[PADLOCK] Move fast path work into aes_set_key and upper layer
Most of the work done aes_padlock can be done in aes_set_key. This means that we only have to do it once when the key changes rather than every time we perform an encryption or decryption. This patch also sets cra_alignmask to let the upper layer ensure that the buffers fed to us are aligned correctly. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
9547737799
commit
6789b2dc45
|
@ -49,6 +49,7 @@
|
|||
#include <linux/errno.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include "padlock.h"
|
||||
|
||||
|
@ -59,8 +60,12 @@
|
|||
#define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
|
||||
|
||||
struct aes_ctx {
|
||||
uint32_t e_data[AES_EXTENDED_KEY_SIZE+4];
|
||||
uint32_t d_data[AES_EXTENDED_KEY_SIZE+4];
|
||||
uint32_t e_data[AES_EXTENDED_KEY_SIZE];
|
||||
uint32_t d_data[AES_EXTENDED_KEY_SIZE];
|
||||
struct {
|
||||
struct cword encrypt;
|
||||
struct cword decrypt;
|
||||
} cword;
|
||||
uint32_t *E;
|
||||
uint32_t *D;
|
||||
int key_length;
|
||||
|
@ -280,10 +285,15 @@ aes_hw_extkey_available(uint8_t key_len)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static inline struct aes_ctx *aes_ctx(void *ctx)
|
||||
{
|
||||
return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
|
||||
{
|
||||
struct aes_ctx *ctx = ctx_arg;
|
||||
struct aes_ctx *ctx = aes_ctx(ctx_arg);
|
||||
uint32_t i, t, u, v, w;
|
||||
uint32_t P[AES_EXTENDED_KEY_SIZE];
|
||||
uint32_t rounds;
|
||||
|
@ -295,25 +305,36 @@ aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t
|
|||
|
||||
ctx->key_length = key_len;
|
||||
|
||||
/*
|
||||
* If the hardware is capable of generating the extended key
|
||||
* itself we must supply the plain key for both encryption
|
||||
* and decryption.
|
||||
*/
|
||||
ctx->E = ctx->e_data;
|
||||
ctx->D = ctx->d_data;
|
||||
|
||||
/* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */
|
||||
if ((int)(ctx->e_data) & 0x0F)
|
||||
ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0]));
|
||||
|
||||
if ((int)(ctx->d_data) & 0x0F)
|
||||
ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0]));
|
||||
ctx->D = ctx->e_data;
|
||||
|
||||
E_KEY[0] = uint32_t_in (in_key);
|
||||
E_KEY[1] = uint32_t_in (in_key + 4);
|
||||
E_KEY[2] = uint32_t_in (in_key + 8);
|
||||
E_KEY[3] = uint32_t_in (in_key + 12);
|
||||
|
||||
/* Prepare control words. */
|
||||
memset(&ctx->cword, 0, sizeof(ctx->cword));
|
||||
|
||||
ctx->cword.decrypt.encdec = 1;
|
||||
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
|
||||
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
|
||||
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
|
||||
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
|
||||
|
||||
/* Don't generate extended keys if the hardware can do it. */
|
||||
if (aes_hw_extkey_available(key_len))
|
||||
return 0;
|
||||
|
||||
ctx->D = ctx->d_data;
|
||||
ctx->cword.encrypt.keygen = 1;
|
||||
ctx->cword.decrypt.keygen = 1;
|
||||
|
||||
switch (key_len) {
|
||||
case 16:
|
||||
t = E_KEY[3];
|
||||
|
@ -370,9 +391,8 @@ aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t
|
|||
/* ====== Encryption/decryption routines ====== */
|
||||
|
||||
/* This is the real call to PadLock. */
|
||||
static inline void
|
||||
padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
|
||||
void *control_word, uint32_t count)
|
||||
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
||||
void *control_word, u32 count)
|
||||
{
|
||||
asm volatile ("pushfl; popfl"); /* enforce key reload. */
|
||||
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
||||
|
@ -380,67 +400,27 @@ padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
|
|||
: "d"(control_word), "b"(key), "c"(count));
|
||||
}
|
||||
|
||||
static void
|
||||
aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec)
|
||||
{
|
||||
/* Don't blindly modify this structure - the items must
|
||||
fit on 16-Bytes boundaries! */
|
||||
struct padlock_xcrypt_data {
|
||||
uint8_t buf[AES_BLOCK_SIZE];
|
||||
union cword cword;
|
||||
};
|
||||
|
||||
struct aes_ctx *ctx = ctx_arg;
|
||||
char bigbuf[sizeof(struct padlock_xcrypt_data) + 16];
|
||||
struct padlock_xcrypt_data *data;
|
||||
void *key;
|
||||
|
||||
/* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */
|
||||
if (((long)bigbuf) & 0x0F)
|
||||
data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F));
|
||||
else
|
||||
data = (void*)bigbuf;
|
||||
|
||||
/* Prepare Control word. */
|
||||
memset (data, 0, sizeof(struct padlock_xcrypt_data));
|
||||
data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */
|
||||
data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4;
|
||||
data->cword.b.ksize = (ctx->key_length - 16) / 8;
|
||||
|
||||
/* Is the hardware capable to generate the extended key? */
|
||||
if (!aes_hw_extkey_available(ctx->key_length))
|
||||
data->cword.b.keygen = 1;
|
||||
|
||||
/* ctx->E starts with a plain key - if the hardware is capable
|
||||
to generate the extended key itself we must supply
|
||||
the plain key for both Encryption and Decryption. */
|
||||
if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0)
|
||||
key = ctx->E;
|
||||
else
|
||||
key = ctx->D;
|
||||
|
||||
memcpy(data->buf, in_arg, AES_BLOCK_SIZE);
|
||||
padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1);
|
||||
memcpy(out_arg, data->buf, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
static void
|
||||
aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
|
||||
{
|
||||
aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT);
|
||||
struct aes_ctx *ctx = aes_ctx(ctx_arg);
|
||||
padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
|
||||
}
|
||||
|
||||
static void
|
||||
aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
|
||||
{
|
||||
aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT);
|
||||
struct aes_ctx *ctx = aes_ctx(ctx_arg);
|
||||
padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
|
||||
}
|
||||
|
||||
static struct crypto_alg aes_alg = {
|
||||
.cra_name = "aes",
|
||||
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
||||
.cra_blocksize = AES_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct aes_ctx),
|
||||
.cra_ctxsize = sizeof(struct aes_ctx) +
|
||||
PADLOCK_ALIGNMENT,
|
||||
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
|
||||
.cra_u = {
|
||||
|
|
|
@ -13,18 +13,18 @@
|
|||
#ifndef _CRYPTO_PADLOCK_H
|
||||
#define _CRYPTO_PADLOCK_H
|
||||
|
||||
#define PADLOCK_ALIGNMENT 16
|
||||
|
||||
/* Control word. */
|
||||
union cword {
|
||||
uint32_t cword[4];
|
||||
struct {
|
||||
int rounds:4;
|
||||
int algo:3;
|
||||
int keygen:1;
|
||||
int interm:1;
|
||||
int encdec:1;
|
||||
int ksize:2;
|
||||
} b;
|
||||
};
|
||||
struct cword {
|
||||
int __attribute__ ((__packed__))
|
||||
rounds:4,
|
||||
algo:3,
|
||||
keygen:1,
|
||||
interm:1,
|
||||
encdec:1,
|
||||
ksize:2;
|
||||
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
||||
|
||||
#define PFX "padlock: "
|
||||
|
||||
|
|
Loading…
Reference in New Issue