crypto: arm64/crct10dif-ce - cleanup and optimizations

The x86, arm, and arm64 asm implementations of crct10dif are very
difficult to understand partly because many of the comments, labels, and
macros are named incorrectly: the lengths mentioned are usually off by a
factor of two from the actual code.  Many other things are unnecessarily
convoluted as well, e.g. there are many more fold constants than
actually needed and some aren't fully reduced.

This series therefore cleans up all these implementations to be much
more maintainable.  I also made some small optimizations where I saw
opportunities, resulting in slightly better performance.

This patch cleans up the arm64 version.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Eric Biggers 2019-01-30 20:42:42 -08:00 committed by Herbert Xu
parent e7b3ed3380
commit 6227cd12e5
2 changed files with 218 additions and 252 deletions

View File

@ -2,12 +2,14 @@
// Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
// //
// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
// Copyright (C) 2019 Google LLC <ebiggers@google.com>
// //
// This program is free software; you can redistribute it and/or modify // This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as // it under the terms of the GNU General Public License version 2 as
// published by the Free Software Foundation. // published by the Free Software Foundation.
// //
// Derived from the x86 version:
// //
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
// //
@ -54,19 +56,11 @@
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// //
// Function API:
// UINT16 crc_t10dif_pcl(
// UINT16 init_crc, //initial CRC value, 16 bits
// const unsigned char *buf, //buffer pointer to calculate CRC on
// UINT64 len //buffer length in bytes (64-bit data)
// );
//
// Reference paper titled "Fast CRC Computation for Generic // Reference paper titled "Fast CRC Computation for Generic
// Polynomials Using PCLMULQDQ Instruction" // Polynomials Using PCLMULQDQ Instruction"
// URL: http://www.intel.com/content/dam/www/public/us/en/documents // URL: http://www.intel.com/content/dam/www/public/us/en/documents
// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
// //
//
#include <linux/linkage.h> #include <linux/linkage.h>
#include <asm/assembler.h> #include <asm/assembler.h>
@ -74,14 +68,14 @@
.text .text
.cpu generic+crypto .cpu generic+crypto
arg1_low32 .req w19 init_crc .req w19
arg2 .req x20 buf .req x20
arg3 .req x21 len .req x21
fold_consts_ptr .req x22
vzr .req v13 fold_consts .req v10
ad .req v14 ad .req v14
bd .req v10
k00_16 .req v15 k00_16 .req v15
k32_48 .req v16 k32_48 .req v16
@ -143,11 +137,11 @@ __pmull_p8_core:
ext t5.8b, ad.8b, ad.8b, #2 // A2 ext t5.8b, ad.8b, ad.8b, #2 // A2
ext t6.8b, ad.8b, ad.8b, #3 // A3 ext t6.8b, ad.8b, ad.8b, #3 // A3
pmull t4.8h, t4.8b, bd.8b // F = A1*B pmull t4.8h, t4.8b, fold_consts.8b // F = A1*B
pmull t8.8h, ad.8b, bd1.8b // E = A*B1 pmull t8.8h, ad.8b, bd1.8b // E = A*B1
pmull t5.8h, t5.8b, bd.8b // H = A2*B pmull t5.8h, t5.8b, fold_consts.8b // H = A2*B
pmull t7.8h, ad.8b, bd2.8b // G = A*B2 pmull t7.8h, ad.8b, bd2.8b // G = A*B2
pmull t6.8h, t6.8b, bd.8b // J = A3*B pmull t6.8h, t6.8b, fold_consts.8b // J = A3*B
pmull t9.8h, ad.8b, bd3.8b // I = A*B3 pmull t9.8h, ad.8b, bd3.8b // I = A*B3
pmull t3.8h, ad.8b, bd4.8b // K = A*B4 pmull t3.8h, ad.8b, bd4.8b // K = A*B4
b 0f b 0f
@ -157,11 +151,11 @@ __pmull_p8_core:
tbl t5.16b, {ad.16b}, perm2.16b // A2 tbl t5.16b, {ad.16b}, perm2.16b // A2
tbl t6.16b, {ad.16b}, perm3.16b // A3 tbl t6.16b, {ad.16b}, perm3.16b // A3
pmull2 t4.8h, t4.16b, bd.16b // F = A1*B pmull2 t4.8h, t4.16b, fold_consts.16b // F = A1*B
pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1 pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1
pmull2 t5.8h, t5.16b, bd.16b // H = A2*B pmull2 t5.8h, t5.16b, fold_consts.16b // H = A2*B
pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2 pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2
pmull2 t6.8h, t6.16b, bd.16b // J = A3*B pmull2 t6.8h, t6.16b, fold_consts.16b // J = A3*B
pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3 pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3
pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4 pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4
@ -203,14 +197,14 @@ __pmull_p8_core:
ENDPROC(__pmull_p8_core) ENDPROC(__pmull_p8_core)
.macro __pmull_p8, rq, ad, bd, i .macro __pmull_p8, rq, ad, bd, i
.ifnc \bd, v10 .ifnc \bd, fold_consts
.err .err
.endif .endif
mov ad.16b, \ad\().16b mov ad.16b, \ad\().16b
.ifb \i .ifb \i
pmull \rq\().8h, \ad\().8b, bd.8b // D = A*B pmull \rq\().8h, \ad\().8b, \bd\().8b // D = A*B
.else .else
pmull2 \rq\().8h, \ad\().16b, bd.16b // D = A*B pmull2 \rq\().8h, \ad\().16b, \bd\().16b // D = A*B
.endif .endif
bl .L__pmull_p8_core\i bl .L__pmull_p8_core\i
@ -219,17 +213,19 @@ ENDPROC(__pmull_p8_core)
eor \rq\().16b, \rq\().16b, t6.16b eor \rq\().16b, \rq\().16b, t6.16b
.endm .endm
.macro fold64, p, reg1, reg2 // Fold reg1, reg2 into the next 32 data bytes, storing the result back
ldp q11, q12, [arg2], #0x20 // into reg1, reg2.
.macro fold_32_bytes, p, reg1, reg2
ldp q11, q12, [buf], #0x20
__pmull_\p v8, \reg1, v10, 2 __pmull_\p v8, \reg1, fold_consts, 2
__pmull_\p \reg1, \reg1, v10 __pmull_\p \reg1, \reg1, fold_consts
CPU_LE( rev64 v11.16b, v11.16b ) CPU_LE( rev64 v11.16b, v11.16b )
CPU_LE( rev64 v12.16b, v12.16b ) CPU_LE( rev64 v12.16b, v12.16b )
__pmull_\p v9, \reg2, v10, 2 __pmull_\p v9, \reg2, fold_consts, 2
__pmull_\p \reg2, \reg2, v10 __pmull_\p \reg2, \reg2, fold_consts
CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 ) CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 )
CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
@ -240,15 +236,16 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
eor \reg2\().16b, \reg2\().16b, v12.16b eor \reg2\().16b, \reg2\().16b, v12.16b
.endm .endm
.macro fold16, p, reg, rk // Fold src_reg into dst_reg, optionally loading the next fold constants
__pmull_\p v8, \reg, v10 .macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts
__pmull_\p \reg, \reg, v10, 2 __pmull_\p v8, \src_reg, fold_consts
.ifnb \rk __pmull_\p \src_reg, \src_reg, fold_consts, 2
ldr_l q10, \rk, x8 .ifnb \load_next_consts
__pmull_pre_\p v10 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
__pmull_pre_\p fold_consts
.endif .endif
eor v7.16b, v7.16b, v8.16b eor \dst_reg\().16b, \dst_reg\().16b, v8.16b
eor v7.16b, v7.16b, \reg\().16b eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
.endm .endm
.macro __pmull_p64, rd, rn, rm, n .macro __pmull_p64, rd, rn, rm, n
@ -260,40 +257,27 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
.endm .endm
.macro crc_t10dif_pmull, p .macro crc_t10dif_pmull, p
frame_push 3, 128 frame_push 4, 128
mov arg1_low32, w0 mov init_crc, w0
mov arg2, x1 mov buf, x1
mov arg3, x2 mov len, x2
movi vzr.16b, #0 // init zero register
__pmull_init_\p __pmull_init_\p
// adjust the 16-bit initial_crc value, scale it to 32 bits // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
lsl arg1_low32, arg1_low32, #16 cmp len, #256
b.lt .Lless_than_256_bytes_\@
// check if smaller than 256 adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts
cmp arg3, #256
// for sizes less than 128, we can't fold 64B at a time...
b.lt .L_less_than_128_\@
// load the initial crc value
// crc value does not need to be byte-reflected, but it needs
// to be moved to the high part of the register.
// because data will be byte-reflected and will align with
// initial crc at correct place.
movi v10.16b, #0
mov v10.s[3], arg1_low32 // initial crc
// receive the initial 64B data, xor the initial crc value
ldp q0, q1, [arg2]
ldp q2, q3, [arg2, #0x20]
ldp q4, q5, [arg2, #0x40]
ldp q6, q7, [arg2, #0x60]
add arg2, arg2, #0x80
// Load the first 128 data bytes. Byte swapping is necessary to make
// the bit order match the polynomial coefficient order.
ldp q0, q1, [buf]
ldp q2, q3, [buf, #0x20]
ldp q4, q5, [buf, #0x40]
ldp q6, q7, [buf, #0x60]
add buf, buf, #0x80
CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( rev64 v0.16b, v0.16b )
CPU_LE( rev64 v1.16b, v1.16b ) CPU_LE( rev64 v1.16b, v1.16b )
CPU_LE( rev64 v2.16b, v2.16b ) CPU_LE( rev64 v2.16b, v2.16b )
@ -302,7 +286,6 @@ CPU_LE( rev64 v4.16b, v4.16b )
CPU_LE( rev64 v5.16b, v5.16b ) CPU_LE( rev64 v5.16b, v5.16b )
CPU_LE( rev64 v6.16b, v6.16b ) CPU_LE( rev64 v6.16b, v6.16b )
CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( rev64 v7.16b, v7.16b )
CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 )
CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 ) CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 )
@ -312,36 +295,29 @@ CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 )
CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 ) CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 )
CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
// XOR the initial_crc value // XOR the first 16 data *bits* with the initial CRC value.
eor v0.16b, v0.16b, v10.16b movi v8.16b, #0
mov v8.h[7], init_crc
eor v0.16b, v0.16b, v8.16b
ldr_l q10, rk3, x8 // xmm10 has rk3 and rk4 // Load the constants for folding across 128 bytes.
// type of pmull instruction ld1 {fold_consts.2d}, [fold_consts_ptr]
// will determine which constant to use __pmull_pre_\p fold_consts
__pmull_pre_\p v10
// // Subtract 128 for the 128 data bytes just consumed. Subtract another
// we subtract 256 instead of 128 to save one instruction from the loop // 128 to simplify the termination condition of the following loop.
// sub len, len, #256
sub arg3, arg3, #256
// at this section of the code, there is 64*x+y (0<=y<64) bytes of // While >= 128 data bytes remain (not counting v0-v7), fold the 128
// buffer. The _fold_64_B_loop will fold 64B at a time // bytes v0-v7 into them, storing the result back into v0-v7.
// until we have 64+y Bytes of buffer .Lfold_128_bytes_loop_\@:
fold_32_bytes \p, v0, v1
fold_32_bytes \p, v2, v3
fold_32_bytes \p, v4, v5
fold_32_bytes \p, v6, v7
// fold 64B at a time. This section of the code folds 4 vector subs len, len, #128
// registers in parallel b.lt .Lfold_128_bytes_loop_done_\@
.L_fold_64_B_loop_\@:
fold64 \p, v0, v1
fold64 \p, v2, v3
fold64 \p, v4, v5
fold64 \p, v6, v7
subs arg3, arg3, #128
// check if there is another 64B in the buffer to be able to fold
b.lt .L_fold_64_B_end_\@
if_will_cond_yield_neon if_will_cond_yield_neon
stp q0, q1, [sp, #.Lframe_local_offset] stp q0, q1, [sp, #.Lframe_local_offset]
@ -353,217 +329,207 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
ldp q2, q3, [sp, #.Lframe_local_offset + 32] ldp q2, q3, [sp, #.Lframe_local_offset + 32]
ldp q4, q5, [sp, #.Lframe_local_offset + 64] ldp q4, q5, [sp, #.Lframe_local_offset + 64]
ldp q6, q7, [sp, #.Lframe_local_offset + 96] ldp q6, q7, [sp, #.Lframe_local_offset + 96]
ldr_l q10, rk3, x8 ld1 {fold_consts.2d}, [fold_consts_ptr]
movi vzr.16b, #0 // init zero register
__pmull_init_\p __pmull_init_\p
__pmull_pre_\p v10 __pmull_pre_\p fold_consts
endif_yield_neon endif_yield_neon
b .L_fold_64_B_loop_\@ b .Lfold_128_bytes_loop_\@
.L_fold_64_B_end_\@: .Lfold_128_bytes_loop_done_\@:
// at this point, the buffer pointer is pointing at the last y Bytes
// of the buffer the 64B of folded data is in 4 of the vector
// registers: v0, v1, v2, v3
// fold the 8 vector registers to 1 vector register with different // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7.
// constants
ldr_l q10, rk9, x8 // Fold across 64 bytes.
__pmull_pre_\p v10 add fold_consts_ptr, fold_consts_ptr, #16
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
__pmull_pre_\p fold_consts
fold_16_bytes \p, v0, v4
fold_16_bytes \p, v1, v5
fold_16_bytes \p, v2, v6
fold_16_bytes \p, v3, v7, 1
// Fold across 32 bytes.
fold_16_bytes \p, v4, v6
fold_16_bytes \p, v5, v7, 1
// Fold across 16 bytes.
fold_16_bytes \p, v6, v7
fold16 \p, v0, rk11 // Add 128 to get the correct number of data bytes remaining in 0...127
fold16 \p, v1, rk13 // (not counting v7), following the previous extra subtraction by 128.
fold16 \p, v2, rk15 // Then subtract 16 to simplify the termination condition of the
fold16 \p, v3, rk17 // following loop.
fold16 \p, v4, rk19 adds len, len, #(128-16)
fold16 \p, v5, rk1
fold16 \p, v6
// instead of 64, we add 48 to the loop counter to save 1 instruction // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7
// from the loop instead of a cmp instruction, we use the negative // into them, storing the result back into v7.
// flag with the jl instruction b.lt .Lfold_16_bytes_loop_done_\@
adds arg3, arg3, #(128-16) .Lfold_16_bytes_loop_\@:
b.lt .L_final_reduction_for_128_\@ __pmull_\p v8, v7, fold_consts
__pmull_\p v7, v7, fold_consts, 2
// now we have 16+y bytes left to reduce. 16 Bytes is in register v7
// and the rest is in memory. We can fold 16 bytes at a time if y>=16
// continue folding 16B at a time
.L_16B_reduction_loop_\@:
__pmull_\p v8, v7, v10
__pmull_\p v7, v7, v10, 2
eor v7.16b, v7.16b, v8.16b eor v7.16b, v7.16b, v8.16b
ldr q0, [buf], #16
ldr q0, [arg2], #16
CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( rev64 v0.16b, v0.16b )
CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
eor v7.16b, v7.16b, v0.16b eor v7.16b, v7.16b, v0.16b
subs arg3, arg3, #16 subs len, len, #16
b.ge .Lfold_16_bytes_loop_\@
// instead of a cmp instruction, we utilize the flags with the .Lfold_16_bytes_loop_done_\@:
// jge instruction equivalent of: cmp arg3, 16-16 // Add 16 to get the correct number of data bytes remaining in 0...15
// check if there is any more 16B in the buffer to be able to fold // (not counting v7), following the previous extra subtraction by 16.
b.ge .L_16B_reduction_loop_\@ adds len, len, #16
b.eq .Lreduce_final_16_bytes_\@
// now we have 16+z bytes left to reduce, where 0<= z < 16. .Lhandle_partial_segment_\@:
// first, we reduce the data in the xmm7 register // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
// 16 bytes are in v7 and the rest are the remaining data in 'buf'. To
// do this without needing a fold constant for each possible 'len',
// redivide the bytes into a first chunk of 'len' bytes and a second
// chunk of 16 bytes, then fold the first chunk into the second.
.L_final_reduction_for_128_\@: // v0 = last 16 original data bytes
// check if any more data to fold. If not, compute the CRC of add buf, buf, len
// the final 128 bits ldr q0, [buf, #-16]
adds arg3, arg3, #16 CPU_LE( rev64 v0.16b, v0.16b )
b.eq .L_128_done_\@ CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
// here we are getting data that is less than 16 bytes. // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes.
// since we know that there was data before the pointer, we can adr_l x4, .Lbyteshift_table + 16
// offset the input pointer before the actual point, to receive sub x4, x4, len
// exactly 16 bytes. after that the registers need to be adjusted. ld1 {v2.16b}, [x4]
.L_get_last_two_regs_\@: tbl v1.16b, {v7.16b}, v2.16b
add arg2, arg2, arg3
ldr q1, [arg2, #-16]
CPU_LE( rev64 v1.16b, v1.16b )
CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 )
// get rid of the extra data that was loaded before // v3 = first chunk: v7 right-shifted by '16-len' bytes.
// load the shift constant movi v3.16b, #0x80
adr_l x4, tbl_shf_table + 16 eor v2.16b, v2.16b, v3.16b
sub x4, x4, arg3 tbl v3.16b, {v7.16b}, v2.16b
ld1 {v0.16b}, [x4]
// shift v2 to the left by arg3 bytes // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
tbl v2.16b, {v7.16b}, v0.16b sshr v2.16b, v2.16b, #7
// shift v7 to the right by 16-arg3 bytes // v2 = second chunk: 'len' bytes from v0 (low-order bytes),
movi v9.16b, #0x80 // then '16-len' bytes from v1 (high-order bytes).
eor v0.16b, v0.16b, v9.16b bsl v2.16b, v1.16b, v0.16b
tbl v7.16b, {v7.16b}, v0.16b
// blend // Fold the first chunk into the second chunk, storing the result in v7.
sshr v0.16b, v0.16b, #7 // convert to 8-bit mask __pmull_\p v0, v3, fold_consts
bsl v0.16b, v2.16b, v1.16b __pmull_\p v7, v3, fold_consts, 2
// fold 16 Bytes
__pmull_\p v8, v7, v10
__pmull_\p v7, v7, v10, 2
eor v7.16b, v7.16b, v8.16b
eor v7.16b, v7.16b, v0.16b eor v7.16b, v7.16b, v0.16b
eor v7.16b, v7.16b, v2.16b
.L_128_done_\@: .Lreduce_final_16_bytes_\@:
// compute crc of a 128-bit value // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
ldr_l q10, rk5, x8 // rk5 and rk6 in xmm10
__pmull_pre_\p v10
// 64b fold movi v2.16b, #0 // init zero register
ext v0.16b, vzr.16b, v7.16b, #8
mov v7.d[0], v7.d[1]
__pmull_\p v7, v7, v10
eor v7.16b, v7.16b, v0.16b
// 32b fold // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
ext v0.16b, v7.16b, vzr.16b, #4 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
mov v7.s[3], vzr.s[0] __pmull_pre_\p fold_consts
__pmull_\p v0, v0, v10, 2
eor v7.16b, v7.16b, v0.16b
// barrett reduction // Fold the high 64 bits into the low 64 bits, while also multiplying by
ldr_l q10, rk7, x8 // x^64. This produces a 128-bit value congruent to x^64 * M(x) and
__pmull_pre_\p v10 // whose low 48 bits are 0.
mov v0.d[0], v7.d[1] ext v0.16b, v2.16b, v7.16b, #8
__pmull_\p v7, v7, fold_consts, 2 // high bits * x^48 * (x^80 mod G(x))
eor v0.16b, v0.16b, v7.16b // + low bits * x^64
__pmull_\p v0, v0, v10 // Fold the high 32 bits into the low 96 bits. This produces a 96-bit
ext v0.16b, vzr.16b, v0.16b, #12 // value congruent to x^64 * M(x) and whose low 48 bits are 0.
__pmull_\p v0, v0, v10, 2 ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits
ext v0.16b, vzr.16b, v0.16b, #12 mov v0.s[3], v2.s[0] // zero high 32 bits
eor v7.16b, v7.16b, v0.16b __pmull_\p v1, v1, fold_consts // high 32 bits * x^48 * (x^48 mod G(x))
mov w0, v7.s[1] eor v0.16b, v0.16b, v1.16b // + low bits
.L_cleanup_\@: // Load G(x) and floor(x^48 / G(x)).
// scale the result back to 16 bits ld1 {fold_consts.2d}, [fold_consts_ptr]
lsr x0, x0, #16 __pmull_pre_\p fold_consts
// Use Barrett reduction to compute the final CRC value.
__pmull_\p v1, v0, fold_consts, 2 // high 32 bits * floor(x^48 / G(x))
ushr v1.2d, v1.2d, #32 // /= x^32
__pmull_\p v1, v1, fold_consts // *= G(x)
ushr v0.2d, v0.2d, #48
eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits
// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0.
umov w0, v0.h[0]
frame_pop frame_pop
ret ret
.L_less_than_128_\@: .Lless_than_256_bytes_\@:
cbz arg3, .L_cleanup_\@ // Checksumming a buffer of length 16...255 bytes
movi v0.16b, #0 adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts
mov v0.s[3], arg1_low32 // get the initial crc value
ldr q7, [arg2], #0x10 // Load the first 16 data bytes.
ldr q7, [buf], #0x10
CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( rev64 v7.16b, v7.16b )
CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
eor v7.16b, v7.16b, v0.16b // xor the initial crc value
cmp arg3, #16 // XOR the first 16 data *bits* with the initial CRC value.
b.eq .L_128_done_\@ // exactly 16 left movi v0.16b, #0
mov v0.h[7], init_crc
eor v7.16b, v7.16b, v0.16b
ldr_l q10, rk1, x8 // rk1 and rk2 in xmm10 // Load the fold-across-16-bytes constants.
__pmull_pre_\p v10 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
__pmull_pre_\p fold_consts
// update the counter. subtract 32 instead of 16 to save one cmp len, #16
// instruction from the loop b.eq .Lreduce_final_16_bytes_\@ // len == 16
subs arg3, arg3, #32 subs len, len, #32
b.ge .L_16B_reduction_loop_\@ b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255
add len, len, #16
add arg3, arg3, #16 b .Lhandle_partial_segment_\@ // 17 <= len <= 31
b .L_get_last_two_regs_\@
.endm .endm
//
// u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
//
// Assumes len >= 16.
//
ENTRY(crc_t10dif_pmull_p8) ENTRY(crc_t10dif_pmull_p8)
crc_t10dif_pmull p8 crc_t10dif_pmull p8
ENDPROC(crc_t10dif_pmull_p8) ENDPROC(crc_t10dif_pmull_p8)
.align 5 .align 5
//
// u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
//
// Assumes len >= 16.
//
ENTRY(crc_t10dif_pmull_p64) ENTRY(crc_t10dif_pmull_p64)
crc_t10dif_pmull p64 crc_t10dif_pmull p64
ENDPROC(crc_t10dif_pmull_p64) ENDPROC(crc_t10dif_pmull_p64)
// precomputed constants
// these constants are precomputed from the poly:
// 0x8bb70000 (0x8bb7 scaled to 32 bits)
.section ".rodata", "a" .section ".rodata", "a"
.align 4 .align 4
// Q = 0x18BB70000
// rk1 = 2^(32*3) mod Q << 32
// rk2 = 2^(32*5) mod Q << 32
// rk3 = 2^(32*15) mod Q << 32
// rk4 = 2^(32*17) mod Q << 32
// rk5 = 2^(32*3) mod Q << 32
// rk6 = 2^(32*2) mod Q << 32
// rk7 = floor(2^64/Q)
// rk8 = Q
rk1: .octa 0x06df0000000000002d56000000000000 // Fold constants precomputed from the polynomial 0x18bb7
rk3: .octa 0x7cf50000000000009d9d000000000000 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
rk5: .octa 0x13680000000000002d56000000000000 .Lfold_across_128_bytes_consts:
rk7: .octa 0x000000018bb7000000000001f65a57f8 .quad 0x0000000000006123 // x^(8*128) mod G(x)
rk9: .octa 0xbfd6000000000000ceae000000000000 .quad 0x0000000000002295 // x^(8*128+64) mod G(x)
rk11: .octa 0x713c0000000000001e16000000000000 // .Lfold_across_64_bytes_consts:
rk13: .octa 0x80a6000000000000f7f9000000000000 .quad 0x0000000000001069 // x^(4*128) mod G(x)
rk15: .octa 0xe658000000000000044c000000000000 .quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
rk17: .octa 0xa497000000000000ad18000000000000 // .Lfold_across_32_bytes_consts:
rk19: .octa 0xe7b50000000000006ee3000000000000 .quad 0x000000000000857d // x^(2*128) mod G(x)
.quad 0x0000000000007acc // x^(2*128+64) mod G(x)
tbl_shf_table: .Lfold_across_16_bytes_consts:
// use these values for shift constants for the tbl/tbx instruction .quad 0x000000000000a010 // x^(1*128) mod G(x)
// different alignments result in values as shown: .quad 0x0000000000001faa // x^(1*128+64) mod G(x)
// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 // .Lfinal_fold_consts:
// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 .quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 // .Lbarrett_reduction_consts:
// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 .quad 0x0000000000018bb7 // G(x)
// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 .quad 0x00000001f65a57f8 // floor(x^48 / G(x))
// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7
// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8
// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9
// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10
// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11
// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12
// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13
// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14
// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15
// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
.Lbyteshift_table:
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7

View File

@ -22,8 +22,8 @@
#define CRC_T10DIF_PMULL_CHUNK_SIZE 16U #define CRC_T10DIF_PMULL_CHUNK_SIZE 16U
asmlinkage u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 buf[], u64 len); asmlinkage u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
asmlinkage u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 buf[], u64 len); asmlinkage u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
static int crct10dif_init(struct shash_desc *desc) static int crct10dif_init(struct shash_desc *desc)
{ {