radix tree test suite: multi-order iteration test

Add a unit test to verify that we can iterate over multi-order entries
properly via a radix_tree_for_each_slot() loop.

This was done with a single, somewhat complicated configuration that was
meant to test many of the various corner cases having to do with
multi-order entries:

- An iteration could begin at a sibling entry, and we need to return the
  canonical entry.
- We could have entries of various orders in the same slots[] array.
- We could have multi-order entries at a nonzero height, followed by
  indirect pointers to more radix tree nodes later in that same slots[]
  array.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Ross Zwisler 2016-05-20 17:02:29 -07:00 committed by Linus Torvalds
parent 21ef533931
commit 643b57d0a9
1 changed files with 92 additions and 0 deletions

View File

@ -92,6 +92,96 @@ static void multiorder_insert_bug(void)
item_kill_tree(&tree);
}
void multiorder_iteration(void)
{
RADIX_TREE(tree, GFP_KERNEL);
struct radix_tree_iter iter;
void **slot;
int i, err;
printf("Multiorder iteration test\n");
#define NUM_ENTRIES 11
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
for (i = 0; i < NUM_ENTRIES; i++) {
err = item_insert_order(&tree, index[i], order[i]);
assert(!err);
}
i = 0;
/* start from index 1 to verify we find the multi-order entry at 0 */
radix_tree_for_each_slot(slot, &tree, &iter, 1) {
int height = order[i] / RADIX_TREE_MAP_SHIFT;
int shift = height * RADIX_TREE_MAP_SHIFT;
assert(iter.index == index[i]);
assert(iter.shift == shift);
i++;
}
/*
* Now iterate through the tree starting at an elevated multi-order
* entry, beginning at an index in the middle of the range.
*/
i = 8;
radix_tree_for_each_slot(slot, &tree, &iter, 70) {
int height = order[i] / RADIX_TREE_MAP_SHIFT;
int shift = height * RADIX_TREE_MAP_SHIFT;
assert(iter.index == index[i]);
assert(iter.shift == shift);
i++;
}
item_kill_tree(&tree);
}
void multiorder_tagged_iteration(void)
{
RADIX_TREE(tree, GFP_KERNEL);
struct radix_tree_iter iter;
void **slot;
int i;
printf("Multiorder tagged iteration test\n");
#define MT_NUM_ENTRIES 9
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
#define TAG_ENTRIES 7
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
for (i = 0; i < MT_NUM_ENTRIES; i++)
assert(!item_insert_order(&tree, index[i], order[i]));
assert(!radix_tree_tagged(&tree, 1));
for (i = 0; i < TAG_ENTRIES; i++)
assert(radix_tree_tag_set(&tree, tag_index[i], 1));
i = 0;
/* start from index 1 to verify we find the multi-order entry at 0 */
radix_tree_for_each_tagged(slot, &tree, &iter, 1, 1) {
assert(iter.index == tag_index[i]);
i++;
}
/*
* Now iterate through the tree starting at an elevated multi-order
* entry, beginning at an index in the middle of the range.
*/
i = 4;
radix_tree_for_each_slot(slot, &tree, &iter, 70) {
assert(iter.index == tag_index[i]);
i++;
}
item_kill_tree(&tree);
}
void multiorder_checks(void)
{
int i;
@ -106,4 +196,6 @@ void multiorder_checks(void)
multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
multiorder_insert_bug();
multiorder_iteration();
multiorder_tagged_iteration();
}