Merge back cpufreq material for v4.16.

This commit is contained in:
Rafael J. Wysocki 2017-12-21 01:56:49 +01:00
commit 6b3429449e
14 changed files with 896 additions and 84 deletions

View File

@ -14,3 +14,22 @@ following property before the previous one:
Example:
compatible = "marvell,armada-3720-db", "marvell,armada3720", "marvell,armada3710";
Power management
----------------
For power management (particularly DVFS and AVS), the North Bridge
Power Management component is needed:
Required properties:
- compatible : should contain "marvell,armada-3700-nb-pm", "syscon";
- reg : the register start and length for the North Bridge
Power Management
Example:
nb_pm: syscon@14000 {
compatible = "marvell,armada-3700-nb-pm", "syscon";
reg = <0x14000 0x60>;
}

View File

@ -0,0 +1,63 @@
Texas Instruments OMAP compatible OPP supply description
OMAP5, DRA7, and AM57 family of SoCs have Class0 AVS eFuse registers which
contain data that can be used to adjust voltages programmed for some of their
supplies for more efficient operation. This binding provides the information
needed to read these values and use them to program the main regulator during
an OPP transitions.
Also, some supplies may have an associated vbb-supply which is an Adaptive Body
Bias regulator which much be transitioned in a specific sequence with regards
to the vdd-supply and clk when making an OPP transition. By supplying two
regulators to the device that will undergo OPP transitions we can make use
of the multi regulator binding that is part of the OPP core described here [1]
to describe both regulators needed by the platform.
[1] Documentation/devicetree/bindings/opp/opp.txt
Required Properties for Device Node:
- vdd-supply: phandle to regulator controlling VDD supply
- vbb-supply: phandle to regulator controlling Body Bias supply
(Usually Adaptive Body Bias regulator)
Required Properties for opp-supply node:
- compatible: Should be one of:
"ti,omap-opp-supply" - basic OPP supply controlling VDD and VBB
"ti,omap5-opp-supply" - OMAP5+ optimized voltages in efuse(class0)VDD
along with VBB
"ti,omap5-core-opp-supply" - OMAP5+ optimized voltages in efuse(class0) VDD
but no VBB.
- reg: Address and length of the efuse register set for the device (mandatory
only for "ti,omap5-opp-supply")
- ti,efuse-settings: An array of u32 tuple items providing information about
optimized efuse configuration. Each item consists of the following:
volt: voltage in uV - reference voltage (OPP voltage)
efuse_offseet: efuse offset from reg where the optimized voltage is stored.
- ti,absolute-max-voltage-uv: absolute maximum voltage for the OPP supply.
Example:
/* Device Node (CPU) */
cpus {
cpu0: cpu@0 {
device_type = "cpu";
...
vdd-supply = <&vcc>;
vbb-supply = <&abb_mpu>;
};
};
/* OMAP OPP Supply with Class0 registers */
opp_supply_mpu: opp_supply@4a003b20 {
compatible = "ti,omap5-opp-supply";
reg = <0x4a003b20 0x8>;
ti,efuse-settings = <
/* uV offset */
1060000 0x0
1160000 0x4
1210000 0x8
>;
ti,absolute-max-voltage-uv = <1500000>;
};

View File

@ -1583,6 +1583,7 @@ F: arch/arm/boot/dts/kirkwood*
F: arch/arm/configs/mvebu_*_defconfig
F: arch/arm/mach-mvebu/
F: arch/arm64/boot/dts/marvell/armada*
F: drivers/cpufreq/armada-37xx-cpufreq.c
F: drivers/cpufreq/mvebu-cpufreq.c
F: drivers/irqchip/irq-armada-370-xp.c
F: drivers/irqchip/irq-mvebu-*

View File

@ -2,6 +2,29 @@
# ARM CPU Frequency scaling drivers
#
config ACPI_CPPC_CPUFREQ
tristate "CPUFreq driver based on the ACPI CPPC spec"
depends on ACPI_PROCESSOR
select ACPI_CPPC_LIB
help
This adds a CPUFreq driver which uses CPPC methods
as described in the ACPIv5.1 spec. CPPC stands for
Collaborative Processor Performance Controls. It
is based on an abstract continuous scale of CPU
performance values which allows the remote power
processor to flexibly optimize for power and
performance. CPPC relies on power management firmware
support for its operation.
If in doubt, say N.
config ARM_ARMADA_37XX_CPUFREQ
tristate "Armada 37xx CPUFreq support"
depends on ARCH_MVEBU
help
This adds the CPUFreq driver support for Marvell Armada 37xx SoCs.
The Armada 37xx PMU supports 4 frequency and VDD levels.
# big LITTLE core layer and glue drivers
config ARM_BIG_LITTLE_CPUFREQ
tristate "Generic ARM big LITTLE CPUfreq driver"
@ -12,6 +35,30 @@ config ARM_BIG_LITTLE_CPUFREQ
help
This enables the Generic CPUfreq driver for ARM big.LITTLE platforms.
config ARM_DT_BL_CPUFREQ
tristate "Generic probing via DT for ARM big LITTLE CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && OF
help
This enables probing via DT for Generic CPUfreq driver for ARM
big.LITTLE platform. This gets frequency tables from DT.
config ARM_SCPI_CPUFREQ
tristate "SCPI based CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && ARM_SCPI_PROTOCOL && COMMON_CLK_SCPI
help
This adds the CPUfreq driver support for ARM big.LITTLE platforms
using SCPI protocol for CPU power management.
This driver uses SCPI Message Protocol driver to interact with the
firmware providing the CPU DVFS functionality.
config ARM_VEXPRESS_SPC_CPUFREQ
tristate "Versatile Express SPC based CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && ARCH_VEXPRESS_SPC
help
This add the CPUfreq driver support for Versatile Express
big.LITTLE platforms using SPC for power management.
config ARM_BRCMSTB_AVS_CPUFREQ
tristate "Broadcom STB AVS CPUfreq driver"
depends on ARCH_BRCMSTB || COMPILE_TEST
@ -33,20 +80,6 @@ config ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
If in doubt, say N.
config ARM_DT_BL_CPUFREQ
tristate "Generic probing via DT for ARM big LITTLE CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && OF
help
This enables probing via DT for Generic CPUfreq driver for ARM
big.LITTLE platform. This gets frequency tables from DT.
config ARM_VEXPRESS_SPC_CPUFREQ
tristate "Versatile Express SPC based CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && ARCH_VEXPRESS_SPC
help
This add the CPUfreq driver support for Versatile Express
big.LITTLE platforms using SPC for power management.
config ARM_EXYNOS5440_CPUFREQ
tristate "SAMSUNG EXYNOS5440"
depends on SOC_EXYNOS5440
@ -205,16 +238,6 @@ config ARM_SA1100_CPUFREQ
config ARM_SA1110_CPUFREQ
bool
config ARM_SCPI_CPUFREQ
tristate "SCPI based CPUfreq driver"
depends on ARM_BIG_LITTLE_CPUFREQ && ARM_SCPI_PROTOCOL && COMMON_CLK_SCPI
help
This adds the CPUfreq driver support for ARM big.LITTLE platforms
using SCPI protocol for CPU power management.
This driver uses SCPI Message Protocol driver to interact with the
firmware providing the CPU DVFS functionality.
config ARM_SPEAR_CPUFREQ
bool "SPEAr CPUFreq support"
depends on PLAT_SPEAR
@ -275,20 +298,3 @@ config ARM_PXA2xx_CPUFREQ
This add the CPUFreq driver support for Intel PXA2xx SOCs.
If in doubt, say N.
config ACPI_CPPC_CPUFREQ
tristate "CPUFreq driver based on the ACPI CPPC spec"
depends on ACPI_PROCESSOR
select ACPI_CPPC_LIB
default n
help
This adds a CPUFreq driver which uses CPPC methods
as described in the ACPIv5.1 spec. CPPC stands for
Collaborative Processor Performance Controls. It
is based on an abstract continuous scale of CPU
performance values which allows the remote power
processor to flexibly optimize for power and
performance. CPPC relies on power management firmware
support for its operation.
If in doubt, say N.

View File

@ -52,23 +52,26 @@ obj-$(CONFIG_ARM_BIG_LITTLE_CPUFREQ) += arm_big_little.o
# LITTLE drivers, so that it is probed last.
obj-$(CONFIG_ARM_DT_BL_CPUFREQ) += arm_big_little_dt.o
obj-$(CONFIG_ARM_ARMADA_37XX_CPUFREQ) += armada-37xx-cpufreq.o
obj-$(CONFIG_ARM_BRCMSTB_AVS_CPUFREQ) += brcmstb-avs-cpufreq.o
obj-$(CONFIG_ACPI_CPPC_CPUFREQ) += cppc_cpufreq.o
obj-$(CONFIG_ARCH_DAVINCI) += davinci-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS5440_CPUFREQ) += exynos5440-cpufreq.o
obj-$(CONFIG_ARM_HIGHBANK_CPUFREQ) += highbank-cpufreq.o
obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
obj-$(CONFIG_ARM_KIRKWOOD_CPUFREQ) += kirkwood-cpufreq.o
obj-$(CONFIG_ARM_MEDIATEK_CPUFREQ) += mediatek-cpufreq.o
obj-$(CONFIG_MACH_MVEBU_V7) += mvebu-cpufreq.o
obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o
obj-$(CONFIG_ARM_PXA2xx_CPUFREQ) += pxa2xx-cpufreq.o
obj-$(CONFIG_PXA3xx) += pxa3xx-cpufreq.o
obj-$(CONFIG_ARM_S3C24XX_CPUFREQ) += s3c24xx-cpufreq.o
obj-$(CONFIG_ARM_S3C24XX_CPUFREQ_DEBUGFS) += s3c24xx-cpufreq-debugfs.o
obj-$(CONFIG_ARM_S3C2410_CPUFREQ) += s3c2410-cpufreq.o
obj-$(CONFIG_ARM_S3C2412_CPUFREQ) += s3c2412-cpufreq.o
obj-$(CONFIG_ARM_S3C2416_CPUFREQ) += s3c2416-cpufreq.o
obj-$(CONFIG_ARM_S3C2440_CPUFREQ) += s3c2440-cpufreq.o
obj-$(CONFIG_ARM_S3C64XX_CPUFREQ) += s3c64xx-cpufreq.o
obj-$(CONFIG_ARM_S3C24XX_CPUFREQ) += s3c24xx-cpufreq.o
obj-$(CONFIG_ARM_S3C24XX_CPUFREQ_DEBUGFS) += s3c24xx-cpufreq-debugfs.o
obj-$(CONFIG_ARM_S5PV210_CPUFREQ) += s5pv210-cpufreq.o
obj-$(CONFIG_ARM_SA1100_CPUFREQ) += sa1100-cpufreq.o
obj-$(CONFIG_ARM_SA1110_CPUFREQ) += sa1110-cpufreq.o
@ -81,8 +84,6 @@ obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o
obj-$(CONFIG_ARM_TEGRA186_CPUFREQ) += tegra186-cpufreq.o
obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-cpufreq.o
obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o
obj-$(CONFIG_ACPI_CPPC_CPUFREQ) += cppc_cpufreq.o
obj-$(CONFIG_MACH_MVEBU_V7) += mvebu-cpufreq.o
##################################################################################

View File

@ -0,0 +1,241 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* CPU frequency scaling support for Armada 37xx platform.
*
* Copyright (C) 2017 Marvell
*
* Gregory CLEMENT <gregory.clement@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regmap.h>
#include <linux/slab.h>
/* Power management in North Bridge register set */
#define ARMADA_37XX_NB_L0L1 0x18
#define ARMADA_37XX_NB_L2L3 0x1C
#define ARMADA_37XX_NB_TBG_DIV_OFF 13
#define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
#define ARMADA_37XX_NB_CLK_SEL_OFF 11
#define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
#define ARMADA_37XX_NB_CLK_SEL_TBG 0x1
#define ARMADA_37XX_NB_TBG_SEL_OFF 9
#define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
#define ARMADA_37XX_NB_VDD_SEL_OFF 6
#define ARMADA_37XX_NB_VDD_SEL_MASK 0x3
#define ARMADA_37XX_NB_CONFIG_SHIFT 16
#define ARMADA_37XX_NB_DYN_MOD 0x24
#define ARMADA_37XX_NB_CLK_SEL_EN BIT(26)
#define ARMADA_37XX_NB_TBG_EN BIT(28)
#define ARMADA_37XX_NB_DIV_EN BIT(29)
#define ARMADA_37XX_NB_VDD_EN BIT(30)
#define ARMADA_37XX_NB_DFS_EN BIT(31)
#define ARMADA_37XX_NB_CPU_LOAD 0x30
#define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
#define ARMADA_37XX_DVFS_LOAD_0 0
#define ARMADA_37XX_DVFS_LOAD_1 1
#define ARMADA_37XX_DVFS_LOAD_2 2
#define ARMADA_37XX_DVFS_LOAD_3 3
/*
* On Armada 37xx the Power management manages 4 level of CPU load,
* each level can be associated with a CPU clock source, a CPU
* divider, a VDD level, etc...
*/
#define LOAD_LEVEL_NR 4
struct armada_37xx_dvfs {
u32 cpu_freq_max;
u8 divider[LOAD_LEVEL_NR];
};
static struct armada_37xx_dvfs armada_37xx_dvfs[] = {
{.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} },
{.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} },
{.cpu_freq_max = 800*1000*1000, .divider = {1, 2, 3, 4} },
{.cpu_freq_max = 600*1000*1000, .divider = {2, 4, 5, 6} },
};
static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq)
{
int i;
for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) {
if (freq == armada_37xx_dvfs[i].cpu_freq_max)
return &armada_37xx_dvfs[i];
}
pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000);
return NULL;
}
/*
* Setup the four level managed by the hardware. Once the four level
* will be configured then the DVFS will be enabled.
*/
static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base,
struct clk *clk, u8 *divider)
{
int load_lvl;
struct clk *parent;
for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) {
unsigned int reg, mask, val, offset = 0;
if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1)
reg = ARMADA_37XX_NB_L0L1;
else
reg = ARMADA_37XX_NB_L2L3;
if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 ||
load_lvl == ARMADA_37XX_DVFS_LOAD_2)
offset += ARMADA_37XX_NB_CONFIG_SHIFT;
/* Set cpu clock source, for all the level we use TBG */
val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF;
mask = (ARMADA_37XX_NB_CLK_SEL_MASK
<< ARMADA_37XX_NB_CLK_SEL_OFF);
/*
* Set cpu divider based on the pre-computed array in
* order to have balanced step.
*/
val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF;
mask |= (ARMADA_37XX_NB_TBG_DIV_MASK
<< ARMADA_37XX_NB_TBG_DIV_OFF);
/* Set VDD divider which is actually the load level. */
val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF;
mask |= (ARMADA_37XX_NB_VDD_SEL_MASK
<< ARMADA_37XX_NB_VDD_SEL_OFF);
val <<= offset;
mask <<= offset;
regmap_update_bits(base, reg, mask, val);
}
/*
* Set cpu clock source, for all the level we keep the same
* clock source that the one already configured. For this one
* we need to use the clock framework
*/
parent = clk_get_parent(clk);
clk_set_parent(clk, parent);
}
static void __init armada37xx_cpufreq_disable_dvfs(struct regmap *base)
{
unsigned int reg = ARMADA_37XX_NB_DYN_MOD,
mask = ARMADA_37XX_NB_DFS_EN;
regmap_update_bits(base, reg, mask, 0);
}
static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base)
{
unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD,
mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
/* Start with the highest load (0) */
val = ARMADA_37XX_DVFS_LOAD_0;
regmap_update_bits(base, reg, mask, val);
/* Now enable DVFS for the CPUs */
reg = ARMADA_37XX_NB_DYN_MOD;
mask = ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN |
ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN |
ARMADA_37XX_NB_DFS_EN;
regmap_update_bits(base, reg, mask, mask);
}
static int __init armada37xx_cpufreq_driver_init(void)
{
struct armada_37xx_dvfs *dvfs;
struct platform_device *pdev;
unsigned int cur_frequency;
struct regmap *nb_pm_base;
struct device *cpu_dev;
int load_lvl, ret;
struct clk *clk;
nb_pm_base =
syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm");
if (IS_ERR(nb_pm_base))
return -ENODEV;
/* Before doing any configuration on the DVFS first, disable it */
armada37xx_cpufreq_disable_dvfs(nb_pm_base);
/*
* On CPU 0 register the operating points supported (which are
* the nominal CPU frequency and full integer divisions of
* it).
*/
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
dev_err(cpu_dev, "Cannot get CPU\n");
return -ENODEV;
}
clk = clk_get(cpu_dev, 0);
if (IS_ERR(clk)) {
dev_err(cpu_dev, "Cannot get clock for CPU0\n");
return PTR_ERR(clk);
}
/* Get nominal (current) CPU frequency */
cur_frequency = clk_get_rate(clk);
if (!cur_frequency) {
dev_err(cpu_dev, "Failed to get clock rate for CPU\n");
return -EINVAL;
}
dvfs = armada_37xx_cpu_freq_info_get(cur_frequency);
if (!dvfs)
return -EINVAL;
armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider);
for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR;
load_lvl++) {
unsigned long freq = cur_frequency / dvfs->divider[load_lvl];
ret = dev_pm_opp_add(cpu_dev, freq, 0);
if (ret) {
/* clean-up the already added opp before leaving */
while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) {
freq = cur_frequency / dvfs->divider[load_lvl];
dev_pm_opp_remove(cpu_dev, freq);
}
return ret;
}
}
/* Now that everything is setup, enable the DVFS at hardware level */
armada37xx_cpufreq_enable_dvfs(nb_pm_base);
pdev = platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
return PTR_ERR_OR_ZERO(pdev);
}
/* late_initcall, to guarantee the driver is loaded after A37xx clock driver */
late_initcall(armada37xx_cpufreq_driver_init);
MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
MODULE_DESCRIPTION("Armada 37xx cpufreq driver");
MODULE_LICENSE("GPL");

View File

@ -108,6 +108,14 @@ static const struct of_device_id blacklist[] __initconst = {
{ .compatible = "marvell,armadaxp", },
{ .compatible = "mediatek,mt2701", },
{ .compatible = "mediatek,mt2712", },
{ .compatible = "mediatek,mt7622", },
{ .compatible = "mediatek,mt7623", },
{ .compatible = "mediatek,mt817x", },
{ .compatible = "mediatek,mt8173", },
{ .compatible = "mediatek,mt8176", },
{ .compatible = "nvidia,tegra124", },
{ .compatible = "st,stih407", },

View File

@ -601,19 +601,18 @@ static struct cpufreq_governor *find_governor(const char *str_governor)
/**
* cpufreq_parse_governor - parse a governor string
*/
static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
struct cpufreq_governor **governor)
static int cpufreq_parse_governor(char *str_governor,
struct cpufreq_policy *policy)
{
int err = -EINVAL;
if (cpufreq_driver->setpolicy) {
if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
*policy = CPUFREQ_POLICY_PERFORMANCE;
err = 0;
} else if (!strncasecmp(str_governor, "powersave",
CPUFREQ_NAME_LEN)) {
*policy = CPUFREQ_POLICY_POWERSAVE;
err = 0;
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
return 0;
}
if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
policy->policy = CPUFREQ_POLICY_POWERSAVE;
return 0;
}
} else {
struct cpufreq_governor *t;
@ -621,26 +620,31 @@ static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
mutex_lock(&cpufreq_governor_mutex);
t = find_governor(str_governor);
if (t == NULL) {
if (!t) {
int ret;
mutex_unlock(&cpufreq_governor_mutex);
ret = request_module("cpufreq_%s", str_governor);
if (ret)
return -EINVAL;
mutex_lock(&cpufreq_governor_mutex);
if (ret == 0)
t = find_governor(str_governor);
}
if (t != NULL) {
*governor = t;
err = 0;
t = find_governor(str_governor);
}
if (t && !try_module_get(t->owner))
t = NULL;
mutex_unlock(&cpufreq_governor_mutex);
if (t) {
policy->governor = t;
return 0;
}
}
return err;
return -EINVAL;
}
/**
@ -760,11 +764,14 @@ static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
if (ret != 1)
return -EINVAL;
if (cpufreq_parse_governor(str_governor, &new_policy.policy,
&new_policy.governor))
if (cpufreq_parse_governor(str_governor, &new_policy))
return -EINVAL;
ret = cpufreq_set_policy(policy, &new_policy);
if (new_policy.governor)
module_put(new_policy.governor->owner);
return ret ? ret : count;
}
@ -1044,8 +1051,7 @@ static int cpufreq_init_policy(struct cpufreq_policy *policy)
if (policy->last_policy)
new_policy.policy = policy->last_policy;
else
cpufreq_parse_governor(gov->name, &new_policy.policy,
NULL);
cpufreq_parse_governor(gov->name, &new_policy);
}
/* set default policy */
return cpufreq_set_policy(policy, &new_policy);
@ -2160,7 +2166,6 @@ void cpufreq_unregister_governor(struct cpufreq_governor *governor)
mutex_lock(&cpufreq_governor_mutex);
list_del(&governor->governor_list);
mutex_unlock(&cpufreq_governor_mutex);
return;
}
EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);

View File

@ -894,7 +894,7 @@ static int longhaul_cpu_init(struct cpufreq_policy *policy)
if ((longhaul_version != TYPE_LONGHAUL_V1) && (scale_voltage != 0))
longhaul_setup_voltagescaling();
policy->cpuinfo.transition_latency = 200000; /* nsec */
policy->transition_delay_us = 200000; /* usec */
return cpufreq_table_validate_and_show(policy, longhaul_table);
}

View File

@ -574,6 +574,7 @@ static struct platform_driver mtk_cpufreq_platdrv = {
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
{ .compatible = "mediatek,mt2701", },
{ .compatible = "mediatek,mt2712", },
{ .compatible = "mediatek,mt7622", },
{ .compatible = "mediatek,mt7623", },
{ .compatible = "mediatek,mt817x", },

View File

@ -76,12 +76,6 @@ static int __init armada_xp_pmsu_cpufreq_init(void)
return PTR_ERR(clk);
}
/*
* In case of a failure of dev_pm_opp_add(), we don't
* bother with cleaning up the registered OPP (there's
* no function to do so), and simply cancel the
* registration of the cpufreq device.
*/
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk), 0);
if (ret) {
clk_put(clk);
@ -91,7 +85,8 @@ static int __init armada_xp_pmsu_cpufreq_init(void)
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk) / 2, 0);
if (ret) {
clk_put(clk);
return ret;
dev_err(cpu_dev, "Failed to register OPPs\n");
goto opp_register_failed;
}
ret = dev_pm_opp_set_sharing_cpus(cpu_dev,
@ -99,9 +94,16 @@ static int __init armada_xp_pmsu_cpufreq_init(void)
if (ret)
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
clk_put(clk);
}
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
return 0;
opp_register_failed:
/* As registering has failed remove all the opp for all cpus */
dev_pm_opp_cpumask_remove_table(cpu_possible_mask);
return ret;
}
device_initcall(armada_xp_pmsu_cpufreq_init);

View File

@ -17,6 +17,7 @@
#include <linux/cpu.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_platform.h>
@ -50,6 +51,7 @@ struct ti_cpufreq_soc_data {
unsigned long efuse_mask;
unsigned long efuse_shift;
unsigned long rev_offset;
bool multi_regulator;
};
struct ti_cpufreq_data {
@ -57,6 +59,7 @@ struct ti_cpufreq_data {
struct device_node *opp_node;
struct regmap *syscon;
const struct ti_cpufreq_soc_data *soc_data;
struct opp_table *opp_table;
};
static unsigned long amx3_efuse_xlate(struct ti_cpufreq_data *opp_data,
@ -95,6 +98,7 @@ static struct ti_cpufreq_soc_data am3x_soc_data = {
.efuse_offset = 0x07fc,
.efuse_mask = 0x1fff,
.rev_offset = 0x600,
.multi_regulator = false,
};
static struct ti_cpufreq_soc_data am4x_soc_data = {
@ -103,6 +107,7 @@ static struct ti_cpufreq_soc_data am4x_soc_data = {
.efuse_offset = 0x0610,
.efuse_mask = 0x3f,
.rev_offset = 0x600,
.multi_regulator = false,
};
static struct ti_cpufreq_soc_data dra7_soc_data = {
@ -111,6 +116,7 @@ static struct ti_cpufreq_soc_data dra7_soc_data = {
.efuse_mask = 0xf80000,
.efuse_shift = 19,
.rev_offset = 0x204,
.multi_regulator = true,
};
/**
@ -195,12 +201,14 @@ static const struct of_device_id ti_cpufreq_of_match[] = {
{},
};
static int ti_cpufreq_init(void)
static int ti_cpufreq_probe(struct platform_device *pdev)
{
u32 version[VERSION_COUNT];
struct device_node *np;
const struct of_device_id *match;
struct opp_table *ti_opp_table;
struct ti_cpufreq_data *opp_data;
const char * const reg_names[] = {"vdd", "vbb"};
int ret;
np = of_find_node_by_path("/");
@ -247,16 +255,29 @@ static int ti_cpufreq_init(void)
if (ret)
goto fail_put_node;
ret = PTR_ERR_OR_ZERO(dev_pm_opp_set_supported_hw(opp_data->cpu_dev,
version, VERSION_COUNT));
if (ret) {
ti_opp_table = dev_pm_opp_set_supported_hw(opp_data->cpu_dev,
version, VERSION_COUNT);
if (IS_ERR(ti_opp_table)) {
dev_err(opp_data->cpu_dev,
"Failed to set supported hardware\n");
ret = PTR_ERR(ti_opp_table);
goto fail_put_node;
}
of_node_put(opp_data->opp_node);
opp_data->opp_table = ti_opp_table;
if (opp_data->soc_data->multi_regulator) {
ti_opp_table = dev_pm_opp_set_regulators(opp_data->cpu_dev,
reg_names,
ARRAY_SIZE(reg_names));
if (IS_ERR(ti_opp_table)) {
dev_pm_opp_put_supported_hw(opp_data->opp_table);
ret = PTR_ERR(ti_opp_table);
goto fail_put_node;
}
}
of_node_put(opp_data->opp_node);
register_cpufreq_dt:
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
@ -269,4 +290,22 @@ free_opp_data:
return ret;
}
device_initcall(ti_cpufreq_init);
static int ti_cpufreq_init(void)
{
platform_device_register_simple("ti-cpufreq", -1, NULL, 0);
return 0;
}
module_init(ti_cpufreq_init);
static struct platform_driver ti_cpufreq_driver = {
.probe = ti_cpufreq_probe,
.driver = {
.name = "ti-cpufreq",
},
};
module_platform_driver(ti_cpufreq_driver);
MODULE_DESCRIPTION("TI CPUFreq/OPP hw-supported driver");
MODULE_AUTHOR("Dave Gerlach <d-gerlach@ti.com>");
MODULE_LICENSE("GPL v2");

View File

@ -2,3 +2,4 @@ ccflags-$(CONFIG_DEBUG_DRIVER) := -DDEBUG
obj-y += core.o cpu.o
obj-$(CONFIG_OF) += of.o
obj-$(CONFIG_DEBUG_FS) += debugfs.o
obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-opp-supply.o

425
drivers/opp/ti-opp-supply.c Normal file
View File

@ -0,0 +1,425 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Texas Instruments Incorporated - http://www.ti.com/
* Nishanth Menon <nm@ti.com>
* Dave Gerlach <d-gerlach@ti.com>
*
* TI OPP supply driver that provides override into the regulator control
* for generic opp core to handle devices with ABB regulator and/or
* SmartReflex Class0.
*/
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/**
* struct ti_opp_supply_optimum_voltage_table - optimized voltage table
* @reference_uv: reference voltage (usually Nominal voltage)
* @optimized_uv: Optimized voltage from efuse
*/
struct ti_opp_supply_optimum_voltage_table {
unsigned int reference_uv;
unsigned int optimized_uv;
};
/**
* struct ti_opp_supply_data - OMAP specific opp supply data
* @vdd_table: Optimized voltage mapping table
* @num_vdd_table: number of entries in vdd_table
* @vdd_absolute_max_voltage_uv: absolute maximum voltage in UV for the supply
*/
struct ti_opp_supply_data {
struct ti_opp_supply_optimum_voltage_table *vdd_table;
u32 num_vdd_table;
u32 vdd_absolute_max_voltage_uv;
};
static struct ti_opp_supply_data opp_data;
/**
* struct ti_opp_supply_of_data - device tree match data
* @flags: specific type of opp supply
* @efuse_voltage_mask: mask required for efuse register representing voltage
* @efuse_voltage_uv: Are the efuse entries in micro-volts? if not, assume
* milli-volts.
*/
struct ti_opp_supply_of_data {
#define OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE BIT(1)
#define OPPDM_HAS_NO_ABB BIT(2)
const u8 flags;
const u32 efuse_voltage_mask;
const bool efuse_voltage_uv;
};
/**
* _store_optimized_voltages() - store optimized voltages
* @dev: ti opp supply device for which we need to store info
* @data: data specific to the device
*
* Picks up efuse based optimized voltages for VDD unique per device and
* stores it in internal data structure for use during transition requests.
*
* Return: If successful, 0, else appropriate error value.
*/
static int _store_optimized_voltages(struct device *dev,
struct ti_opp_supply_data *data)
{
void __iomem *base;
struct property *prop;
struct resource *res;
const __be32 *val;
int proplen, i;
int ret = 0;
struct ti_opp_supply_optimum_voltage_table *table;
const struct ti_opp_supply_of_data *of_data = dev_get_drvdata(dev);
/* pick up Efuse based voltages */
res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "Unable to get IO resource\n");
ret = -ENODEV;
goto out_map;
}
base = ioremap_nocache(res->start, resource_size(res));
if (!base) {
dev_err(dev, "Unable to map Efuse registers\n");
ret = -ENOMEM;
goto out_map;
}
/* Fetch efuse-settings. */
prop = of_find_property(dev->of_node, "ti,efuse-settings", NULL);
if (!prop) {
dev_err(dev, "No 'ti,efuse-settings' property found\n");
ret = -EINVAL;
goto out;
}
proplen = prop->length / sizeof(int);
data->num_vdd_table = proplen / 2;
/* Verify for corrupted OPP entries in dt */
if (data->num_vdd_table * 2 * sizeof(int) != prop->length) {
dev_err(dev, "Invalid 'ti,efuse-settings'\n");
ret = -EINVAL;
goto out;
}
ret = of_property_read_u32(dev->of_node, "ti,absolute-max-voltage-uv",
&data->vdd_absolute_max_voltage_uv);
if (ret) {
dev_err(dev, "ti,absolute-max-voltage-uv is missing\n");
ret = -EINVAL;
goto out;
}
table = kzalloc(sizeof(*data->vdd_table) *
data->num_vdd_table, GFP_KERNEL);
if (!table) {
ret = -ENOMEM;
goto out;
}
data->vdd_table = table;
val = prop->value;
for (i = 0; i < data->num_vdd_table; i++, table++) {
u32 efuse_offset;
u32 tmp;
table->reference_uv = be32_to_cpup(val++);
efuse_offset = be32_to_cpup(val++);
tmp = readl(base + efuse_offset);
tmp &= of_data->efuse_voltage_mask;
tmp >>= __ffs(of_data->efuse_voltage_mask);
table->optimized_uv = of_data->efuse_voltage_uv ? tmp :
tmp * 1000;
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d vset=%d\n",
i, efuse_offset, table->reference_uv,
table->optimized_uv);
/*
* Some older samples might not have optimized efuse
* Use reference voltage for those - just add debug message
* for them.
*/
if (!table->optimized_uv) {
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d:vset0\n",
i, efuse_offset, table->reference_uv);
table->optimized_uv = table->reference_uv;
}
}
out:
iounmap(base);
out_map:
return ret;
}
/**
* _free_optimized_voltages() - free resources for optvoltages
* @dev: device for which we need to free info
* @data: data specific to the device
*/
static void _free_optimized_voltages(struct device *dev,
struct ti_opp_supply_data *data)
{
kfree(data->vdd_table);
data->vdd_table = NULL;
data->num_vdd_table = 0;
}
/**
* _get_optimal_vdd_voltage() - Finds optimal voltage for the supply
* @dev: device for which we need to find info
* @data: data specific to the device
* @reference_uv: reference voltage (OPP voltage) for which we need value
*
* Return: if a match is found, return optimized voltage, else return
* reference_uv, also return reference_uv if no optimization is needed.
*/
static int _get_optimal_vdd_voltage(struct device *dev,
struct ti_opp_supply_data *data,
int reference_uv)
{
int i;
struct ti_opp_supply_optimum_voltage_table *table;
if (!data->num_vdd_table)
return reference_uv;
table = data->vdd_table;
if (!table)
return -EINVAL;
/* Find a exact match - this list is usually very small */
for (i = 0; i < data->num_vdd_table; i++, table++)
if (table->reference_uv == reference_uv)
return table->optimized_uv;
/* IF things are screwed up, we'd make a mess on console.. ratelimit */
dev_err_ratelimited(dev, "%s: Failed optimized voltage match for %d\n",
__func__, reference_uv);
return reference_uv;
}
static int _opp_set_voltage(struct device *dev,
struct dev_pm_opp_supply *supply,
int new_target_uv, struct regulator *reg,
char *reg_name)
{
int ret;
unsigned long vdd_uv, uv_max;
if (new_target_uv)
vdd_uv = new_target_uv;
else
vdd_uv = supply->u_volt;
/*
* If we do have an absolute max voltage specified, then we should
* use that voltage instead to allow for cases where the voltage rails
* are ganged (example if we set the max for an opp as 1.12v, and
* the absolute max is 1.5v, for another rail to get 1.25v, it cannot
* be achieved if the regulator is constrainted to max of 1.12v, even
* if it can function at 1.25v
*/
if (opp_data.vdd_absolute_max_voltage_uv)
uv_max = opp_data.vdd_absolute_max_voltage_uv;
else
uv_max = supply->u_volt_max;
if (vdd_uv > uv_max ||
vdd_uv < supply->u_volt_min ||
supply->u_volt_min > uv_max) {
dev_warn(dev,
"Invalid range voltages [Min:%lu target:%lu Max:%lu]\n",
supply->u_volt_min, vdd_uv, uv_max);
return -EINVAL;
}
dev_dbg(dev, "%s scaling to %luuV[min %luuV max %luuV]\n", reg_name,
vdd_uv, supply->u_volt_min,
uv_max);
ret = regulator_set_voltage_triplet(reg,
supply->u_volt_min,
vdd_uv,
uv_max);
if (ret) {
dev_err(dev, "%s failed for %luuV[min %luuV max %luuV]\n",
reg_name, vdd_uv, supply->u_volt_min,
uv_max);
return ret;
}
return 0;
}
/**
* ti_opp_supply_set_opp() - do the opp supply transition
* @data: information on regulators and new and old opps provided by
* opp core to use in transition
*
* Return: If successful, 0, else appropriate error value.
*/
int ti_opp_supply_set_opp(struct dev_pm_set_opp_data *data)
{
struct dev_pm_opp_supply *old_supply_vdd = &data->old_opp.supplies[0];
struct dev_pm_opp_supply *old_supply_vbb = &data->old_opp.supplies[1];
struct dev_pm_opp_supply *new_supply_vdd = &data->new_opp.supplies[0];
struct dev_pm_opp_supply *new_supply_vbb = &data->new_opp.supplies[1];
struct device *dev = data->dev;
unsigned long old_freq = data->old_opp.rate, freq = data->new_opp.rate;
struct clk *clk = data->clk;
struct regulator *vdd_reg = data->regulators[0];
struct regulator *vbb_reg = data->regulators[1];
int vdd_uv;
int ret;
vdd_uv = _get_optimal_vdd_voltage(dev, &opp_data,
new_supply_vbb->u_volt);
/* Scaling up? Scale voltage before frequency */
if (freq > old_freq) {
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
"vdd");
if (ret)
goto restore_voltage;
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
goto restore_voltage;
}
/* Change frequency */
dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n",
__func__, old_freq, freq);
ret = clk_set_rate(clk, freq);
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
goto restore_voltage;
}
/* Scaling down? Scale voltage after frequency */
if (freq < old_freq) {
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
goto restore_freq;
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
"vdd");
if (ret)
goto restore_freq;
}
return 0;
restore_freq:
ret = clk_set_rate(clk, old_freq);
if (ret)
dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
__func__, old_freq);
restore_voltage:
/* This shouldn't harm even if the voltages weren't updated earlier */
if (old_supply_vdd->u_volt) {
ret = _opp_set_voltage(dev, old_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
return ret;
ret = _opp_set_voltage(dev, old_supply_vdd, 0, vdd_reg,
"vdd");
if (ret)
return ret;
}
return ret;
}
static const struct ti_opp_supply_of_data omap_generic_of_data = {
};
static const struct ti_opp_supply_of_data omap_omap5_of_data = {
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE,
.efuse_voltage_mask = 0xFFF,
.efuse_voltage_uv = false,
};
static const struct ti_opp_supply_of_data omap_omap5core_of_data = {
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE | OPPDM_HAS_NO_ABB,
.efuse_voltage_mask = 0xFFF,
.efuse_voltage_uv = false,
};
static const struct of_device_id ti_opp_supply_of_match[] = {
{.compatible = "ti,omap-opp-supply", .data = &omap_generic_of_data},
{.compatible = "ti,omap5-opp-supply", .data = &omap_omap5_of_data},
{.compatible = "ti,omap5-core-opp-supply",
.data = &omap_omap5core_of_data},
{},
};
MODULE_DEVICE_TABLE(of, ti_opp_supply_of_match);
static int ti_opp_supply_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *cpu_dev = get_cpu_device(0);
const struct of_device_id *match;
const struct ti_opp_supply_of_data *of_data;
int ret = 0;
match = of_match_device(ti_opp_supply_of_match, dev);
if (!match) {
/* We do not expect this to happen */
dev_err(dev, "%s: Unable to match device\n", __func__);
return -ENODEV;
}
if (!match->data) {
/* Again, unlikely.. but mistakes do happen */
dev_err(dev, "%s: Bad data in match\n", __func__);
return -EINVAL;
}
of_data = match->data;
dev_set_drvdata(dev, (void *)of_data);
/* If we need optimized voltage */
if (of_data->flags & OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE) {
ret = _store_optimized_voltages(dev, &opp_data);
if (ret)
return ret;
}
ret = PTR_ERR_OR_ZERO(dev_pm_opp_register_set_opp_helper(cpu_dev,
ti_opp_supply_set_opp));
if (ret)
_free_optimized_voltages(dev, &opp_data);
return ret;
}
static struct platform_driver ti_opp_supply_driver = {
.probe = ti_opp_supply_probe,
.driver = {
.name = "ti_opp_supply",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(ti_opp_supply_of_match),
},
};
module_platform_driver(ti_opp_supply_driver);
MODULE_DESCRIPTION("Texas Instruments OMAP OPP Supply driver");
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_LICENSE("GPL v2");