Input: elantech - convert documentation into ReST format

This file require minimum adjustments to be a valid ReST file.
Do it, in order to be able to parse it with Sphinx.

We opted to remove section numbers, as this can be automatically
generated on Sphinx, by using :numbered: tag at index.

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
This commit is contained in:
Mauro Carvalho Chehab 2017-04-04 17:38:54 -07:00 committed by Dmitry Torokhov
parent c87d64654d
commit 604aed6130
1 changed files with 165 additions and 141 deletions

View File

@ -10,9 +10,7 @@ Elantech Touchpad Driver
received from Woody at Xandros and forwarded to me received from Woody at Xandros and forwarded to me
by user StewieGriffin at the eeeuser.com forum by user StewieGriffin at the eeeuser.com forum
.. Contents
Contents
~~~~~~~~
1. Introduction 1. Introduction
2. Extra knobs 2. Extra knobs
@ -45,8 +43,8 @@ Contents
1. Introduction Introduction
~~~~~~~~~~~~ ~~~~~~~~~~~~
Currently the Linux Elantech touchpad driver is aware of four different Currently the Linux Elantech touchpad driver is aware of four different
hardware versions unimaginatively called version 1,version 2, version 3 hardware versions unimaginatively called version 1,version 2, version 3
@ -88,11 +86,8 @@ available Elantech documentation the information is provided here anyway for
completeness sake. completeness sake.
///////////////////////////////////////////////////////////////////////////// Extra knobs
~~~~~~~~~~~
2. Extra knobs
~~~~~~~~~~~
Currently the Linux Elantech touchpad driver provides three extra knobs under Currently the Linux Elantech touchpad driver provides three extra knobs under
/sys/bus/serio/drivers/psmouse/serio? for the user. /sys/bus/serio/drivers/psmouse/serio? for the user.
@ -142,18 +137,17 @@ Currently the Linux Elantech touchpad driver provides three extra knobs under
Reading the crc_enabled value will show the active value. Echoing Reading the crc_enabled value will show the active value. Echoing
"0" or "1" to this file will set the state to "0" or "1". "0" or "1" to this file will set the state to "0" or "1".
///////////////////////////////////////////////////////////////////////////// Differentiating hardware versions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3. Differentiating hardware versions To detect the hardware version, read the version number as param[0].param[1].param[2]::
=================================
To detect the hardware version, read the version number as param[0].param[1].param[2]
4 bytes version: (after the arrow is the name given in the Dell-provided driver) 4 bytes version: (after the arrow is the name given in the Dell-provided driver)
02.00.22 => EF013 02.00.22 => EF013
02.06.00 => EF019 02.06.00 => EF019
In the wild, there appear to be more versions, such as 00.01.64, 01.00.21, In the wild, there appear to be more versions, such as 00.01.64, 01.00.21,
02.00.00, 02.00.04, 02.00.06. 02.00.00, 02.00.04, 02.00.06::
6 bytes: 6 bytes:
02.00.30 => EF113 02.00.30 => EF113
@ -162,6 +156,7 @@ In the wild, there appear to be more versions, such as 00.01.64, 01.00.21,
02.0B.00 => EF215 02.0B.00 => EF215
04.01.XX => Scroll_EF051 04.01.XX => Scroll_EF051
04.02.XX => EF051 04.02.XX => EF051
In the wild, there appear to be more versions, such as 04.03.01, 04.04.11. There In the wild, there appear to be more versions, such as 04.03.01, 04.04.11. There
appears to be almost no difference, except for EF113, which does not report appears to be almost no difference, except for EF113, which does not report
pressure/width and has different data consistency checks. pressure/width and has different data consistency checks.
@ -170,21 +165,20 @@ Probably all the versions with param[0] <= 01 can be considered as
4 bytes/firmware 1. The versions < 02.08.00, with the exception of 02.00.30, as 4 bytes/firmware 1. The versions < 02.08.00, with the exception of 02.00.30, as
4 bytes/firmware 2. Everything >= 02.08.00 can be considered as 6 bytes. 4 bytes/firmware 2. Everything >= 02.08.00 can be considered as 6 bytes.
/////////////////////////////////////////////////////////////////////////////
4. Hardware version 1 Hardware version 1
================== ~~~~~~~~~~~~~~~~~~
4.1 Registers Registers
~~~~~~~~~ ---------
By echoing a hexadecimal value to a register it contents can be altered. By echoing a hexadecimal value to a register it contents can be altered.
For example: For example::
echo -n 0x16 > reg_10 echo -n 0x16 > reg_10
* reg_10 * reg_10::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
B C T D L A S E B C T D L A S E
@ -198,7 +192,7 @@ For example:
C: 1 = enable corner tap C: 1 = enable corner tap
B: 1 = swap left and right button B: 1 = swap left and right button
* reg_11 * reg_11::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
1 0 0 H V 1 F P 1 0 0 H V 1 F P
@ -208,40 +202,41 @@ For example:
V: 1 = enable vertical scroll area V: 1 = enable vertical scroll area
H: 1 = enable horizontal scroll area H: 1 = enable horizontal scroll area
* reg_20 * reg_20::
single finger width? single finger width?
* reg_21 * reg_21::
scroll area width (small: 0x40 ... wide: 0xff) scroll area width (small: 0x40 ... wide: 0xff)
* reg_22 * reg_22::
drag lock time out (short: 0x14 ... long: 0xfe; drag lock time out (short: 0x14 ... long: 0xfe;
0xff = tap again to release) 0xff = tap again to release)
* reg_23 * reg_23::
tap make timeout? tap make timeout?
* reg_24 * reg_24::
tap release timeout? tap release timeout?
* reg_25 * reg_25::
smart edge cursor speed (0x02 = slow, 0x03 = medium, 0x04 = fast) smart edge cursor speed (0x02 = slow, 0x03 = medium, 0x04 = fast)
* reg_26 * reg_26::
smart edge activation area width? smart edge activation area width?
4.2 Native relative mode 4 byte packet format Native relative mode 4 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
byte 0::
byte 0:
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
c c p2 p1 1 M R L c c p2 p1 1 M R L
@ -251,20 +246,23 @@ byte 0:
p1..p2 = byte 1 and 2 odd parity bit p1..p2 = byte 1 and 2 odd parity bit
c = 1 when corner tap detected c = 1 when corner tap detected
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
dx7 dx6 dx5 dx4 dx3 dx2 dx1 dx0 dx7 dx6 dx5 dx4 dx3 dx2 dx1 dx0
dx7..dx0 = x movement; positive = right, negative = left dx7..dx0 = x movement; positive = right, negative = left
byte 1 = 0xf0 when corner tap detected byte 1 = 0xf0 when corner tap detected
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
dy7 dy6 dy5 dy4 dy3 dy2 dy1 dy0 dy7 dy6 dy5 dy4 dy3 dy2 dy1 dy0
dy7..dy0 = y movement; positive = up, negative = down dy7..dy0 = y movement; positive = up, negative = down
byte 3: byte 3::
parity checking enabled (reg_11, P = 1): parity checking enabled (reg_11, P = 1):
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
@ -296,14 +294,15 @@ byte 3:
positive = down positive = down
4.3 Native absolute mode 4 byte packet format Native absolute mode 4 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
EF013 and EF019 have a special behaviour (due to a bug in the firmware?), and EF013 and EF019 have a special behaviour (due to a bug in the firmware?), and
when 1 finger is touching, the first 2 position reports must be discarded. when 1 finger is touching, the first 2 position reports must be discarded.
This counting is reset whenever a different number of fingers is reported. This counting is reset whenever a different number of fingers is reported.
byte 0: byte 0::
firmware version 1.x: firmware version 1.x:
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
@ -322,7 +321,8 @@ byte 0:
p1..p3 = byte 1..3 odd parity bit p1..p3 = byte 1..3 odd parity bit
n1..n0 = number of fingers on touchpad n1..n0 = number of fingers on touchpad
byte 1: byte 1::
firmware version 1.x: firmware version 1.x:
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
@ -337,65 +337,68 @@ byte 1:
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
. . . . x9 x8 y9 y8 . . . . x9 x8 y9 y8
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x9..x0 = absolute x value (horizontal) x9..x0 = absolute x value (horizontal)
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
y9..y0 = absolute y value (vertical) y9..y0 = absolute y value (vertical)
///////////////////////////////////////////////////////////////////////////// Hardware version 2
~~~~~~~~~~~~~~~~~~
5. Hardware version 2 Registers
================== ---------
5.1 Registers
~~~~~~~~~
By echoing a hexadecimal value to a register it contents can be altered. By echoing a hexadecimal value to a register it contents can be altered.
For example: For example::
echo -n 0x56 > reg_10 echo -n 0x56 > reg_10
* reg_10 * reg_10::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 1 0 1 0 1 D 0 0 1 0 1 0 1 D 0
D: 1 = enable drag and drop D: 1 = enable drag and drop
* reg_11 * reg_11::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
1 0 0 0 S 0 1 0 1 0 0 0 S 0 1 0
S: 1 = enable vertical scroll S: 1 = enable vertical scroll
* reg_21 * reg_21::
unknown (0x00) unknown (0x00)
* reg_22 * reg_22::
drag and drop release time out (short: 0x70 ... long 0x7e; drag and drop release time out (short: 0x70 ... long 0x7e;
0x7f = never i.e. tap again to release) 0x7f = never i.e. tap again to release)
5.2 Native absolute mode 6 byte packet format Native absolute mode 6 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
5.2.1 Parity checking and packet re-synchronization
Parity checking and packet re-synchronization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There is no parity checking, however some consistency checks can be performed. There is no parity checking, however some consistency checks can be performed.
For instance for EF113: For instance for EF113::
SA1= packet[0]; SA1= packet[0];
A1 = packet[1]; A1 = packet[1];
B1 = packet[2]; B1 = packet[2];
@ -410,7 +413,8 @@ For instance for EF113:
(((SA1 & 0xC0) != 0x80) && (( C1 & 0xF0) != 0x00)) ) // check Byte 5 (((SA1 & 0xC0) != 0x80) && (( C1 & 0xF0) != 0x00)) ) // check Byte 5
// error detected // error detected
For all the other ones, there are just a few constant bits: For all the other ones, there are just a few constant bits::
if( ((packet[0] & 0x0C) != 0x04) || if( ((packet[0] & 0x0C) != 0x04) ||
((packet[3] & 0x0f) != 0x02) ) ((packet[3] & 0x0f) != 0x02) )
// error detected // error detected
@ -418,10 +422,10 @@ For all the other ones, there are just a few constant bits:
In case an error is detected, all the packets are shifted by one (and packet[0] is discarded). In case an error is detected, all the packets are shifted by one (and packet[0] is discarded).
5.2.2 One/Three finger touch One/Three finger touch
~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^
byte 0: byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
n1 n0 w3 w2 . . R L n1 n0 w3 w2 . . R L
@ -429,19 +433,19 @@ byte 0:
L, R = 1 when Left, Right mouse button pressed L, R = 1 when Left, Right mouse button pressed
n1..n0 = number of fingers on touchpad n1..n0 = number of fingers on touchpad
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p7 p6 p5 p4 x11 x10 x9 x8 p7 p6 p5 p4 x11 x10 x9 x8
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x11..x0 = absolute x value (horizontal) x11..x0 = absolute x value (horizontal)
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
n4 vf w1 w0 . . . b2 n4 vf w1 w0 . . . b2
@ -460,14 +464,14 @@ byte 3:
6 = Another one 6 = Another one
7 = Another one 7 = Another one
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p3 p1 p2 p0 y11 y10 y9 y8 p3 p1 p2 p0 y11 y10 y9 y8
p7..p0 = pressure (not EF113) p7..p0 = pressure (not EF113)
byte 5: byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
@ -475,15 +479,15 @@ byte 5:
y11..y0 = absolute y value (vertical) y11..y0 = absolute y value (vertical)
5.2.3 Two finger touch Two finger touch
~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^
Note that the two pairs of coordinates are not exactly the coordinates of the Note that the two pairs of coordinates are not exactly the coordinates of the
two fingers, but only the pair of the lower-left and upper-right coordinates. two fingers, but only the pair of the lower-left and upper-right coordinates.
So the actual fingers might be situated on the other diagonal of the square So the actual fingers might be situated on the other diagonal of the square
defined by these two points. defined by these two points.
byte 0: byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
n1 n0 ay8 ax8 . . R L n1 n0 ay8 ax8 . . R L
@ -491,47 +495,46 @@ byte 0:
L, R = 1 when Left, Right mouse button pressed L, R = 1 when Left, Right mouse button pressed
n1..n0 = number of fingers on touchpad n1..n0 = number of fingers on touchpad
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
ax7 ax6 ax5 ax4 ax3 ax2 ax1 ax0 ax7 ax6 ax5 ax4 ax3 ax2 ax1 ax0
ax8..ax0 = lower-left finger absolute x value ax8..ax0 = lower-left finger absolute x value
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
ay7 ay6 ay5 ay4 ay3 ay2 ay1 ay0 ay7 ay6 ay5 ay4 ay3 ay2 ay1 ay0
ay8..ay0 = lower-left finger absolute y value ay8..ay0 = lower-left finger absolute y value
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
. . by8 bx8 . . . . . . by8 bx8 . . . .
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
bx7 bx6 bx5 bx4 bx3 bx2 bx1 bx0 bx7 bx6 bx5 bx4 bx3 bx2 bx1 bx0
bx8..bx0 = upper-right finger absolute x value bx8..bx0 = upper-right finger absolute x value
byte 5: byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
by7 by8 by5 by4 by3 by2 by1 by0 by7 by8 by5 by4 by3 by2 by1 by0
by8..by0 = upper-right finger absolute y value by8..by0 = upper-right finger absolute y value
///////////////////////////////////////////////////////////////////////////// Hardware version 3
~~~~~~~~~~~~~~~~~~
6. Hardware version 3 Registers
================== ---------
6.1 Registers * reg_10::
~~~~~~~~~
* reg_10
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 0 0 0 R F T A 0 0 0 0 R F T A
@ -541,8 +544,9 @@ byte 5:
F: 1 = disable ABS Position Filter F: 1 = disable ABS Position Filter
R: 1 = enable real hardware resolution R: 1 = enable real hardware resolution
6.2 Native absolute mode 6 byte packet format Native absolute mode 6 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
1 and 3 finger touch shares the same 6-byte packet format, except that 1 and 3 finger touch shares the same 6-byte packet format, except that
3 finger touch only reports the position of the center of all three fingers. 3 finger touch only reports the position of the center of all three fingers.
@ -552,19 +556,21 @@ Note on debounce:
In case the box has unstable power supply or other electricity issues, or In case the box has unstable power supply or other electricity issues, or
when number of finger changes, F/W would send "debounce packet" to inform when number of finger changes, F/W would send "debounce packet" to inform
driver that the hardware is in debounce status. driver that the hardware is in debounce status.
The debouce packet has the following signature: The debouce packet has the following signature::
byte 0: 0xc4 byte 0: 0xc4
byte 1: 0xff byte 1: 0xff
byte 2: 0xff byte 2: 0xff
byte 3: 0x02 byte 3: 0x02
byte 4: 0xff byte 4: 0xff
byte 5: 0xff byte 5: 0xff
When we encounter this kind of packet, we just ignore it. When we encounter this kind of packet, we just ignore it.
6.2.1 One/Three finger touch One/Three finger touch
~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^
byte 0: byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
n1 n0 w3 w2 0 1 R L n1 n0 w3 w2 0 1 R L
@ -572,63 +578,63 @@ byte 0:
L, R = 1 when Left, Right mouse button pressed L, R = 1 when Left, Right mouse button pressed
n1..n0 = number of fingers on touchpad n1..n0 = number of fingers on touchpad
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p7 p6 p5 p4 x11 x10 x9 x8 p7 p6 p5 p4 x11 x10 x9 x8
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x11..x0 = absolute x value (horizontal) x11..x0 = absolute x value (horizontal)
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 0 w1 w0 0 0 1 0 0 0 w1 w0 0 0 1 0
w3..w0 = width of the finger touch w3..w0 = width of the finger touch
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p3 p1 p2 p0 y11 y10 y9 y8 p3 p1 p2 p0 y11 y10 y9 y8
p7..p0 = pressure p7..p0 = pressure
byte 5: byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
y11..y0 = absolute y value (vertical) y11..y0 = absolute y value (vertical)
6.2.2 Two finger touch Two finger touch
~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^
The packet format is exactly the same for two finger touch, except the hardware The packet format is exactly the same for two finger touch, except the hardware
sends two 6 byte packets. The first packet contains data for the first finger, sends two 6 byte packets. The first packet contains data for the first finger,
the second packet has data for the second finger. So for two finger touch a the second packet has data for the second finger. So for two finger touch a
total of 12 bytes are sent. total of 12 bytes are sent.
///////////////////////////////////////////////////////////////////////////// Hardware version 4
~~~~~~~~~~~~~~~~~~
7. Hardware version 4 Registers
================== ---------
7.1 Registers * reg_07::
~~~~~~~~~
* reg_07
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A
A: 1 = enable absolute tracking A: 1 = enable absolute tracking
7.2 Native absolute mode 6 byte packet format Native absolute mode 6 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
v4 hardware is a true multitouch touchpad, capable of tracking up to 5 fingers. v4 hardware is a true multitouch touchpad, capable of tracking up to 5 fingers.
Unfortunately, due to PS/2's limited bandwidth, its packet format is rather Unfortunately, due to PS/2's limited bandwidth, its packet format is rather
complex. complex.
@ -647,45 +653,49 @@ position, until we receive a status packet.
One exception is one finger touch. when a status packet tells us there is only One exception is one finger touch. when a status packet tells us there is only
one finger, the hardware would just send head packets afterwards. one finger, the hardware would just send head packets afterwards.
7.2.1 Status packet Status packet
~~~~~~~~~~~~~ ^^^^^^^^^^^^^
byte 0: byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
. . . . 0 1 R L . . . . 0 1 R L
L, R = 1 when Left, Right mouse button pressed L, R = 1 when Left, Right mouse button pressed
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
. . . ft4 ft3 ft2 ft1 ft0 . . . ft4 ft3 ft2 ft1 ft0
ft4 ft3 ft2 ft1 ft0 ftn = 1 when finger n is on touchpad ft4 ft3 ft2 ft1 ft0 ftn = 1 when finger n is on touchpad
byte 2: not used byte 2::
byte 3: not used
byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
. . . 1 0 0 0 0 . . . 1 0 0 0 0
constant bits constant bits
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p . . . . . . . p . . . . . . .
p = 1 for palm p = 1 for palm
byte 5: not used byte 5::
7.2.2 Head packet not used
~~~~~~~~~~~
byte 0: Head packet
^^^^^^^^^^^
byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
w3 w2 w1 w0 0 1 R L w3 w2 w1 w0 0 1 R L
@ -693,43 +703,43 @@ byte 0:
L, R = 1 when Left, Right mouse button pressed L, R = 1 when Left, Right mouse button pressed
w3..w0 = finger width (spans how many trace lines) w3..w0 = finger width (spans how many trace lines)
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p7 p6 p5 p4 x11 x10 x9 x8 p7 p6 p5 p4 x11 x10 x9 x8
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x11..x0 = absolute x value (horizontal) x11..x0 = absolute x value (horizontal)
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
id2 id1 id0 1 0 0 0 1 id2 id1 id0 1 0 0 0 1
id2..id0 = finger id id2..id0 = finger id
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
p3 p1 p2 p0 y11 y10 y9 y8 p3 p1 p2 p0 y11 y10 y9 y8
p7..p0 = pressure p7..p0 = pressure
byte 5: byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
y11..y0 = absolute y value (vertical) y11..y0 = absolute y value (vertical)
7.2.3 Motion packet Motion packet
~~~~~~~~~~~~~ ^^^^^^^^^^^^^
byte 0: byte 0::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
id2 id1 id0 w 0 1 R L id2 id1 id0 w 0 1 R L
@ -739,35 +749,35 @@ byte 0:
w = 1 when delta overflows (> 127 or < -128), in this case w = 1 when delta overflows (> 127 or < -128), in this case
firmware sends us (delta x / 5) and (delta y / 5) firmware sends us (delta x / 5) and (delta y / 5)
byte 1: byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x7..x0 = delta x (two's complement) x7..x0 = delta x (two's complement)
byte 2: byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
y7..y0 = delta y (two's complement) y7..y0 = delta y (two's complement)
byte 3: byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
id2 id1 id0 1 0 0 1 0 id2 id1 id0 1 0 0 1 0
id2..id0 = finger id id2..id0 = finger id
byte 4: byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
x7..x0 = delta x (two's complement) x7..x0 = delta x (two's complement)
byte 5: byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
@ -778,33 +788,47 @@ byte 5:
byte 3 ~ 5 for another byte 3 ~ 5 for another
8. Trackpoint (for Hardware version 3 and 4) Trackpoint (for Hardware version 3 and 4)
========================================= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8.1 Registers
~~~~~~~~~ Registers
---------
No special registers have been identified. No special registers have been identified.
8.2 Native relative mode 6 byte packet format Native relative mode 6 byte packet format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -----------------------------------------
8.2.1 Status Packet
~~~~~~~~~~~~~ Status Packet
^^^^^^^^^^^^^
byte 0::
byte 0:
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 0 sx sy 0 M R L 0 0 sx sy 0 M R L
byte 1:
byte 1::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
~sx 0 0 0 0 0 0 0 ~sx 0 0 0 0 0 0 0
byte 2:
byte 2::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
~sy 0 0 0 0 0 0 0 ~sy 0 0 0 0 0 0 0
byte 3:
byte 3::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
0 0 ~sy ~sx 0 1 1 0 0 0 ~sy ~sx 0 1 1 0
byte 4:
byte 4::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
byte 5:
byte 5::
bit 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0