udp: keep the sk_receive_queue held when splicing
On packet reception, when we are forced to splice the sk_receive_queue, we can keep the related lock held, so that we can avoid re-acquiring it, if fwd memory scheduling is required. v1 -> v2: the rx_queue_lock_held param in udp_rmem_release() is now a bool Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
2276f58ac5
commit
6dfb4367cd
|
@ -1164,7 +1164,8 @@ out:
|
|||
}
|
||||
|
||||
/* fully reclaim rmem/fwd memory allocated for skb */
|
||||
static void udp_rmem_release(struct sock *sk, int size, int partial)
|
||||
static void udp_rmem_release(struct sock *sk, int size, int partial,
|
||||
bool rx_queue_lock_held)
|
||||
{
|
||||
struct udp_sock *up = udp_sk(sk);
|
||||
struct sk_buff_head *sk_queue;
|
||||
|
@ -1181,9 +1182,13 @@ static void udp_rmem_release(struct sock *sk, int size, int partial)
|
|||
}
|
||||
up->forward_deficit = 0;
|
||||
|
||||
/* acquire the sk_receive_queue for fwd allocated memory scheduling */
|
||||
/* acquire the sk_receive_queue for fwd allocated memory scheduling,
|
||||
* if the called don't held it already
|
||||
*/
|
||||
sk_queue = &sk->sk_receive_queue;
|
||||
spin_lock(&sk_queue->lock);
|
||||
if (!rx_queue_lock_held)
|
||||
spin_lock(&sk_queue->lock);
|
||||
|
||||
|
||||
sk->sk_forward_alloc += size;
|
||||
amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
|
||||
|
@ -1197,7 +1202,8 @@ static void udp_rmem_release(struct sock *sk, int size, int partial)
|
|||
/* this can save us from acquiring the rx queue lock on next receive */
|
||||
skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
|
||||
|
||||
spin_unlock(&sk_queue->lock);
|
||||
if (!rx_queue_lock_held)
|
||||
spin_unlock(&sk_queue->lock);
|
||||
}
|
||||
|
||||
/* Note: called with reader_queue.lock held.
|
||||
|
@ -1207,10 +1213,16 @@ static void udp_rmem_release(struct sock *sk, int size, int partial)
|
|||
*/
|
||||
void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
udp_rmem_release(sk, skb->dev_scratch, 1);
|
||||
udp_rmem_release(sk, skb->dev_scratch, 1, false);
|
||||
}
|
||||
EXPORT_SYMBOL(udp_skb_destructor);
|
||||
|
||||
/* as above, but the caller held the rx queue lock, too */
|
||||
void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
udp_rmem_release(sk, skb->dev_scratch, 1, true);
|
||||
}
|
||||
|
||||
/* Idea of busylocks is to let producers grab an extra spinlock
|
||||
* to relieve pressure on the receive_queue spinlock shared by consumer.
|
||||
* Under flood, this means that only one producer can be in line
|
||||
|
@ -1325,7 +1337,7 @@ void udp_destruct_sock(struct sock *sk)
|
|||
total += skb->truesize;
|
||||
kfree_skb(skb);
|
||||
}
|
||||
udp_rmem_release(sk, total, 0);
|
||||
udp_rmem_release(sk, total, 0, true);
|
||||
|
||||
inet_sock_destruct(sk);
|
||||
}
|
||||
|
@ -1397,7 +1409,7 @@ static int first_packet_length(struct sock *sk)
|
|||
}
|
||||
res = skb ? skb->len : -1;
|
||||
if (total)
|
||||
udp_rmem_release(sk, total, 1);
|
||||
udp_rmem_release(sk, total, 1, false);
|
||||
spin_unlock_bh(&rcvq->lock);
|
||||
return res;
|
||||
}
|
||||
|
@ -1471,16 +1483,20 @@ struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
|
|||
goto busy_check;
|
||||
}
|
||||
|
||||
/* refill the reader queue and walk it again */
|
||||
/* refill the reader queue and walk it again
|
||||
* keep both queues locked to avoid re-acquiring
|
||||
* the sk_receive_queue lock if fwd memory scheduling
|
||||
* is needed.
|
||||
*/
|
||||
_off = *off;
|
||||
spin_lock(&sk_queue->lock);
|
||||
skb_queue_splice_tail_init(sk_queue, queue);
|
||||
spin_unlock(&sk_queue->lock);
|
||||
|
||||
skb = __skb_try_recv_from_queue(sk, queue, flags,
|
||||
udp_skb_destructor,
|
||||
udp_skb_dtor_locked,
|
||||
peeked, &_off, err,
|
||||
&last);
|
||||
spin_unlock(&sk_queue->lock);
|
||||
spin_unlock_bh(&queue->lock);
|
||||
if (skb) {
|
||||
*off = _off;
|
||||
|
|
Loading…
Reference in New Issue