crypto: jitter - SP800-90B compliance

SP800-90B specifies various requirements for the noise source(s) that
may seed any DRNG including SP800-90A DRBGs. In November 2020,
SP800-90B will be mandated for all noise sources that provide entropy
to DRBGs as part of a FIPS 140-[2|3] validation or other evaluation
types. Without SP800-90B compliance, a noise source is defined to always
deliver zero bits of entropy.

This patch ports the SP800-90B compliance from the user space Jitter RNG
version 2.2.0.

The following changes are applied:

- addition of (an enhanced version of) the repetitive count test (RCT)
  from SP800-90B section 4.4.1 - the enhancement is due to the fact of
  using the stuck test as input to the RCT.

- addition of the adaptive proportion test (APT) from SP800-90B section
  4.4.2

- update of the power-on self test to perform a test measurement of 1024
  noise samples compliant to SP800-90B section 4.3

- remove of the continuous random number generator test which is
  replaced by APT and RCT

Health test failures due to the SP800-90B operation are only enforced in
FIPS mode. If a runtime health test failure is detected, the Jitter RNG
is reset. If more than 1024 resets in a row are performed, a permanent
error is returned to the caller.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Stephan Müller 2020-04-17 21:33:33 +02:00 committed by Herbert Xu
parent 63e05f3275
commit 764428fe99
2 changed files with 346 additions and 104 deletions

View File

@ -108,6 +108,7 @@ void jent_get_nstime(__u64 *out)
struct jitterentropy { struct jitterentropy {
spinlock_t jent_lock; spinlock_t jent_lock;
struct rand_data *entropy_collector; struct rand_data *entropy_collector;
unsigned int reset_cnt;
}; };
static int jent_kcapi_init(struct crypto_tfm *tfm) static int jent_kcapi_init(struct crypto_tfm *tfm)
@ -142,7 +143,33 @@ static int jent_kcapi_random(struct crypto_rng *tfm,
int ret = 0; int ret = 0;
spin_lock(&rng->jent_lock); spin_lock(&rng->jent_lock);
/* Return a permanent error in case we had too many resets in a row. */
if (rng->reset_cnt > (1<<10)) {
ret = -EFAULT;
goto out;
}
ret = jent_read_entropy(rng->entropy_collector, rdata, dlen); ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
/* Reset RNG in case of health failures */
if (ret < -1) {
pr_warn_ratelimited("Reset Jitter RNG due to health test failure: %s failure\n",
(ret == -2) ? "Repetition Count Test" :
"Adaptive Proportion Test");
rng->reset_cnt++;
ret = -EAGAIN;
} else {
rng->reset_cnt = 0;
/* Convert the Jitter RNG error into a usable error code */
if (ret == -1)
ret = -EINVAL;
}
out:
spin_unlock(&rng->jent_lock); spin_unlock(&rng->jent_lock);
return ret; return ret;

View File

@ -2,7 +2,7 @@
* Non-physical true random number generator based on timing jitter -- * Non-physical true random number generator based on timing jitter --
* Jitter RNG standalone code. * Jitter RNG standalone code.
* *
* Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2020
* *
* Design * Design
* ====== * ======
@ -47,7 +47,7 @@
/* /*
* This Jitterentropy RNG is based on the jitterentropy library * This Jitterentropy RNG is based on the jitterentropy library
* version 2.1.2 provided at http://www.chronox.de/jent.html * version 2.2.0 provided at http://www.chronox.de/jent.html
*/ */
#ifdef __OPTIMIZE__ #ifdef __OPTIMIZE__
@ -83,6 +83,22 @@ struct rand_data {
unsigned int memblocksize; /* Size of one memory block in bytes */ unsigned int memblocksize; /* Size of one memory block in bytes */
unsigned int memaccessloops; /* Number of memory accesses per random unsigned int memaccessloops; /* Number of memory accesses per random
* bit generation */ * bit generation */
/* Repetition Count Test */
int rct_count; /* Number of stuck values */
/* Adaptive Proportion Test for a significance level of 2^-30 */
#define JENT_APT_CUTOFF 325 /* Taken from SP800-90B sec 4.4.2 */
#define JENT_APT_WINDOW_SIZE 512 /* Data window size */
/* LSB of time stamp to process */
#define JENT_APT_LSB 16
#define JENT_APT_WORD_MASK (JENT_APT_LSB - 1)
unsigned int apt_observations; /* Number of collected observations */
unsigned int apt_count; /* APT counter */
unsigned int apt_base; /* APT base reference */
unsigned int apt_base_set:1; /* APT base reference set? */
unsigned int health_failure:1; /* Permanent health failure */
}; };
/* Flags that can be used to initialize the RNG */ /* Flags that can be used to initialize the RNG */
@ -98,13 +114,202 @@ struct rand_data {
* variations (2nd derivation of time is * variations (2nd derivation of time is
* zero). */ * zero). */
#define JENT_ESTUCK 8 /* Too many stuck results during init. */ #define JENT_ESTUCK 8 /* Too many stuck results during init. */
#define JENT_EHEALTH 9 /* Health test failed during initialization */
/*************************************************************************** #define JENT_ERCT 10 /* RCT failed during initialization */
* Helper functions
***************************************************************************/
#include "jitterentropy.h" #include "jitterentropy.h"
/***************************************************************************
* Adaptive Proportion Test
*
* This test complies with SP800-90B section 4.4.2.
***************************************************************************/
/**
* Reset the APT counter
*
* @ec [in] Reference to entropy collector
*/
static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
{
/* Reset APT counter */
ec->apt_count = 0;
ec->apt_base = delta_masked;
ec->apt_observations = 0;
}
/**
* Insert a new entropy event into APT
*
* @ec [in] Reference to entropy collector
* @delta_masked [in] Masked time delta to process
*/
static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
{
/* Initialize the base reference */
if (!ec->apt_base_set) {
ec->apt_base = delta_masked;
ec->apt_base_set = 1;
return;
}
if (delta_masked == ec->apt_base) {
ec->apt_count++;
if (ec->apt_count >= JENT_APT_CUTOFF)
ec->health_failure = 1;
}
ec->apt_observations++;
if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
jent_apt_reset(ec, delta_masked);
}
/***************************************************************************
* Stuck Test and its use as Repetition Count Test
*
* The Jitter RNG uses an enhanced version of the Repetition Count Test
* (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
* back-to-back values, the input to the RCT is the counting of the stuck
* values during the generation of one Jitter RNG output block.
*
* The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
*
* During the counting operation, the Jitter RNG always calculates the RCT
* cut-off value of C. If that value exceeds the allowed cut-off value,
* the Jitter RNG output block will be calculated completely but discarded at
* the end. The caller of the Jitter RNG is informed with an error code.
***************************************************************************/
/**
* Repetition Count Test as defined in SP800-90B section 4.4.1
*
* @ec [in] Reference to entropy collector
* @stuck [in] Indicator whether the value is stuck
*/
static void jent_rct_insert(struct rand_data *ec, int stuck)
{
/*
* If we have a count less than zero, a previous RCT round identified
* a failure. We will not overwrite it.
*/
if (ec->rct_count < 0)
return;
if (stuck) {
ec->rct_count++;
/*
* The cutoff value is based on the following consideration:
* alpha = 2^-30 as recommended in FIPS 140-2 IG 9.8.
* In addition, we require an entropy value H of 1/OSR as this
* is the minimum entropy required to provide full entropy.
* Note, we collect 64 * OSR deltas for inserting them into
* the entropy pool which should then have (close to) 64 bits
* of entropy.
*
* Note, ec->rct_count (which equals to value B in the pseudo
* code of SP800-90B section 4.4.1) starts with zero. Hence
* we need to subtract one from the cutoff value as calculated
* following SP800-90B.
*/
if ((unsigned int)ec->rct_count >= (31 * ec->osr)) {
ec->rct_count = -1;
ec->health_failure = 1;
}
} else {
ec->rct_count = 0;
}
}
/**
* Is there an RCT health test failure?
*
* @ec [in] Reference to entropy collector
*
* @return
* 0 No health test failure
* 1 Permanent health test failure
*/
static int jent_rct_failure(struct rand_data *ec)
{
if (ec->rct_count < 0)
return 1;
return 0;
}
static inline __u64 jent_delta(__u64 prev, __u64 next)
{
#define JENT_UINT64_MAX (__u64)(~((__u64) 0))
return (prev < next) ? (next - prev) :
(JENT_UINT64_MAX - prev + 1 + next);
}
/**
* Stuck test by checking the:
* 1st derivative of the jitter measurement (time delta)
* 2nd derivative of the jitter measurement (delta of time deltas)
* 3rd derivative of the jitter measurement (delta of delta of time deltas)
*
* All values must always be non-zero.
*
* @ec [in] Reference to entropy collector
* @current_delta [in] Jitter time delta
*
* @return
* 0 jitter measurement not stuck (good bit)
* 1 jitter measurement stuck (reject bit)
*/
static int jent_stuck(struct rand_data *ec, __u64 current_delta)
{
__u64 delta2 = jent_delta(ec->last_delta, current_delta);
__u64 delta3 = jent_delta(ec->last_delta2, delta2);
unsigned int delta_masked = current_delta & JENT_APT_WORD_MASK;
ec->last_delta = current_delta;
ec->last_delta2 = delta2;
/*
* Insert the result of the comparison of two back-to-back time
* deltas.
*/
jent_apt_insert(ec, delta_masked);
if (!current_delta || !delta2 || !delta3) {
/* RCT with a stuck bit */
jent_rct_insert(ec, 1);
return 1;
}
/* RCT with a non-stuck bit */
jent_rct_insert(ec, 0);
return 0;
}
/**
* Report any health test failures
*
* @ec [in] Reference to entropy collector
*
* @return
* 0 No health test failure
* 1 Permanent health test failure
*/
static int jent_health_failure(struct rand_data *ec)
{
/* Test is only enabled in FIPS mode */
if (!jent_fips_enabled())
return 0;
return ec->health_failure;
}
/***************************************************************************
* Noise sources
***************************************************************************/
/** /**
* Update of the loop count used for the next round of * Update of the loop count used for the next round of
* an entropy collection. * an entropy collection.
@ -148,10 +353,6 @@ static __u64 jent_loop_shuffle(struct rand_data *ec,
return (shuffle + (1<<min)); return (shuffle + (1<<min));
} }
/***************************************************************************
* Noise sources
***************************************************************************/
/** /**
* CPU Jitter noise source -- this is the noise source based on the CPU * CPU Jitter noise source -- this is the noise source based on the CPU
* execution time jitter * execution time jitter
@ -166,18 +367,19 @@ static __u64 jent_loop_shuffle(struct rand_data *ec,
* the CPU execution time jitter. Any change to the loop in this function * the CPU execution time jitter. Any change to the loop in this function
* implies that careful retesting must be done. * implies that careful retesting must be done.
* *
* Input: * @ec [in] entropy collector struct
* @ec entropy collector struct * @time [in] time stamp to be injected
* @time time stamp to be injected * @loop_cnt [in] if a value not equal to 0 is set, use the given value as
* @loop_cnt if a value not equal to 0 is set, use the given value as number of * number of loops to perform the folding
* loops to perform the folding * @stuck [in] Is the time stamp identified as stuck?
* *
* Output: * Output:
* updated ec->data * updated ec->data
* *
* @return Number of loops the folding operation is performed * @return Number of loops the folding operation is performed
*/ */
static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt) static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt,
int stuck)
{ {
unsigned int i; unsigned int i;
__u64 j = 0; __u64 j = 0;
@ -220,9 +422,17 @@ static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
new ^= tmp; new ^= tmp;
} }
} }
ec->data = new;
return fold_loop_cnt; /*
* If the time stamp is stuck, do not finally insert the value into
* the entropy pool. Although this operation should not do any harm
* even when the time stamp has no entropy, SP800-90B requires that
* any conditioning operation (SP800-90B considers the LFSR to be a
* conditioning operation) to have an identical amount of input
* data according to section 3.1.5.
*/
if (!stuck)
ec->data = new;
} }
/** /**
@ -243,16 +453,13 @@ static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
* to reliably access either L3 or memory, the ec->mem memory must be quite * to reliably access either L3 or memory, the ec->mem memory must be quite
* large which is usually not desirable. * large which is usually not desirable.
* *
* Input: * @ec [in] Reference to the entropy collector with the memory access data -- if
* @ec Reference to the entropy collector with the memory access data -- if * the reference to the memory block to be accessed is NULL, this noise
* the reference to the memory block to be accessed is NULL, this noise * source is disabled
* source is disabled * @loop_cnt [in] if a value not equal to 0 is set, use the given value
* @loop_cnt if a value not equal to 0 is set, use the given value as number of * number of loops to perform the LFSR
* loops to perform the folding
*
* @return Number of memory access operations
*/ */
static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt) static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
{ {
unsigned int wrap = 0; unsigned int wrap = 0;
__u64 i = 0; __u64 i = 0;
@ -262,7 +469,7 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT); jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
if (NULL == ec || NULL == ec->mem) if (NULL == ec || NULL == ec->mem)
return 0; return;
wrap = ec->memblocksize * ec->memblocks; wrap = ec->memblocksize * ec->memblocks;
/* /*
@ -288,43 +495,11 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
ec->memlocation = ec->memlocation + ec->memblocksize - 1; ec->memlocation = ec->memlocation + ec->memblocksize - 1;
ec->memlocation = ec->memlocation % wrap; ec->memlocation = ec->memlocation % wrap;
} }
return i;
} }
/*************************************************************************** /***************************************************************************
* Start of entropy processing logic * Start of entropy processing logic
***************************************************************************/ ***************************************************************************/
/**
* Stuck test by checking the:
* 1st derivation of the jitter measurement (time delta)
* 2nd derivation of the jitter measurement (delta of time deltas)
* 3rd derivation of the jitter measurement (delta of delta of time deltas)
*
* All values must always be non-zero.
*
* Input:
* @ec Reference to entropy collector
* @current_delta Jitter time delta
*
* @return
* 0 jitter measurement not stuck (good bit)
* 1 jitter measurement stuck (reject bit)
*/
static int jent_stuck(struct rand_data *ec, __u64 current_delta)
{
__s64 delta2 = ec->last_delta - current_delta;
__s64 delta3 = delta2 - ec->last_delta2;
ec->last_delta = current_delta;
ec->last_delta2 = delta2;
if (!current_delta || !delta2 || !delta3)
return 1;
return 0;
}
/** /**
* This is the heart of the entropy generation: calculate time deltas and * This is the heart of the entropy generation: calculate time deltas and
* use the CPU jitter in the time deltas. The jitter is injected into the * use the CPU jitter in the time deltas. The jitter is injected into the
@ -334,8 +509,7 @@ static int jent_stuck(struct rand_data *ec, __u64 current_delta)
* of this function! This can be done by calling this function * of this function! This can be done by calling this function
* and not using its result. * and not using its result.
* *
* Input: * @ec [in] Reference to entropy collector
* @entropy_collector Reference to entropy collector
* *
* @return result of stuck test * @return result of stuck test
*/ */
@ -343,6 +517,7 @@ static int jent_measure_jitter(struct rand_data *ec)
{ {
__u64 time = 0; __u64 time = 0;
__u64 current_delta = 0; __u64 current_delta = 0;
int stuck;
/* Invoke one noise source before time measurement to add variations */ /* Invoke one noise source before time measurement to add variations */
jent_memaccess(ec, 0); jent_memaccess(ec, 0);
@ -352,22 +527,23 @@ static int jent_measure_jitter(struct rand_data *ec)
* invocation to measure the timing variations * invocation to measure the timing variations
*/ */
jent_get_nstime(&time); jent_get_nstime(&time);
current_delta = time - ec->prev_time; current_delta = jent_delta(ec->prev_time, time);
ec->prev_time = time; ec->prev_time = time;
/* Now call the next noise sources which also injects the data */
jent_lfsr_time(ec, current_delta, 0);
/* Check whether we have a stuck measurement. */ /* Check whether we have a stuck measurement. */
return jent_stuck(ec, current_delta); stuck = jent_stuck(ec, current_delta);
/* Now call the next noise sources which also injects the data */
jent_lfsr_time(ec, current_delta, 0, stuck);
return stuck;
} }
/** /**
* Generator of one 64 bit random number * Generator of one 64 bit random number
* Function fills rand_data->data * Function fills rand_data->data
* *
* Input: * @ec [in] Reference to entropy collector
* @ec Reference to entropy collector
*/ */
static void jent_gen_entropy(struct rand_data *ec) static void jent_gen_entropy(struct rand_data *ec)
{ {
@ -390,31 +566,6 @@ static void jent_gen_entropy(struct rand_data *ec)
} }
} }
/**
* The continuous test required by FIPS 140-2 -- the function automatically
* primes the test if needed.
*
* Return:
* returns normally if FIPS test passed
* panics the kernel if FIPS test failed
*/
static void jent_fips_test(struct rand_data *ec)
{
if (!jent_fips_enabled())
return;
/* prime the FIPS test */
if (!ec->old_data) {
ec->old_data = ec->data;
jent_gen_entropy(ec);
}
if (ec->data == ec->old_data)
jent_panic("jitterentropy: Duplicate output detected\n");
ec->old_data = ec->data;
}
/** /**
* Entry function: Obtain entropy for the caller. * Entry function: Obtain entropy for the caller.
* *
@ -425,17 +576,18 @@ static void jent_fips_test(struct rand_data *ec)
* This function truncates the last 64 bit entropy value output to the exact * This function truncates the last 64 bit entropy value output to the exact
* size specified by the caller. * size specified by the caller.
* *
* Input: * @ec [in] Reference to entropy collector
* @ec Reference to entropy collector * @data [in] pointer to buffer for storing random data -- buffer must already
* @data pointer to buffer for storing random data -- buffer must already * exist
* exist * @len [in] size of the buffer, specifying also the requested number of random
* @len size of the buffer, specifying also the requested number of random * in bytes
* in bytes
* *
* @return 0 when request is fulfilled or an error * @return 0 when request is fulfilled or an error
* *
* The following error codes can occur: * The following error codes can occur:
* -1 entropy_collector is NULL * -1 entropy_collector is NULL
* -2 RCT failed
* -3 APT test failed
*/ */
int jent_read_entropy(struct rand_data *ec, unsigned char *data, int jent_read_entropy(struct rand_data *ec, unsigned char *data,
unsigned int len) unsigned int len)
@ -449,7 +601,42 @@ int jent_read_entropy(struct rand_data *ec, unsigned char *data,
unsigned int tocopy; unsigned int tocopy;
jent_gen_entropy(ec); jent_gen_entropy(ec);
jent_fips_test(ec);
if (jent_health_failure(ec)) {
int ret;
if (jent_rct_failure(ec))
ret = -2;
else
ret = -3;
/*
* Re-initialize the noise source
*
* If the health test fails, the Jitter RNG remains
* in failure state and will return a health failure
* during next invocation.
*/
if (jent_entropy_init())
return ret;
/* Set APT to initial state */
jent_apt_reset(ec, 0);
ec->apt_base_set = 0;
/* Set RCT to initial state */
ec->rct_count = 0;
/* Re-enable Jitter RNG */
ec->health_failure = 0;
/*
* Return the health test failure status to the
* caller as the generated value is not appropriate.
*/
return ret;
}
if ((DATA_SIZE_BITS / 8) < len) if ((DATA_SIZE_BITS / 8) < len)
tocopy = (DATA_SIZE_BITS / 8); tocopy = (DATA_SIZE_BITS / 8);
else else
@ -513,11 +700,15 @@ int jent_entropy_init(void)
int i; int i;
__u64 delta_sum = 0; __u64 delta_sum = 0;
__u64 old_delta = 0; __u64 old_delta = 0;
unsigned int nonstuck = 0;
int time_backwards = 0; int time_backwards = 0;
int count_mod = 0; int count_mod = 0;
int count_stuck = 0; int count_stuck = 0;
struct rand_data ec = { 0 }; struct rand_data ec = { 0 };
/* Required for RCT */
ec.osr = 1;
/* We could perform statistical tests here, but the problem is /* We could perform statistical tests here, but the problem is
* that we only have a few loop counts to do testing. These * that we only have a few loop counts to do testing. These
* loop counts may show some slight skew and we produce * loop counts may show some slight skew and we produce
@ -539,8 +730,10 @@ int jent_entropy_init(void)
/* /*
* TESTLOOPCOUNT needs some loops to identify edge systems. 100 is * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
* definitely too little. * definitely too little.
*
* SP800-90B requires at least 1024 initial test cycles.
*/ */
#define TESTLOOPCOUNT 300 #define TESTLOOPCOUNT 1024
#define CLEARCACHE 100 #define CLEARCACHE 100
for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
__u64 time = 0; __u64 time = 0;
@ -552,13 +745,13 @@ int jent_entropy_init(void)
/* Invoke core entropy collection logic */ /* Invoke core entropy collection logic */
jent_get_nstime(&time); jent_get_nstime(&time);
ec.prev_time = time; ec.prev_time = time;
jent_lfsr_time(&ec, time, 0); jent_lfsr_time(&ec, time, 0, 0);
jent_get_nstime(&time2); jent_get_nstime(&time2);
/* test whether timer works */ /* test whether timer works */
if (!time || !time2) if (!time || !time2)
return JENT_ENOTIME; return JENT_ENOTIME;
delta = time2 - time; delta = jent_delta(time, time2);
/* /*
* test whether timer is fine grained enough to provide * test whether timer is fine grained enough to provide
* delta even when called shortly after each other -- this * delta even when called shortly after each other -- this
@ -581,6 +774,28 @@ int jent_entropy_init(void)
if (stuck) if (stuck)
count_stuck++; count_stuck++;
else {
nonstuck++;
/*
* Ensure that the APT succeeded.
*
* With the check below that count_stuck must be less
* than 10% of the overall generated raw entropy values
* it is guaranteed that the APT is invoked at
* floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
*/
if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
jent_apt_reset(&ec,
delta & JENT_APT_WORD_MASK);
if (jent_health_failure(&ec))
return JENT_EHEALTH;
}
}
/* Validate RCT */
if (jent_rct_failure(&ec))
return JENT_ERCT;
/* test whether we have an increasing timer */ /* test whether we have an increasing timer */
if (!(time2 > time)) if (!(time2 > time))