NTFS: Add ntfs_rl_punch_nolock() which punches a caller specified hole into a runlist.

Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
This commit is contained in:
Anton Altaparmakov 2005-09-08 20:26:34 +01:00
parent 3ffc5a4438
commit 6e48321a40
3 changed files with 289 additions and 0 deletions

View File

@ -53,6 +53,8 @@ ToDo/Notes:
pointing this out. pointing this out.
- Change ntfs_rl_truncate_nolock() to throw away the runlist if the new - Change ntfs_rl_truncate_nolock() to throw away the runlist if the new
length is zero. length is zero.
- Add runlist.[hc]::ntfs_rl_punch_nolock() which punches a caller
specified hole into a runlist.
2.1.23 - Implement extension of resident files and make writing safe as well as 2.1.23 - Implement extension of resident files and make writing safe as well as
many bug fixes, cleanups, and enhancements... many bug fixes, cleanups, and enhancements...

View File

@ -1601,4 +1601,288 @@ int ntfs_rl_truncate_nolock(const ntfs_volume *vol, runlist *const runlist,
return 0; return 0;
} }
/**
* ntfs_rl_punch_nolock - punch a hole into a runlist
* @vol: ntfs volume (needed for error output)
* @runlist: runlist to punch a hole into
* @start: starting VCN of the hole to be created
* @length: size of the hole to be created in units of clusters
*
* Punch a hole into the runlist @runlist starting at VCN @start and of size
* @length clusters.
*
* Return 0 on success and -errno on error, in which case @runlist has not been
* modified.
*
* If @start and/or @start + @length are outside the runlist return error code
* -ENOENT.
*
* If the runlist contains unmapped or error elements between @start and @start
* + @length return error code -EINVAL.
*
* Locking: The caller must hold @runlist->lock for writing.
*/
int ntfs_rl_punch_nolock(const ntfs_volume *vol, runlist *const runlist,
const VCN start, const s64 length)
{
const VCN end = start + length;
s64 delta;
runlist_element *rl, *rl_end, *rl_real_end, *trl;
int old_size;
BOOL lcn_fixup = FALSE;
ntfs_debug("Entering for start 0x%llx, length 0x%llx.",
(long long)start, (long long)length);
BUG_ON(!runlist);
BUG_ON(start < 0);
BUG_ON(length < 0);
BUG_ON(end < 0);
rl = runlist->rl;
if (unlikely(!rl)) {
if (likely(!start && !length))
return 0;
return -ENOENT;
}
/* Find @start in the runlist. */
while (likely(rl->length && start >= rl[1].vcn))
rl++;
rl_end = rl;
/* Find @end in the runlist. */
while (likely(rl_end->length && end >= rl_end[1].vcn)) {
/* Verify there are no unmapped or error elements. */
if (unlikely(rl_end->lcn < LCN_HOLE))
return -EINVAL;
rl_end++;
}
/* Check the last element. */
if (unlikely(rl_end->length && rl_end->lcn < LCN_HOLE))
return -EINVAL;
/* This covers @start being out of bounds, too. */
if (!rl_end->length && end > rl_end->vcn)
return -ENOENT;
if (!length)
return 0;
if (!rl->length)
return -ENOENT;
rl_real_end = rl_end;
/* Determine the runlist size. */
while (likely(rl_real_end->length))
rl_real_end++;
old_size = rl_real_end - runlist->rl + 1;
/* If @start is in a hole simply extend the hole. */
if (rl->lcn == LCN_HOLE) {
/*
* If both @start and @end are in the same sparse run, we are
* done.
*/
if (end <= rl[1].vcn) {
ntfs_debug("Done (requested hole is already sparse).");
return 0;
}
extend_hole:
/* Extend the hole. */
rl->length = end - rl->vcn;
/* If @end is in a hole, merge it with the current one. */
if (rl_end->lcn == LCN_HOLE) {
rl_end++;
rl->length = rl_end->vcn - rl->vcn;
}
/* We have done the hole. Now deal with the remaining tail. */
rl++;
/* Cut out all runlist elements up to @end. */
if (rl < rl_end)
memmove(rl, rl_end, (rl_real_end - rl_end + 1) *
sizeof(*rl));
/* Adjust the beginning of the tail if necessary. */
if (end > rl->vcn) {
s64 delta = end - rl->vcn;
rl->vcn = end;
rl->length -= delta;
/* Only adjust the lcn if it is real. */
if (rl->lcn >= 0)
rl->lcn += delta;
}
shrink_allocation:
/* Reallocate memory if the allocation changed. */
if (rl < rl_end) {
rl = ntfs_rl_realloc(runlist->rl, old_size,
old_size - (rl_end - rl));
if (IS_ERR(rl))
ntfs_warning(vol->sb, "Failed to shrink "
"runlist buffer. This just "
"wastes a bit of memory "
"temporarily so we ignore it "
"and return success.");
else
runlist->rl = rl;
}
ntfs_debug("Done (extend hole).");
return 0;
}
/*
* If @start is at the beginning of a run things are easier as there is
* no need to split the first run.
*/
if (start == rl->vcn) {
/*
* @start is at the beginning of a run.
*
* If the previous run is sparse, extend its hole.
*
* If @end is not in the same run, switch the run to be sparse
* and extend the newly created hole.
*
* Thus both of these cases reduce the problem to the above
* case of "@start is in a hole".
*/
if (rl > runlist->rl && (rl - 1)->lcn == LCN_HOLE) {
rl--;
goto extend_hole;
}
if (end >= rl[1].vcn) {
rl->lcn = LCN_HOLE;
goto extend_hole;
}
/*
* The final case is when @end is in the same run as @start.
* For this need to split the run into two. One run for the
* sparse region between the beginning of the old run, i.e.
* @start, and @end and one for the remaining non-sparse
* region, i.e. between @end and the end of the old run.
*/
trl = ntfs_rl_realloc(runlist->rl, old_size, old_size + 1);
if (IS_ERR(trl))
goto enomem_out;
old_size++;
if (runlist->rl != trl) {
rl = trl + (rl - runlist->rl);
rl_end = trl + (rl_end - runlist->rl);
rl_real_end = trl + (rl_real_end - runlist->rl);
runlist->rl = trl;
}
split_end:
/* Shift all the runs up by one. */
memmove(rl + 1, rl, (rl_real_end - rl + 1) * sizeof(*rl));
/* Finally, setup the two split runs. */
rl->lcn = LCN_HOLE;
rl->length = length;
rl++;
rl->vcn += length;
/* Only adjust the lcn if it is real. */
if (rl->lcn >= 0 || lcn_fixup)
rl->lcn += length;
rl->length -= length;
ntfs_debug("Done (split one).");
return 0;
}
/*
* @start is neither in a hole nor at the beginning of a run.
*
* If @end is in a hole, things are easier as simply truncating the run
* @start is in to end at @start - 1, deleting all runs after that up
* to @end, and finally extending the beginning of the run @end is in
* to be @start is all that is needed.
*/
if (rl_end->lcn == LCN_HOLE) {
/* Truncate the run containing @start. */
rl->length = start - rl->vcn;
rl++;
/* Cut out all runlist elements up to @end. */
if (rl < rl_end)
memmove(rl, rl_end, (rl_real_end - rl_end + 1) *
sizeof(*rl));
/* Extend the beginning of the run @end is in to be @start. */
rl->vcn = start;
rl->length = rl[1].vcn - start;
goto shrink_allocation;
}
/*
* If @end is not in a hole there are still two cases to distinguish.
* Either @end is or is not in the same run as @start.
*
* The second case is easier as it can be reduced to an already solved
* problem by truncating the run @start is in to end at @start - 1.
* Then, if @end is in the next run need to split the run into a sparse
* run followed by a non-sparse run (already covered above) and if @end
* is not in the next run switching it to be sparse, again reduces the
* problem to the already covered case of "@start is in a hole".
*/
if (end >= rl[1].vcn) {
/*
* If @end is not in the next run, reduce the problem to the
* case of "@start is in a hole".
*/
if (rl[1].length && end >= rl[2].vcn) {
/* Truncate the run containing @start. */
rl->length = start - rl->vcn;
rl++;
rl->vcn = start;
rl->lcn = LCN_HOLE;
goto extend_hole;
}
trl = ntfs_rl_realloc(runlist->rl, old_size, old_size + 1);
if (IS_ERR(trl))
goto enomem_out;
old_size++;
if (runlist->rl != trl) {
rl = trl + (rl - runlist->rl);
rl_end = trl + (rl_end - runlist->rl);
rl_real_end = trl + (rl_real_end - runlist->rl);
runlist->rl = trl;
}
/* Truncate the run containing @start. */
rl->length = start - rl->vcn;
rl++;
/*
* @end is in the next run, reduce the problem to the case
* where "@start is at the beginning of a run and @end is in
* the same run as @start".
*/
delta = rl->vcn - start;
rl->vcn = start;
if (rl->lcn >= 0) {
rl->lcn -= delta;
/* Need this in case the lcn just became negative. */
lcn_fixup = TRUE;
}
rl->length += delta;
goto split_end;
}
/*
* The first case from above, i.e. @end is in the same run as @start.
* We need to split the run into three. One run for the non-sparse
* region between the beginning of the old run and @start, one for the
* sparse region between @start and @end, and one for the remaining
* non-sparse region, i.e. between @end and the end of the old run.
*/
trl = ntfs_rl_realloc(runlist->rl, old_size, old_size + 2);
if (IS_ERR(trl))
goto enomem_out;
old_size += 2;
if (runlist->rl != trl) {
rl = trl + (rl - runlist->rl);
rl_end = trl + (rl_end - runlist->rl);
rl_real_end = trl + (rl_real_end - runlist->rl);
runlist->rl = trl;
}
/* Shift all the runs up by two. */
memmove(rl + 2, rl, (rl_real_end - rl + 1) * sizeof(*rl));
/* Finally, setup the three split runs. */
rl->length = start - rl->vcn;
rl++;
rl->vcn = start;
rl->lcn = LCN_HOLE;
rl->length = length;
rl++;
delta = end - rl->vcn;
rl->vcn = end;
rl->lcn += delta;
rl->length -= delta;
ntfs_debug("Done (split both).");
return 0;
enomem_out:
ntfs_error(vol->sb, "Not enough memory to extend runlist buffer.");
return -ENOMEM;
}
#endif /* NTFS_RW */ #endif /* NTFS_RW */

View File

@ -94,6 +94,9 @@ extern int ntfs_mapping_pairs_build(const ntfs_volume *vol, s8 *dst,
extern int ntfs_rl_truncate_nolock(const ntfs_volume *vol, extern int ntfs_rl_truncate_nolock(const ntfs_volume *vol,
runlist *const runlist, const s64 new_length); runlist *const runlist, const s64 new_length);
int ntfs_rl_punch_nolock(const ntfs_volume *vol, runlist *const runlist,
const VCN start, const s64 length);
#endif /* NTFS_RW */ #endif /* NTFS_RW */
#endif /* _LINUX_NTFS_RUNLIST_H */ #endif /* _LINUX_NTFS_RUNLIST_H */