lower_32_bits(fbr_tmp_physaddr);
rx_ring->fbr[1]->buffer1[index] =
rx_ring->fbr[1]->virt[index];
rx_ring->fbr[1]->buffer2[index] =
rx_ring->fbr[1]->virt[index] - 4;
fbr_tmp_physaddr += rx_ring->fbr[id]->buffsize;
rx_ring->fbr[id]->buffer1[index] =
rx_ring->fbr[id]->virt[index];
rx_ring->fbr[id]->buffer2[index] =
rx_ring->fbr[id]->virt[index] - 4;
}
}
}
@ -2557,6 +2493,7 @@ static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
*/
static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
{
u8 id;
u32 index;
u32 bufsize;
u32 pktstat_ringsize;
@ -2578,80 +2515,48 @@ static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
}
/* Free Free Buffer Ring 1 */
if (rx_ring->fbr[0]->ring_virtaddr) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
u32 fbr1_align;
/* Free Free Buffer Rings */
for (id = 0; id < NUM_FBRS; id++) {
if (rx_ring->fbr[id]->ring_virtaddr) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->fbr[id]->num_entries / FBR_CHUNKS);
index++) {
if (rx_ring->fbr[id]->mem_virtaddrs[index]) {
u32 fbr_align;
if (rx_ring->fbr[0]->buffsize > 4096)
fbr1_align = 4096;
else
fbr1_align = rx_ring->fbr[0]->buffsize;
if (rx_ring->fbr[id]->buffsize > 4096)
fbr_align = 4096;
else
fbr_align = rx_ring->fbr[id]->buffsize;
bufsize =
(rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
fbr1_align - 1;
bufsize =
(rx_ring->fbr[id]->buffsize * FBR_CHUNKS) +
fbr_align - 1;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[0]->mem_virtaddrs[index],
rx_ring->fbr[0]->mem_physaddrs[index]);
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[id]->mem_virtaddrs[index],
rx_ring->fbr[id]->mem_physaddrs[index]);
rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
rx_ring->fbr[id]->mem_virtaddrs[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->fbr[id]->ring_virtaddr = (void *)((u8 *)
rx_ring->fbr[id]->ring_virtaddr - rx_ring->fbr[id]->offset);
bufsize =
(sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries) +
0xfff;
dma_free_coherent(&adapter->pdev->dev, bufsize,
rx_ring->fbr[id]->ring_virtaddr,
rx_ring->fbr[id]->ring_physaddr);
rx_ring->fbr[id]->ring_virtaddr = NULL;
}
/* Now the FIFO itself */
rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
bufsize =
(sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
0xfff;
dma_free_coherent(&adapter->pdev->dev, bufsize,
rx_ring->fbr[0]->ring_virtaddr,
rx_ring->fbr[0]->ring_physaddr);
rx_ring->fbr[0]->ring_virtaddr = NULL;
}
/* Now the same for Free Buffer Ring 0 */
if (rx_ring->fbr[1]->ring_virtaddr) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
bufsize =
(rx_ring->fbr[1]->buffsize *
(FBR_CHUNKS + 1)) - 1;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[1]->mem_virtaddrs[index],
rx_ring->fbr[1]->mem_physaddrs[index]);
rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
bufsize =
(sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
0xfff;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[1]->ring_virtaddr,
rx_ring->fbr[1]->ring_physaddr);
rx_ring->fbr[1]->ring_virtaddr = NULL;
}
/* Free Packet Status Ring */
@ -2780,43 +2685,36 @@ static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
if (
(ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
(ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
u32 *offset;
u8 id;
struct fbr_desc *next;
spin_lock_irqsave(&adapter->fbr_lock, flags);
if (ring_index == 1) {
struct fbr_desc *next = (struct fbr_desc *)
(rx_local->fbr[0]->ring_virtaddr) +
INDEX10(rx_local->fbr[0]->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
next->word2 = buff_index;
writel(bump_free_buff_ring(
&rx_local->fbr[0]->local_full,
rx_local->fbr[0]->num_entries - 1),
&rx_dma->fbr1_full_offset);
id = 0;
offset = &rx_dma->fbr1_full_offset;
} else {
struct fbr_desc *next = (struct fbr_desc *)
rx_local->fbr[1]->ring_virtaddr +
INDEX10(rx_local->fbr[1]->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed) FBR entry
*/
next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
next->word2 = buff_index;
writel(bump_free_buff_ring(
&rx_local->fbr[1]->local_full,
rx_local->fbr[1]->num_entries - 1),
&rx_dma->fbr0_full_offset);
id = 1;
offset = &rx_dma->fbr0_full_offset;
}
next = (struct fbr_desc *) (rx_local->fbr[id]->ring_virtaddr) +
INDEX10(rx_local->fbr[id]->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
next->addr_hi = rx_local->fbr[id]->bus_high[buff_index];
next->addr_lo = rx_local->fbr[id]->bus_low[buff_index];
next->word2 = buff_index;
writel(bump_free_buff_ring(
&rx_local->fbr[id]->local_full,
rx_local->fbr[id]->num_entries - 1),
offset);
spin_unlock_irqrestore(&adapter->fbr_lock, flags);
} else {
dev_err(&adapter->pdev->dev,