Merge branch 'akpm' (more incoming from Andrew)

Merge second patch-bomb from Andrew Morton:

 - A little DM fix

 - the MM queue

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (154 commits)
  ksm: allocate roots when needed
  mm: cleanup "swapcache" in do_swap_page
  mm,ksm: swapoff might need to copy
  mm,ksm: FOLL_MIGRATION do migration_entry_wait
  ksm: shrink 32-bit rmap_item back to 32 bytes
  ksm: treat unstable nid like in stable tree
  ksm: add some comments
  tmpfs: fix mempolicy object leaks
  tmpfs: fix use-after-free of mempolicy object
  mm/fadvise.c: drain all pagevecs if POSIX_FADV_DONTNEED fails to discard all pages
  mm: export mmu notifier invalidates
  mm: accelerate mm_populate() treatment of THP pages
  mm: use long type for page counts in mm_populate() and get_user_pages()
  mm: accurately document nr_free_*_pages functions with code comments
  HWPOISON: change order of error_states[]'s elements
  HWPOISON: fix misjudgement of page_action() for errors on mlocked pages
  memcg: stop warning on memcg_propagate_kmem
  net: change type of virtio_chan->p9_max_pages
  vmscan: change type of vm_total_pages to unsigned long
  fs/nfsd: change type of max_delegations, nfsd_drc_max_mem and nfsd_drc_mem_used
  ...
This commit is contained in:
Linus Torvalds 2013-02-23 17:50:35 -08:00
commit 5ce1a70e2f
113 changed files with 4443 additions and 1667 deletions

View File

@ -0,0 +1,52 @@
What: /sys/kernel/mm/ksm
Date: September 2009
KernelVersion: 2.6.32
Contact: Linux memory management mailing list <linux-mm@kvack.org>
Description: Interface for Kernel Samepage Merging (KSM)
What: /sys/kernel/mm/ksm/full_scans
What: /sys/kernel/mm/ksm/pages_shared
What: /sys/kernel/mm/ksm/pages_sharing
What: /sys/kernel/mm/ksm/pages_to_scan
What: /sys/kernel/mm/ksm/pages_unshared
What: /sys/kernel/mm/ksm/pages_volatile
What: /sys/kernel/mm/ksm/run
What: /sys/kernel/mm/ksm/sleep_millisecs
Date: September 2009
Contact: Linux memory management mailing list <linux-mm@kvack.org>
Description: Kernel Samepage Merging daemon sysfs interface
full_scans: how many times all mergeable areas have been
scanned.
pages_shared: how many shared pages are being used.
pages_sharing: how many more sites are sharing them i.e. how
much saved.
pages_to_scan: how many present pages to scan before ksmd goes
to sleep.
pages_unshared: how many pages unique but repeatedly checked
for merging.
pages_volatile: how many pages changing too fast to be placed
in a tree.
run: write 0 to disable ksm, read 0 while ksm is disabled.
write 1 to run ksm, read 1 while ksm is running.
write 2 to disable ksm and unmerge all its pages.
sleep_millisecs: how many milliseconds ksm should sleep between
scans.
See Documentation/vm/ksm.txt for more information.
What: /sys/kernel/mm/ksm/merge_across_nodes
Date: January 2013
KernelVersion: 3.9
Contact: Linux memory management mailing list <linux-mm@kvack.org>
Description: Control merging pages across different NUMA nodes.
When it is set to 0 only pages from the same node are merged,
otherwise pages from all nodes can be merged together (default).

View File

@ -1640,6 +1640,42 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
that the amount of memory usable for all allocations
is not too small.
movablemem_map=acpi
[KNL,X86,IA-64,PPC] This parameter is similar to
memmap except it specifies the memory map of
ZONE_MOVABLE.
This option inform the kernel to use Hot Pluggable bit
in flags from SRAT from ACPI BIOS to determine which
memory devices could be hotplugged. The corresponding
memory ranges will be set as ZONE_MOVABLE.
NOTE: Whatever node the kernel resides in will always
be un-hotpluggable.
movablemem_map=nn[KMG]@ss[KMG]
[KNL,X86,IA-64,PPC] This parameter is similar to
memmap except it specifies the memory map of
ZONE_MOVABLE.
If user specifies memory ranges, the info in SRAT will
be ingored. And it works like the following:
- If more ranges are all within one node, then from
lowest ss to the end of the node will be ZONE_MOVABLE.
- If a range is within a node, then from ss to the end
of the node will be ZONE_MOVABLE.
- If a range covers two or more nodes, then from ss to
the end of the 1st node will be ZONE_MOVABLE, and all
the rest nodes will only have ZONE_MOVABLE.
If memmap is specified at the same time, the
movablemem_map will be limited within the memmap
areas. If kernelcore or movablecore is also specified,
movablemem_map will have higher priority to be
satisfied. So the administrator should be careful that
the amount of movablemem_map areas are not too large.
Otherwise kernel won't have enough memory to start.
NOTE: We don't stop users specifying the node the
kernel resides in as hotpluggable so that this
option can be used as a workaround of firmware
bugs.
MTD_Partition= [MTD]
Format: <name>,<region-number>,<size>,<offset>

View File

@ -58,6 +58,21 @@ sleep_millisecs - how many milliseconds ksmd should sleep before next scan
e.g. "echo 20 > /sys/kernel/mm/ksm/sleep_millisecs"
Default: 20 (chosen for demonstration purposes)
merge_across_nodes - specifies if pages from different numa nodes can be merged.
When set to 0, ksm merges only pages which physically
reside in the memory area of same NUMA node. That brings
lower latency to access of shared pages. Systems with more
nodes, at significant NUMA distances, are likely to benefit
from the lower latency of setting 0. Smaller systems, which
need to minimize memory usage, are likely to benefit from
the greater sharing of setting 1 (default). You may wish to
compare how your system performs under each setting, before
deciding on which to use. merge_across_nodes setting can be
changed only when there are no ksm shared pages in system:
set run 2 to unmerge pages first, then to 1 after changing
merge_across_nodes, to remerge according to the new setting.
Default: 1 (merging across nodes as in earlier releases)
run - set 0 to stop ksmd from running but keep merged pages,
set 1 to run ksmd e.g. "echo 1 > /sys/kernel/mm/ksm/run",
set 2 to stop ksmd and unmerge all pages currently merged,

View File

@ -434,4 +434,7 @@ int __meminit vmemmap_populate(struct page *start_page,
return 0;
}
#endif /* CONFIG_ARM64_64K_PAGES */
void vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

View File

@ -93,7 +93,7 @@ void show_mem(unsigned int filter)
printk(KERN_INFO "%d pages swap cached\n", total_cached);
printk(KERN_INFO "Total of %ld pages in page table cache\n",
quicklist_total_size());
printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
}

View File

@ -666,7 +666,7 @@ void show_mem(unsigned int filter)
printk(KERN_INFO "%d pages swap cached\n", total_cached);
printk(KERN_INFO "Total of %ld pages in page table cache\n",
quicklist_total_size());
printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
}
/**
@ -822,4 +822,8 @@ int __meminit vmemmap_populate(struct page *start_page,
{
return vmemmap_populate_basepages(start_page, size, node);
}
void vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
}
#endif

View File

@ -688,6 +688,24 @@ int arch_add_memory(int nid, u64 start, u64 size)
return ret;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
int ret;
zone = page_zone(pfn_to_page(start_pfn));
ret = __remove_pages(zone, start_pfn, nr_pages);
if (ret)
pr_warn("%s: Problem encountered in __remove_pages() as"
" ret=%d\n", __func__, ret);
return ret;
}
#endif
#endif
/*

View File

@ -297,5 +297,10 @@ int __meminit vmemmap_populate(struct page *start_page,
return 0;
}
void vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

View File

@ -133,6 +133,18 @@ int arch_add_memory(int nid, u64 start, u64 size)
return __add_pages(nid, zone, start_pfn, nr_pages);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
zone = page_zone(pfn_to_page(start_pfn));
return __remove_pages(zone, start_pfn, nr_pages);
}
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
/*

View File

@ -228,4 +228,16 @@ int arch_add_memory(int nid, u64 start, u64 size)
vmem_remove_mapping(start, size);
return rc;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
/*
* There is no hardware or firmware interface which could trigger a
* hot memory remove on s390. So there is nothing that needs to be
* implemented.
*/
return -EBUSY;
}
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */

View File

@ -268,6 +268,10 @@ out:
return ret;
}
void vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
}
/*
* Add memory segment to the segment list if it doesn't overlap with
* an already present segment.

View File

@ -558,4 +558,21 @@ int memory_add_physaddr_to_nid(u64 addr)
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
int ret;
zone = page_zone(pfn_to_page(start_pfn));
ret = __remove_pages(zone, start_pfn, nr_pages);
if (unlikely(ret))
pr_warn("%s: Failed, __remove_pages() == %d\n", __func__,
ret);
return ret;
}
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */

View File

@ -57,7 +57,7 @@ void show_mem(unsigned int filter)
printk("Mem-info:\n");
show_free_areas(filter);
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
get_nr_swap_pages() << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", totalram_pages);
printk("%ld free pages\n", nr_free_pages());
}

View File

@ -2235,6 +2235,11 @@ void __meminit vmemmap_populate_print_last(void)
node_start = 0;
}
}
void vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static void prot_init_common(unsigned long page_none,

View File

@ -130,7 +130,6 @@ int arch_setup_additional_pages(struct linux_binprm *bprm,
if (!retval) {
unsigned long addr = MEM_USER_INTRPT;
addr = mmap_region(NULL, addr, INTRPT_SIZE,
MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
VM_READ|VM_EXEC|
VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, 0);
if (addr > (unsigned long) -PAGE_SIZE)

View File

@ -935,6 +935,14 @@ int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
/* TODO */
return -EBUSY;
}
#endif
#endif
struct kmem_cache *pgd_cache;

View File

@ -61,7 +61,7 @@ void show_mem(unsigned int filter)
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE),
global_page_state(NR_FILE_PAGES),
nr_swap_pages);
get_nr_swap_pages());
for_each_zone(zone) {
unsigned long flags, order, total = 0, largest_order = -1;

View File

@ -57,8 +57,8 @@ static inline int numa_cpu_node(int cpu)
#endif
#ifdef CONFIG_NUMA
extern void __cpuinit numa_set_node(int cpu, int node);
extern void __cpuinit numa_clear_node(int cpu);
extern void numa_set_node(int cpu, int node);
extern void numa_clear_node(int cpu);
extern void __init init_cpu_to_node(void);
extern void __cpuinit numa_add_cpu(int cpu);
extern void __cpuinit numa_remove_cpu(int cpu);

View File

@ -351,6 +351,7 @@ static inline void update_page_count(int level, unsigned long pages) { }
* as a pte too.
*/
extern pte_t *lookup_address(unsigned long address, unsigned int *level);
extern int __split_large_page(pte_t *kpte, unsigned long address, pte_t *pbase);
extern phys_addr_t slow_virt_to_phys(void *__address);
#endif /* !__ASSEMBLY__ */

View File

@ -696,6 +696,10 @@ EXPORT_SYMBOL(acpi_map_lsapic);
int acpi_unmap_lsapic(int cpu)
{
#ifdef CONFIG_ACPI_NUMA
set_apicid_to_node(per_cpu(x86_cpu_to_apicid, cpu), NUMA_NO_NODE);
#endif
per_cpu(x86_cpu_to_apicid, cpu) = -1;
set_cpu_present(cpu, false);
num_processors--;

View File

@ -1056,6 +1056,15 @@ void __init setup_arch(char **cmdline_p)
setup_bios_corruption_check();
#endif
/*
* In the memory hotplug case, the kernel needs info from SRAT to
* determine which memory is hotpluggable before allocating memory
* using memblock.
*/
acpi_boot_table_init();
early_acpi_boot_init();
early_parse_srat();
#ifdef CONFIG_X86_32
printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
(max_pfn_mapped<<PAGE_SHIFT) - 1);
@ -1101,10 +1110,6 @@ void __init setup_arch(char **cmdline_p)
/*
* Parse the ACPI tables for possible boot-time SMP configuration.
*/
acpi_boot_table_init();
early_acpi_boot_init();
initmem_init();
memblock_find_dma_reserve();

View File

@ -862,6 +862,18 @@ int arch_add_memory(int nid, u64 start, u64 size)
return __add_pages(nid, zone, start_pfn, nr_pages);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
zone = page_zone(pfn_to_page(start_pfn));
return __remove_pages(zone, start_pfn, nr_pages);
}
#endif
#endif
/*

View File

@ -707,6 +707,343 @@ int arch_add_memory(int nid, u64 start, u64 size)
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#define PAGE_INUSE 0xFD
static void __meminit free_pagetable(struct page *page, int order)
{
struct zone *zone;
bool bootmem = false;
unsigned long magic;
unsigned int nr_pages = 1 << order;
/* bootmem page has reserved flag */
if (PageReserved(page)) {
__ClearPageReserved(page);
bootmem = true;
magic = (unsigned long)page->lru.next;
if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
while (nr_pages--)
put_page_bootmem(page++);
} else
__free_pages_bootmem(page, order);
} else
free_pages((unsigned long)page_address(page), order);
/*
* SECTION_INFO pages and MIX_SECTION_INFO pages
* are all allocated by bootmem.
*/
if (bootmem) {
zone = page_zone(page);
zone_span_writelock(zone);
zone->present_pages += nr_pages;
zone_span_writeunlock(zone);
totalram_pages += nr_pages;
}
}
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
{
pte_t *pte;
int i;
for (i = 0; i < PTRS_PER_PTE; i++) {
pte = pte_start + i;
if (pte_val(*pte))
return;
}
/* free a pte talbe */
free_pagetable(pmd_page(*pmd), 0);
spin_lock(&init_mm.page_table_lock);
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
}
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
{
pmd_t *pmd;
int i;
for (i = 0; i < PTRS_PER_PMD; i++) {
pmd = pmd_start + i;
if (pmd_val(*pmd))
return;
}
/* free a pmd talbe */
free_pagetable(pud_page(*pud), 0);
spin_lock(&init_mm.page_table_lock);
pud_clear(pud);
spin_unlock(&init_mm.page_table_lock);
}
/* Return true if pgd is changed, otherwise return false. */
static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
{
pud_t *pud;
int i;
for (i = 0; i < PTRS_PER_PUD; i++) {
pud = pud_start + i;
if (pud_val(*pud))
return false;
}
/* free a pud table */
free_pagetable(pgd_page(*pgd), 0);
spin_lock(&init_mm.page_table_lock);
pgd_clear(pgd);
spin_unlock(&init_mm.page_table_lock);
return true;
}
static void __meminit
remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
bool direct)
{
unsigned long next, pages = 0;
pte_t *pte;
void *page_addr;
phys_addr_t phys_addr;
pte = pte_start + pte_index(addr);
for (; addr < end; addr = next, pte++) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
if (next > end)
next = end;
if (!pte_present(*pte))
continue;
/*
* We mapped [0,1G) memory as identity mapping when
* initializing, in arch/x86/kernel/head_64.S. These
* pagetables cannot be removed.
*/
phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
if (phys_addr < (phys_addr_t)0x40000000)
return;
if (IS_ALIGNED(addr, PAGE_SIZE) &&
IS_ALIGNED(next, PAGE_SIZE)) {
/*
* Do not free direct mapping pages since they were
* freed when offlining, or simplely not in use.
*/
if (!direct)
free_pagetable(pte_page(*pte), 0);
spin_lock(&init_mm.page_table_lock);
pte_clear(&init_mm, addr, pte);
spin_unlock(&init_mm.page_table_lock);
/* For non-direct mapping, pages means nothing. */
pages++;
} else {
/*
* If we are here, we are freeing vmemmap pages since
* direct mapped memory ranges to be freed are aligned.
*
* If we are not removing the whole page, it means
* other page structs in this page are being used and
* we canot remove them. So fill the unused page_structs
* with 0xFD, and remove the page when it is wholly
* filled with 0xFD.
*/
memset((void *)addr, PAGE_INUSE, next - addr);
page_addr = page_address(pte_page(*pte));
if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
free_pagetable(pte_page(*pte), 0);
spin_lock(&init_mm.page_table_lock);
pte_clear(&init_mm, addr, pte);
spin_unlock(&init_mm.page_table_lock);
}
}
}
/* Call free_pte_table() in remove_pmd_table(). */
flush_tlb_all();
if (direct)
update_page_count(PG_LEVEL_4K, -pages);
}
static void __meminit
remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
bool direct)
{
unsigned long next, pages = 0;
pte_t *pte_base;
pmd_t *pmd;
void *page_addr;
pmd = pmd_start + pmd_index(addr);
for (; addr < end; addr = next, pmd++) {
next = pmd_addr_end(addr, end);
if (!pmd_present(*pmd))
continue;
if (pmd_large(*pmd)) {
if (IS_ALIGNED(addr, PMD_SIZE) &&
IS_ALIGNED(next, PMD_SIZE)) {
if (!direct)
free_pagetable(pmd_page(*pmd),
get_order(PMD_SIZE));
spin_lock(&init_mm.page_table_lock);
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
pages++;
} else {
/* If here, we are freeing vmemmap pages. */
memset((void *)addr, PAGE_INUSE, next - addr);
page_addr = page_address(pmd_page(*pmd));
if (!memchr_inv(page_addr, PAGE_INUSE,
PMD_SIZE)) {
free_pagetable(pmd_page(*pmd),
get_order(PMD_SIZE));
spin_lock(&init_mm.page_table_lock);
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
}
}
continue;
}
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
remove_pte_table(pte_base, addr, next, direct);
free_pte_table(pte_base, pmd);
}
/* Call free_pmd_table() in remove_pud_table(). */
if (direct)
update_page_count(PG_LEVEL_2M, -pages);
}
static void __meminit
remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
bool direct)
{
unsigned long next, pages = 0;
pmd_t *pmd_base;
pud_t *pud;
void *page_addr;
pud = pud_start + pud_index(addr);
for (; addr < end; addr = next, pud++) {
next = pud_addr_end(addr, end);
if (!pud_present(*pud))
continue;
if (pud_large(*pud)) {
if (IS_ALIGNED(addr, PUD_SIZE) &&
IS_ALIGNED(next, PUD_SIZE)) {
if (!direct)
free_pagetable(pud_page(*pud),
get_order(PUD_SIZE));
spin_lock(&init_mm.page_table_lock);
pud_clear(pud);
spin_unlock(&init_mm.page_table_lock);
pages++;
} else {
/* If here, we are freeing vmemmap pages. */
memset((void *)addr, PAGE_INUSE, next - addr);
page_addr = page_address(pud_page(*pud));
if (!memchr_inv(page_addr, PAGE_INUSE,
PUD_SIZE)) {
free_pagetable(pud_page(*pud),
get_order(PUD_SIZE));
spin_lock(&init_mm.page_table_lock);
pud_clear(pud);
spin_unlock(&init_mm.page_table_lock);
}
}
continue;
}
pmd_base = (pmd_t *)pud_page_vaddr(*pud);
remove_pmd_table(pmd_base, addr, next, direct);
free_pmd_table(pmd_base, pud);
}
if (direct)
update_page_count(PG_LEVEL_1G, -pages);
}
/* start and end are both virtual address. */
static void __meminit
remove_pagetable(unsigned long start, unsigned long end, bool direct)
{
unsigned long next;
pgd_t *pgd;
pud_t *pud;
bool pgd_changed = false;
for (; start < end; start = next) {
next = pgd_addr_end(start, end);
pgd = pgd_offset_k(start);
if (!pgd_present(*pgd))
continue;
pud = (pud_t *)pgd_page_vaddr(*pgd);
remove_pud_table(pud, start, next, direct);
if (free_pud_table(pud, pgd))
pgd_changed = true;
}
if (pgd_changed)
sync_global_pgds(start, end - 1);
flush_tlb_all();
}
void __ref vmemmap_free(struct page *memmap, unsigned long nr_pages)
{
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + nr_pages);
remove_pagetable(start, end, false);
}
static void __meminit
kernel_physical_mapping_remove(unsigned long start, unsigned long end)
{
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
remove_pagetable(start, end, true);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int __ref arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
int ret;
zone = page_zone(pfn_to_page(start_pfn));
kernel_physical_mapping_remove(start, start + size);
ret = __remove_pages(zone, start_pfn, nr_pages);
WARN_ON_ONCE(ret);
return ret;
}
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
static struct kcore_list kcore_vsyscall;
@ -1019,6 +1356,66 @@ vmemmap_populate(struct page *start_page, unsigned long size, int node)
return 0;
}
#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
void register_page_bootmem_memmap(unsigned long section_nr,
struct page *start_page, unsigned long size)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
unsigned int nr_pages;
struct page *page;
for (; addr < end; addr = next) {
pte_t *pte = NULL;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
continue;
}
get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
continue;
}
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
if (!cpu_has_pse) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
continue;
get_page_bootmem(section_nr, pmd_page(*pmd),
MIX_SECTION_INFO);
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
continue;
get_page_bootmem(section_nr, pte_page(*pte),
SECTION_INFO);
} else {
next = pmd_addr_end(addr, end);
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
continue;
nr_pages = 1 << (get_order(PMD_SIZE));
page = pmd_page(*pmd);
while (nr_pages--)
get_page_bootmem(section_nr, page++,
SECTION_INFO);
}
}
}
#endif
void __meminit vmemmap_populate_print_last(void)
{
if (p_start) {

View File

@ -56,7 +56,7 @@ early_param("numa", numa_setup);
/*
* apicid, cpu, node mappings
*/
s16 __apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
s16 __apicid_to_node[MAX_LOCAL_APIC] = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
@ -78,7 +78,7 @@ EXPORT_SYMBOL(node_to_cpumask_map);
DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
void __cpuinit numa_set_node(int cpu, int node)
void numa_set_node(int cpu, int node)
{
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
@ -101,7 +101,7 @@ void __cpuinit numa_set_node(int cpu, int node)
set_cpu_numa_node(cpu, node);
}
void __cpuinit numa_clear_node(int cpu)
void numa_clear_node(int cpu)
{
numa_set_node(cpu, NUMA_NO_NODE);
}
@ -213,10 +213,9 @@ static void __init setup_node_data(int nid, u64 start, u64 end)
* Allocate node data. Try node-local memory and then any node.
* Never allocate in DMA zone.
*/
nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
if (!nd_pa) {
pr_err("Cannot find %zu bytes in node %d\n",
nd_size, nid);
pr_err("Cannot find %zu bytes in any node\n", nd_size);
return;
}
nd = __va(nd_pa);
@ -561,10 +560,12 @@ static int __init numa_init(int (*init_func)(void))
for (i = 0; i < MAX_LOCAL_APIC; i++)
set_apicid_to_node(i, NUMA_NO_NODE);
nodes_clear(numa_nodes_parsed);
/*
* Do not clear numa_nodes_parsed or zero numa_meminfo here, because
* SRAT was parsed earlier in early_parse_srat().
*/
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
memset(&numa_meminfo, 0, sizeof(numa_meminfo));
WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES));
numa_reset_distance();

View File

@ -529,21 +529,13 @@ out_unlock:
return do_split;
}
static int split_large_page(pte_t *kpte, unsigned long address)
int __split_large_page(pte_t *kpte, unsigned long address, pte_t *pbase)
{
unsigned long pfn, pfninc = 1;
unsigned int i, level;
pte_t *pbase, *tmp;
pte_t *tmp;
pgprot_t ref_prot;
struct page *base;
if (!debug_pagealloc)
spin_unlock(&cpa_lock);
base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
if (!debug_pagealloc)
spin_lock(&cpa_lock);
if (!base)
return -ENOMEM;
struct page *base = virt_to_page(pbase);
spin_lock(&pgd_lock);
/*
@ -551,10 +543,11 @@ static int split_large_page(pte_t *kpte, unsigned long address)
* up for us already:
*/
tmp = lookup_address(address, &level);
if (tmp != kpte)
goto out_unlock;
if (tmp != kpte) {
spin_unlock(&pgd_lock);
return 1;
}
pbase = (pte_t *)page_address(base);
paravirt_alloc_pte(&init_mm, page_to_pfn(base));
ref_prot = pte_pgprot(pte_clrhuge(*kpte));
/*
@ -601,21 +594,31 @@ static int split_large_page(pte_t *kpte, unsigned long address)
* going on.
*/
__flush_tlb_all();
base = NULL;
out_unlock:
/*
* If we dropped out via the lookup_address check under
* pgd_lock then stick the page back into the pool:
*/
if (base)
__free_page(base);
spin_unlock(&pgd_lock);
return 0;
}
static int split_large_page(pte_t *kpte, unsigned long address)
{
pte_t *pbase;
struct page *base;
if (!debug_pagealloc)
spin_unlock(&cpa_lock);
base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
if (!debug_pagealloc)
spin_lock(&cpa_lock);
if (!base)
return -ENOMEM;
pbase = (pte_t *)page_address(base);
if (__split_large_page(kpte, address, pbase))
__free_page(base);
return 0;
}
static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
int primary)
{

View File

@ -141,11 +141,126 @@ static inline int save_add_info(void) {return 1;}
static inline int save_add_info(void) {return 0;}
#endif
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static void __init
handle_movablemem(int node, u64 start, u64 end, u32 hotpluggable)
{
int overlap, i;
unsigned long start_pfn, end_pfn;
start_pfn = PFN_DOWN(start);
end_pfn = PFN_UP(end);
/*
* For movablemem_map=acpi:
*
* SRAT: |_____| |_____| |_________| |_________| ......
* node id: 0 1 1 2
* hotpluggable: n y y n
* movablemem_map: |_____| |_________|
*
* Using movablemem_map, we can prevent memblock from allocating memory
* on ZONE_MOVABLE at boot time.
*
* Before parsing SRAT, memblock has already reserve some memory ranges
* for other purposes, such as for kernel image. We cannot prevent
* kernel from using these memory, so we need to exclude these memory
* even if it is hotpluggable.
* Furthermore, to ensure the kernel has enough memory to boot, we make
* all the memory on the node which the kernel resides in
* un-hotpluggable.
*/
if (hotpluggable && movablemem_map.acpi) {
/* Exclude ranges reserved by memblock. */
struct memblock_type *rgn = &memblock.reserved;
for (i = 0; i < rgn->cnt; i++) {
if (end <= rgn->regions[i].base ||
start >= rgn->regions[i].base +
rgn->regions[i].size)
continue;
/*
* If the memory range overlaps the memory reserved by
* memblock, then the kernel resides in this node.
*/
node_set(node, movablemem_map.numa_nodes_kernel);
goto out;
}
/*
* If the kernel resides in this node, then the whole node
* should not be hotpluggable.
*/
if (node_isset(node, movablemem_map.numa_nodes_kernel))
goto out;
insert_movablemem_map(start_pfn, end_pfn);
/*
* numa_nodes_hotplug nodemask represents which nodes are put
* into movablemem_map.map[].
*/
node_set(node, movablemem_map.numa_nodes_hotplug);
goto out;
}
/*
* For movablemem_map=nn[KMG]@ss[KMG]:
*
* SRAT: |_____| |_____| |_________| |_________| ......
* node id: 0 1 1 2
* user specified: |__| |___|
* movablemem_map: |___| |_________| |______| ......
*
* Using movablemem_map, we can prevent memblock from allocating memory
* on ZONE_MOVABLE at boot time.
*
* NOTE: In this case, SRAT info will be ingored.
*/
overlap = movablemem_map_overlap(start_pfn, end_pfn);
if (overlap >= 0) {
/*
* If part of this range is in movablemem_map, we need to
* add the range after it to extend the range to the end
* of the node, because from the min address specified to
* the end of the node will be ZONE_MOVABLE.
*/
start_pfn = max(start_pfn,
movablemem_map.map[overlap].start_pfn);
insert_movablemem_map(start_pfn, end_pfn);
/*
* Set the nodemask, so that if the address range on one node
* is not continuse, we can add the subsequent ranges on the
* same node into movablemem_map.
*/
node_set(node, movablemem_map.numa_nodes_hotplug);
} else {
if (node_isset(node, movablemem_map.numa_nodes_hotplug))
/*
* Insert the range if we already have movable ranges
* on the same node.
*/
insert_movablemem_map(start_pfn, end_pfn);
}
out:
return;
}
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static inline void
handle_movablemem(int node, u64 start, u64 end, u32 hotpluggable)
{
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
/* Callback for parsing of the Proximity Domain <-> Memory Area mappings */
int __init
acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
{
u64 start, end;
u32 hotpluggable;
int node, pxm;
if (srat_disabled())
@ -154,7 +269,8 @@ acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
goto out_err_bad_srat;
if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0)
goto out_err;
if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info())
hotpluggable = ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE;
if (hotpluggable && !save_add_info())
goto out_err;
start = ma->base_address;
@ -174,9 +290,12 @@ acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
node_set(node, numa_nodes_parsed);
printk(KERN_INFO "SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx]\n",
printk(KERN_INFO "SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx] %s\n",
node, pxm,
(unsigned long long) start, (unsigned long long) end - 1);
(unsigned long long) start, (unsigned long long) end - 1,
hotpluggable ? "Hot Pluggable": "");
handle_movablemem(node, start, end, hotpluggable);
return 0;
out_err_bad_srat:

View File

@ -18,6 +18,7 @@
#include <linux/mutex.h>
#include <linux/idr.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include "blk.h"
@ -534,6 +535,14 @@ static void register_disk(struct gendisk *disk)
return;
}
}
/*
* avoid probable deadlock caused by allocating memory with
* GFP_KERNEL in runtime_resume callback of its all ancestor
* devices
*/
pm_runtime_set_memalloc_noio(ddev, true);
disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
@ -663,6 +672,7 @@ void del_gendisk(struct gendisk *disk)
disk->driverfs_dev = NULL;
if (!sysfs_deprecated)
sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
device_del(disk_to_dev(disk));
}
EXPORT_SYMBOL(del_gendisk);

View File

@ -280,9 +280,11 @@ static int acpi_memory_enable_device(struct acpi_memory_device *mem_device)
static int acpi_memory_remove_memory(struct acpi_memory_device *mem_device)
{
int result = 0;
int result = 0, nid;
struct acpi_memory_info *info, *n;
nid = acpi_get_node(mem_device->device->handle);
list_for_each_entry_safe(info, n, &mem_device->res_list, list) {
if (info->failed)
/* The kernel does not use this memory block */
@ -295,7 +297,9 @@ static int acpi_memory_remove_memory(struct acpi_memory_device *mem_device)
*/
return -EBUSY;
result = remove_memory(info->start_addr, info->length);
if (nid < 0)
nid = memory_add_physaddr_to_nid(info->start_addr);
result = remove_memory(nid, info->start_addr, info->length);
if (result)
return result;

View File

@ -282,10 +282,10 @@ acpi_table_parse_srat(enum acpi_srat_type id,
handler, max_entries);
}
int __init acpi_numa_init(void)
{
int cnt = 0;
static int srat_mem_cnt;
void __init early_parse_srat(void)
{
/*
* Should not limit number with cpu num that is from NR_CPUS or nr_cpus=
* SRAT cpu entries could have different order with that in MADT.
@ -295,21 +295,24 @@ int __init acpi_numa_init(void)
/* SRAT: Static Resource Affinity Table */
if (!acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) {
acpi_table_parse_srat(ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY,
acpi_parse_x2apic_affinity, 0);
acpi_parse_x2apic_affinity, 0);
acpi_table_parse_srat(ACPI_SRAT_TYPE_CPU_AFFINITY,
acpi_parse_processor_affinity, 0);
cnt = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY,
acpi_parse_memory_affinity,
NR_NODE_MEMBLKS);
acpi_parse_processor_affinity, 0);
srat_mem_cnt = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY,
acpi_parse_memory_affinity,
NR_NODE_MEMBLKS);
}
}
int __init acpi_numa_init(void)
{
/* SLIT: System Locality Information Table */
acpi_table_parse(ACPI_SIG_SLIT, acpi_parse_slit);
acpi_numa_arch_fixup();
if (cnt < 0)
return cnt;
if (srat_mem_cnt < 0)
return srat_mem_cnt;
else if (!parsed_numa_memblks)
return -ENOENT;
return 0;

View File

@ -45,6 +45,7 @@
#include <linux/cpuidle.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/memory_hotplug.h>
#include <asm/io.h>
#include <asm/cpu.h>
@ -641,6 +642,7 @@ static int acpi_processor_remove(struct acpi_device *device)
per_cpu(processors, pr->id) = NULL;
per_cpu(processor_device_array, pr->id) = NULL;
try_offline_node(cpu_to_node(pr->id));
free:
free_cpumask_var(pr->throttling.shared_cpu_map);

View File

@ -693,6 +693,12 @@ int offline_memory_block(struct memory_block *mem)
return ret;
}
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
return mem->state == MEM_OFFLINE;
}
/*
* Initialize the sysfs support for memory devices...
*/

View File

@ -124,6 +124,76 @@ unsigned long pm_runtime_autosuspend_expiration(struct device *dev)
}
EXPORT_SYMBOL_GPL(pm_runtime_autosuspend_expiration);
static int dev_memalloc_noio(struct device *dev, void *data)
{
return dev->power.memalloc_noio;
}
/*
* pm_runtime_set_memalloc_noio - Set a device's memalloc_noio flag.
* @dev: Device to handle.
* @enable: True for setting the flag and False for clearing the flag.
*
* Set the flag for all devices in the path from the device to the
* root device in the device tree if @enable is true, otherwise clear
* the flag for devices in the path whose siblings don't set the flag.
*
* The function should only be called by block device, or network
* device driver for solving the deadlock problem during runtime
* resume/suspend:
*
* If memory allocation with GFP_KERNEL is called inside runtime
* resume/suspend callback of any one of its ancestors(or the
* block device itself), the deadlock may be triggered inside the
* memory allocation since it might not complete until the block
* device becomes active and the involed page I/O finishes. The
* situation is pointed out first by Alan Stern. Network device
* are involved in iSCSI kind of situation.
*
* The lock of dev_hotplug_mutex is held in the function for handling
* hotplug race because pm_runtime_set_memalloc_noio() may be called
* in async probe().
*
* The function should be called between device_add() and device_del()
* on the affected device(block/network device).
*/
void pm_runtime_set_memalloc_noio(struct device *dev, bool enable)
{
static DEFINE_MUTEX(dev_hotplug_mutex);
mutex_lock(&dev_hotplug_mutex);
for (;;) {
bool enabled;
/* hold power lock since bitfield is not SMP-safe. */
spin_lock_irq(&dev->power.lock);
enabled = dev->power.memalloc_noio;
dev->power.memalloc_noio = enable;
spin_unlock_irq(&dev->power.lock);
/*
* not need to enable ancestors any more if the device
* has been enabled.
*/
if (enabled && enable)
break;
dev = dev->parent;
/*
* clear flag of the parent device only if all the
* children don't set the flag because ancestor's
* flag was set by any one of the descendants.
*/
if (!dev || (!enable &&
device_for_each_child(dev, NULL,
dev_memalloc_noio)))
break;
}
mutex_unlock(&dev_hotplug_mutex);
}
EXPORT_SYMBOL_GPL(pm_runtime_set_memalloc_noio);
/**
* rpm_check_suspend_allowed - Test whether a device may be suspended.
* @dev: Device to test.
@ -278,7 +348,24 @@ static int rpm_callback(int (*cb)(struct device *), struct device *dev)
if (!cb)
return -ENOSYS;
retval = __rpm_callback(cb, dev);
if (dev->power.memalloc_noio) {
unsigned int noio_flag;
/*
* Deadlock might be caused if memory allocation with
* GFP_KERNEL happens inside runtime_suspend and
* runtime_resume callbacks of one block device's
* ancestor or the block device itself. Network
* device might be thought as part of iSCSI block
* device, so network device and its ancestor should
* be marked as memalloc_noio too.
*/
noio_flag = memalloc_noio_save();
retval = __rpm_callback(cb, dev);
memalloc_noio_restore(noio_flag);
} else {
retval = __rpm_callback(cb, dev);
}
dev->power.runtime_error = retval;
return retval != -EACCES ? retval : -EIO;

View File

@ -21,6 +21,7 @@
#include <linux/types.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/mm.h>
/*
* Data types ------------------------------------------------------------------
@ -52,6 +53,9 @@ static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
static struct firmware_map_entry * __meminit
firmware_map_find_entry(u64 start, u64 end, const char *type);
/*
* Static data -----------------------------------------------------------------
*/
@ -79,7 +83,52 @@ static const struct sysfs_ops memmap_attr_ops = {
.show = memmap_attr_show,
};
static struct kobj_type memmap_ktype = {
/* Firmware memory map entries. */
static LIST_HEAD(map_entries);
static DEFINE_SPINLOCK(map_entries_lock);
/*
* For memory hotplug, there is no way to free memory map entries allocated
* by boot mem after the system is up. So when we hot-remove memory whose
* map entry is allocated by bootmem, we need to remember the storage and
* reuse it when the memory is hot-added again.
*/
static LIST_HEAD(map_entries_bootmem);
static DEFINE_SPINLOCK(map_entries_bootmem_lock);
static inline struct firmware_map_entry *
to_memmap_entry(struct kobject *kobj)
{
return container_of(kobj, struct firmware_map_entry, kobj);
}
static void __meminit release_firmware_map_entry(struct kobject *kobj)
{
struct firmware_map_entry *entry = to_memmap_entry(kobj);
if (PageReserved(virt_to_page(entry))) {
/*
* Remember the storage allocated by bootmem, and reuse it when
* the memory is hot-added again. The entry will be added to
* map_entries_bootmem here, and deleted from &map_entries in
* firmware_map_remove_entry().
*/
if (firmware_map_find_entry(entry->start, entry->end,
entry->type)) {
spin_lock(&map_entries_bootmem_lock);
list_add(&entry->list, &map_entries_bootmem);
spin_unlock(&map_entries_bootmem_lock);
}
return;
}
kfree(entry);
}
static struct kobj_type __refdata memmap_ktype = {
.release = release_firmware_map_entry,
.sysfs_ops = &memmap_attr_ops,
.default_attrs = def_attrs,
};
@ -88,13 +137,6 @@ static struct kobj_type memmap_ktype = {
* Registration functions ------------------------------------------------------
*/
/*
* Firmware memory map entries. No locking is needed because the
* firmware_map_add() and firmware_map_add_early() functions are called
* in firmware initialisation code in one single thread of execution.
*/
static LIST_HEAD(map_entries);
/**
* firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
* @start: Start of the memory range.
@ -118,11 +160,25 @@ static int firmware_map_add_entry(u64 start, u64 end,
INIT_LIST_HEAD(&entry->list);
kobject_init(&entry->kobj, &memmap_ktype);
spin_lock(&map_entries_lock);
list_add_tail(&entry->list, &map_entries);
spin_unlock(&map_entries_lock);
return 0;
}
/**
* firmware_map_remove_entry() - Does the real work to remove a firmware
* memmap entry.
* @entry: removed entry.
*
* The caller must hold map_entries_lock, and release it properly.
**/
static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
{
list_del(&entry->list);
}
/*
* Add memmap entry on sysfs
*/
@ -144,6 +200,78 @@ static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
return 0;
}
/*
* Remove memmap entry on sysfs
*/
static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
{
kobject_put(&entry->kobj);
}
/*
* firmware_map_find_entry_in_list() - Search memmap entry in a given list.
* @start: Start of the memory range.
* @end: End of the memory range (exclusive).
* @type: Type of the memory range.
* @list: In which to find the entry.
*
* This function is to find the memmap entey of a given memory range in a
* given list. The caller must hold map_entries_lock, and must not release
* the lock until the processing of the returned entry has completed.
*
* Return: Pointer to the entry to be found on success, or NULL on failure.
*/
static struct firmware_map_entry * __meminit
firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
struct list_head *list)
{
struct firmware_map_entry *entry;
list_for_each_entry(entry, list, list)
if ((entry->start == start) && (entry->end == end) &&
(!strcmp(entry->type, type))) {
return entry;
}
return NULL;
}
/*
* firmware_map_find_entry() - Search memmap entry in map_entries.
* @start: Start of the memory range.
* @end: End of the memory range (exclusive).
* @type: Type of the memory range.
*
* This function is to find the memmap entey of a given memory range.
* The caller must hold map_entries_lock, and must not release the lock
* until the processing of the returned entry has completed.
*
* Return: Pointer to the entry to be found on success, or NULL on failure.
*/
static struct firmware_map_entry * __meminit
firmware_map_find_entry(u64 start, u64 end, const char *type)
{
return firmware_map_find_entry_in_list(start, end, type, &map_entries);
}
/*
* firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
* @start: Start of the memory range.
* @end: End of the memory range (exclusive).
* @type: Type of the memory range.
*
* This function is similar to firmware_map_find_entry except that it find the
* given entry in map_entries_bootmem.
*
* Return: Pointer to the entry to be found on success, or NULL on failure.
*/
static struct firmware_map_entry * __meminit
firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
{
return firmware_map_find_entry_in_list(start, end, type,
&map_entries_bootmem);
}
/**
* firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
* memory hotplug.
@ -161,9 +289,19 @@ int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
{
struct firmware_map_entry *entry;
entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
entry = firmware_map_find_entry_bootmem(start, end, type);
if (!entry) {
entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
} else {
/* Reuse storage allocated by bootmem. */
spin_lock(&map_entries_bootmem_lock);
list_del(&entry->list);
spin_unlock(&map_entries_bootmem_lock);
memset(entry, 0, sizeof(*entry));
}
firmware_map_add_entry(start, end, type, entry);
/* create the memmap entry */
@ -196,6 +334,36 @@ int __init firmware_map_add_early(u64 start, u64 end, const char *type)
return firmware_map_add_entry(start, end, type, entry);
}
/**
* firmware_map_remove() - remove a firmware mapping entry
* @start: Start of the memory range.
* @end: End of the memory range.
* @type: Type of the memory range.
*
* removes a firmware mapping entry.
*
* Returns 0 on success, or -EINVAL if no entry.
**/
int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
{
struct firmware_map_entry *entry;
spin_lock(&map_entries_lock);
entry = firmware_map_find_entry(start, end - 1, type);
if (!entry) {
spin_unlock(&map_entries_lock);
return -EINVAL;
}
firmware_map_remove_entry(entry);
spin_unlock(&map_entries_lock);
/* remove the memmap entry */
remove_sysfs_fw_map_entry(entry);
return 0;
}
/*
* Sysfs functions -------------------------------------------------------------
*/
@ -217,8 +385,10 @@ static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
}
#define to_memmap_attr(_attr) container_of(_attr, struct memmap_attribute, attr)
#define to_memmap_entry(obj) container_of(obj, struct firmware_map_entry, kobj)
static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
{
return container_of(attr, struct memmap_attribute, attr);
}
static ssize_t memmap_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)

View File

@ -25,8 +25,8 @@ struct shadow_info {
/*
* It would be nice if we scaled with the size of transaction.
*/
#define HASH_SIZE 256
#define HASH_MASK (HASH_SIZE - 1)
#define DM_HASH_SIZE 256
#define DM_HASH_MASK (DM_HASH_SIZE - 1)
struct dm_transaction_manager {
int is_clone;
@ -36,7 +36,7 @@ struct dm_transaction_manager {
struct dm_space_map *sm;
spinlock_t lock;
struct hlist_head buckets[HASH_SIZE];
struct hlist_head buckets[DM_HASH_SIZE];
};
/*----------------------------------------------------------------*/
@ -44,7 +44,7 @@ struct dm_transaction_manager {
static int is_shadow(struct dm_transaction_manager *tm, dm_block_t b)
{
int r = 0;
unsigned bucket = dm_hash_block(b, HASH_MASK);
unsigned bucket = dm_hash_block(b, DM_HASH_MASK);
struct shadow_info *si;
struct hlist_node *n;
@ -71,7 +71,7 @@ static void insert_shadow(struct dm_transaction_manager *tm, dm_block_t b)
si = kmalloc(sizeof(*si), GFP_NOIO);
if (si) {
si->where = b;
bucket = dm_hash_block(b, HASH_MASK);
bucket = dm_hash_block(b, DM_HASH_MASK);
spin_lock(&tm->lock);
hlist_add_head(&si->hlist, tm->buckets + bucket);
spin_unlock(&tm->lock);
@ -86,7 +86,7 @@ static void wipe_shadow_table(struct dm_transaction_manager *tm)
int i;
spin_lock(&tm->lock);
for (i = 0; i < HASH_SIZE; i++) {
for (i = 0; i < DM_HASH_SIZE; i++) {
bucket = tm->buckets + i;
hlist_for_each_entry_safe(si, n, tmp, bucket, hlist)
kfree(si);
@ -115,7 +115,7 @@ static struct dm_transaction_manager *dm_tm_create(struct dm_block_manager *bm,
tm->sm = sm;
spin_lock_init(&tm->lock);
for (i = 0; i < HASH_SIZE; i++)
for (i = 0; i < DM_HASH_SIZE; i++)
INIT_HLIST_HEAD(tm->buckets + i);
return tm;

View File

@ -404,7 +404,7 @@ static inline struct page *zbud_unuse_zbudpage(struct zbudpage *zbudpage,
else
zbud_pers_pageframes--;
zbudpage_spin_unlock(zbudpage);
reset_page_mapcount(page);
page_mapcount_reset(page);
init_page_count(page);
page->index = 0;
return page;

View File

@ -472,7 +472,7 @@ static void reset_page(struct page *page)
set_page_private(page, 0);
page->mapping = NULL;
page->freelist = NULL;
reset_page_mapcount(page);
page_mapcount_reset(page);
}
static void free_zspage(struct page *first_page)

View File

@ -5177,6 +5177,7 @@ int usb_reset_device(struct usb_device *udev)
{
int ret;
int i;
unsigned int noio_flag;
struct usb_host_config *config = udev->actconfig;
if (udev->state == USB_STATE_NOTATTACHED ||
@ -5186,6 +5187,17 @@ int usb_reset_device(struct usb_device *udev)
return -EINVAL;
}
/*
* Don't allocate memory with GFP_KERNEL in current
* context to avoid possible deadlock if usb mass
* storage interface or usbnet interface(iSCSI case)
* is included in current configuration. The easist
* approach is to do it for every device reset,
* because the device 'memalloc_noio' flag may have
* not been set before reseting the usb device.
*/
noio_flag = memalloc_noio_save();
/* Prevent autosuspend during the reset */
usb_autoresume_device(udev);
@ -5230,6 +5242,7 @@ int usb_reset_device(struct usb_device *udev)
}
usb_autosuspend_device(udev);
memalloc_noio_restore(noio_flag);
return ret;
}
EXPORT_SYMBOL_GPL(usb_reset_device);

View File

@ -101,7 +101,7 @@ static int aio_setup_ring(struct kioctx *ctx)
struct aio_ring *ring;
struct aio_ring_info *info = &ctx->ring_info;
unsigned nr_events = ctx->max_reqs;
unsigned long size;
unsigned long size, populate;
int nr_pages;
/* Compensate for the ring buffer's head/tail overlap entry */
@ -129,7 +129,8 @@ static int aio_setup_ring(struct kioctx *ctx)
down_write(&ctx->mm->mmap_sem);
info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, 0);
MAP_ANONYMOUS|MAP_PRIVATE, 0,
&populate);
if (IS_ERR((void *)info->mmap_base)) {
up_write(&ctx->mm->mmap_sem);
info->mmap_size = 0;
@ -147,6 +148,8 @@ static int aio_setup_ring(struct kioctx *ctx)
aio_free_ring(ctx);
return -EAGAIN;
}
if (populate)
mm_populate(info->mmap_base, populate);
ctx->user_id = info->mmap_base;

View File

@ -3227,7 +3227,7 @@ static struct kmem_cache *bh_cachep __read_mostly;
* Once the number of bh's in the machine exceeds this level, we start
* stripping them in writeback.
*/
static int max_buffer_heads;
static unsigned long max_buffer_heads;
int buffer_heads_over_limit;
@ -3343,7 +3343,7 @@ EXPORT_SYMBOL(bh_submit_read);
void __init buffer_init(void)
{
int nrpages;
unsigned long nrpages;
bh_cachep = kmem_cache_create("buffer_head",
sizeof(struct buffer_head), 0,

View File

@ -151,7 +151,7 @@ get_nfs4_file(struct nfs4_file *fi)
}
static int num_delegations;
unsigned int max_delegations;
unsigned long max_delegations;
/*
* Open owner state (share locks)
@ -700,8 +700,8 @@ static int nfsd4_get_drc_mem(int slotsize, u32 num)
num = min_t(u32, num, NFSD_MAX_SLOTS_PER_SESSION);
spin_lock(&nfsd_drc_lock);
avail = min_t(int, NFSD_MAX_MEM_PER_SESSION,
nfsd_drc_max_mem - nfsd_drc_mem_used);
avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION,
nfsd_drc_max_mem - nfsd_drc_mem_used);
num = min_t(int, num, avail / slotsize);
nfsd_drc_mem_used += num * slotsize;
spin_unlock(&nfsd_drc_lock);

View File

@ -56,8 +56,8 @@ extern struct svc_version nfsd_version2, nfsd_version3,
extern u32 nfsd_supported_minorversion;
extern struct mutex nfsd_mutex;
extern spinlock_t nfsd_drc_lock;
extern unsigned int nfsd_drc_max_mem;
extern unsigned int nfsd_drc_mem_used;
extern unsigned long nfsd_drc_max_mem;
extern unsigned long nfsd_drc_mem_used;
extern const struct seq_operations nfs_exports_op;
@ -106,7 +106,7 @@ static inline int nfsd_v4client(struct svc_rqst *rq)
* NFSv4 State
*/
#ifdef CONFIG_NFSD_V4
extern unsigned int max_delegations;
extern unsigned long max_delegations;
void nfs4_state_init(void);
int nfsd4_init_slabs(void);
void nfsd4_free_slabs(void);

View File

@ -59,8 +59,8 @@ DEFINE_MUTEX(nfsd_mutex);
* nfsd_drc_pages_used tracks the current version 4.1 DRC memory usage.
*/
spinlock_t nfsd_drc_lock;
unsigned int nfsd_drc_max_mem;
unsigned int nfsd_drc_mem_used;
unsigned long nfsd_drc_max_mem;
unsigned long nfsd_drc_mem_used;
#if defined(CONFIG_NFSD_V2_ACL) || defined(CONFIG_NFSD_V3_ACL)
static struct svc_stat nfsd_acl_svcstats;
@ -342,7 +342,7 @@ static void set_max_drc(void)
>> NFSD_DRC_SIZE_SHIFT) * PAGE_SIZE;
nfsd_drc_mem_used = 0;
spin_lock_init(&nfsd_drc_lock);
dprintk("%s nfsd_drc_max_mem %u \n", __func__, nfsd_drc_max_mem);
dprintk("%s nfsd_drc_max_mem %lu \n", __func__, nfsd_drc_max_mem);
}
static int nfsd_get_default_max_blksize(void)

View File

@ -40,7 +40,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
* sysctl_overcommit_ratio / 100) + total_swap_pages;
cached = global_page_state(NR_FILE_PAGES) -
total_swapcache_pages - i.bufferram;
total_swapcache_pages() - i.bufferram;
if (cached < 0)
cached = 0;
@ -109,7 +109,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
K(i.freeram),
K(i.bufferram),
K(cached),
K(total_swapcache_pages),
K(total_swapcache_pages()),
K(pages[LRU_ACTIVE_ANON] + pages[LRU_ACTIVE_FILE]),
K(pages[LRU_INACTIVE_ANON] + pages[LRU_INACTIVE_FILE]),
K(pages[LRU_ACTIVE_ANON]),
@ -158,7 +158,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
vmi.used >> 10,
vmi.largest_chunk >> 10
#ifdef CONFIG_MEMORY_FAILURE
,atomic_long_read(&mce_bad_pages) << (PAGE_SHIFT - 10)
,atomic_long_read(&num_poisoned_pages) << (PAGE_SHIFT - 10)
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
,K(global_page_state(NR_ANON_TRANSPARENT_HUGEPAGES) *

View File

@ -485,6 +485,14 @@ static inline bool acpi_driver_match_device(struct device *dev,
#endif /* !CONFIG_ACPI */
#ifdef CONFIG_ACPI_NUMA
void __init early_parse_srat(void);
#else
static inline void early_parse_srat(void)
{
}
#endif
#ifdef CONFIG_ACPI
void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
u32 pm1a_ctrl, u32 pm1b_ctrl));

View File

@ -53,6 +53,7 @@ extern void free_bootmem_node(pg_data_t *pgdat,
unsigned long size);
extern void free_bootmem(unsigned long physaddr, unsigned long size);
extern void free_bootmem_late(unsigned long physaddr, unsigned long size);
extern void __free_pages_bootmem(struct page *page, unsigned int order);
/*
* Flags for reserve_bootmem (also if CONFIG_HAVE_ARCH_BOOTMEM_NODE,

View File

@ -23,7 +23,7 @@ extern int fragmentation_index(struct zone *zone, unsigned int order);
extern unsigned long try_to_compact_pages(struct zonelist *zonelist,
int order, gfp_t gfp_mask, nodemask_t *mask,
bool sync, bool *contended);
extern int compact_pgdat(pg_data_t *pgdat, int order);
extern void compact_pgdat(pg_data_t *pgdat, int order);
extern void reset_isolation_suitable(pg_data_t *pgdat);
extern unsigned long compaction_suitable(struct zone *zone, int order);
@ -80,9 +80,8 @@ static inline unsigned long try_to_compact_pages(struct zonelist *zonelist,
return COMPACT_CONTINUE;
}
static inline int compact_pgdat(pg_data_t *pgdat, int order)
static inline void compact_pgdat(pg_data_t *pgdat, int order)
{
return COMPACT_CONTINUE;
}
static inline void reset_isolation_suitable(pg_data_t *pgdat)

View File

@ -25,6 +25,7 @@
int firmware_map_add_early(u64 start, u64 end, const char *type);
int firmware_map_add_hotplug(u64 start, u64 end, const char *type);
int firmware_map_remove(u64 start, u64 end, const char *type);
#else /* CONFIG_FIRMWARE_MEMMAP */
@ -38,6 +39,11 @@ static inline int firmware_map_add_hotplug(u64 start, u64 end, const char *type)
return 0;
}
static inline int firmware_map_remove(u64 start, u64 end, const char *type)
{
return 0;
}
#endif /* CONFIG_FIRMWARE_MEMMAP */
#endif /* _LINUX_FIRMWARE_MAP_H */

View File

@ -219,12 +219,6 @@ static inline void zero_user(struct page *page,
zero_user_segments(page, start, start + size, 0, 0);
}
static inline void __deprecated memclear_highpage_flush(struct page *page,
unsigned int offset, unsigned int size)
{
zero_user(page, offset, size);
}
#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
static inline void copy_user_highpage(struct page *to, struct page *from,

View File

@ -113,7 +113,7 @@ extern void __split_huge_page_pmd(struct vm_area_struct *vma,
do { \
pmd_t *____pmd = (__pmd); \
anon_vma_lock_write(__anon_vma); \
anon_vma_unlock(__anon_vma); \
anon_vma_unlock_write(__anon_vma); \
BUG_ON(pmd_trans_splitting(*____pmd) || \
pmd_trans_huge(*____pmd)); \
} while (0)

View File

@ -43,9 +43,9 @@ int hugetlb_mempolicy_sysctl_handler(struct ctl_table *, int,
#endif
int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, struct vm_area_struct *);
int follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
struct page **, struct vm_area_struct **,
unsigned long *, int *, int, unsigned int flags);
long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
struct page **, struct vm_area_struct **,
unsigned long *, unsigned long *, long, unsigned int);
void unmap_hugepage_range(struct vm_area_struct *,
unsigned long, unsigned long, struct page *);
void __unmap_hugepage_range_final(struct mmu_gather *tlb,

View File

@ -16,9 +16,6 @@
struct stable_node;
struct mem_cgroup;
struct page *ksm_does_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address);
#ifdef CONFIG_KSM
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
unsigned long end, int advice, unsigned long *vm_flags);
@ -73,15 +70,8 @@ static inline void set_page_stable_node(struct page *page,
* We'd like to make this conditional on vma->vm_flags & VM_MERGEABLE,
* but what if the vma was unmerged while the page was swapped out?
*/
static inline int ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
struct anon_vma *anon_vma = page_anon_vma(page);
return anon_vma &&
(anon_vma->root != vma->anon_vma->root ||
page->index != linear_page_index(vma, address));
}
struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address);
int page_referenced_ksm(struct page *page,
struct mem_cgroup *memcg, unsigned long *vm_flags);
@ -113,10 +103,10 @@ static inline int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
return 0;
}
static inline int ksm_might_need_to_copy(struct page *page,
static inline struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
return 0;
return page;
}
static inline int page_referenced_ksm(struct page *page,

View File

@ -42,6 +42,7 @@ struct memblock {
extern struct memblock memblock;
extern int memblock_debug;
extern struct movablemem_map movablemem_map;
#define memblock_dbg(fmt, ...) \
if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
@ -60,6 +61,7 @@ int memblock_reserve(phys_addr_t base, phys_addr_t size);
void memblock_trim_memory(phys_addr_t align);
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
unsigned long *out_end_pfn, int *out_nid);

View File

@ -116,7 +116,6 @@ void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
* For memory reclaim.
*/
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec);
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
@ -321,12 +320,6 @@ mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
return 1;
}
static inline int
mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
{
return 1;
}
static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{

View File

@ -96,6 +96,7 @@ extern void __online_page_free(struct page *page);
#ifdef CONFIG_MEMORY_HOTREMOVE
extern bool is_pageblock_removable_nolock(struct page *page);
extern int arch_remove_memory(u64 start, u64 size);
#endif /* CONFIG_MEMORY_HOTREMOVE */
/* reasonably generic interface to expand the physical pages in a zone */
@ -173,17 +174,16 @@ static inline void arch_refresh_nodedata(int nid, pg_data_t *pgdat)
#endif /* CONFIG_NUMA */
#endif /* CONFIG_HAVE_ARCH_NODEDATA_EXTENSION */
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
extern void register_page_bootmem_info_node(struct pglist_data *pgdat);
#else
static inline void register_page_bootmem_info_node(struct pglist_data *pgdat)
{
}
static inline void put_page_bootmem(struct page *page)
{
}
#else
extern void register_page_bootmem_info_node(struct pglist_data *pgdat);
extern void put_page_bootmem(struct page *page);
#endif
extern void put_page_bootmem(struct page *page);
extern void get_page_bootmem(unsigned long ingo, struct page *page,
unsigned long type);
/*
* Lock for memory hotplug guarantees 1) all callbacks for memory hotplug
@ -233,6 +233,7 @@ static inline void unlock_memory_hotplug(void) {}
#ifdef CONFIG_MEMORY_HOTREMOVE
extern int is_mem_section_removable(unsigned long pfn, unsigned long nr_pages);
extern void try_offline_node(int nid);
#else
static inline int is_mem_section_removable(unsigned long pfn,
@ -240,6 +241,8 @@ static inline int is_mem_section_removable(unsigned long pfn,
{
return 0;
}
static inline void try_offline_node(int nid) {}
#endif /* CONFIG_MEMORY_HOTREMOVE */
extern int mem_online_node(int nid);
@ -247,7 +250,8 @@ extern int add_memory(int nid, u64 start, u64 size);
extern int arch_add_memory(int nid, u64 start, u64 size);
extern int offline_pages(unsigned long start_pfn, unsigned long nr_pages);
extern int offline_memory_block(struct memory_block *mem);
extern int remove_memory(u64 start, u64 size);
extern bool is_memblock_offlined(struct memory_block *mem);
extern int remove_memory(int nid, u64 start, u64 size);
extern int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
int nr_pages);
extern void sparse_remove_one_section(struct zone *zone, struct mem_section *ms);

View File

@ -40,11 +40,9 @@ extern void putback_movable_pages(struct list_head *l);
extern int migrate_page(struct address_space *,
struct page *, struct page *, enum migrate_mode);
extern int migrate_pages(struct list_head *l, new_page_t x,
unsigned long private, bool offlining,
enum migrate_mode mode, int reason);
unsigned long private, enum migrate_mode mode, int reason);
extern int migrate_huge_page(struct page *, new_page_t x,
unsigned long private, bool offlining,
enum migrate_mode mode);
unsigned long private, enum migrate_mode mode);
extern int fail_migrate_page(struct address_space *,
struct page *, struct page *);
@ -62,11 +60,11 @@ extern int migrate_huge_page_move_mapping(struct address_space *mapping,
static inline void putback_lru_pages(struct list_head *l) {}
static inline void putback_movable_pages(struct list_head *l) {}
static inline int migrate_pages(struct list_head *l, new_page_t x,
unsigned long private, bool offlining,
enum migrate_mode mode, int reason) { return -ENOSYS; }
unsigned long private, enum migrate_mode mode, int reason)
{ return -ENOSYS; }
static inline int migrate_huge_page(struct page *page, new_page_t x,
unsigned long private, bool offlining,
enum migrate_mode mode) { return -ENOSYS; }
unsigned long private, enum migrate_mode mode)
{ return -ENOSYS; }
static inline int migrate_prep(void) { return -ENOSYS; }
static inline int migrate_prep_local(void) { return -ENOSYS; }

View File

@ -87,6 +87,7 @@ extern unsigned int kobjsize(const void *objp);
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_POPULATE 0x00001000
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
@ -366,7 +367,7 @@ static inline struct page *compound_head(struct page *page)
* both from it and to it can be tracked, using atomic_inc_and_test
* and atomic_add_negative(-1).
*/
static inline void reset_page_mapcount(struct page *page)
static inline void page_mapcount_reset(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
@ -580,50 +581,11 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
* sets it, so none of the operations on it need to be atomic.
*/
/*
* page->flags layout:
*
* There are three possibilities for how page->flags get
* laid out. The first is for the normal case, without
* sparsemem. The second is for sparsemem when there is
* plenty of space for node and section. The last is when
* we have run out of space and have to fall back to an
* alternate (slower) way of determining the node.
*
* No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
* classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
* classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
*/
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTIONS_WIDTH SECTIONS_SHIFT
#else
#define SECTIONS_WIDTH 0
#endif
#define ZONES_WIDTH ZONES_SHIFT
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
#define NODES_WIDTH NODES_SHIFT
#else
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#error "Vmemmap: No space for nodes field in page flags"
#endif
#define NODES_WIDTH 0
#endif
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
/*
* We are going to use the flags for the page to node mapping if its in
* there. This includes the case where there is no node, so it is implicit.
*/
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
#define NODE_NOT_IN_PAGE_FLAGS
#endif
#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
/*
* Define the bit shifts to access each section. For non-existent
@ -633,6 +595,7 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
@ -654,6 +617,7 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
static inline enum zone_type page_zonenum(const struct page *page)
@ -661,6 +625,10 @@ static inline enum zone_type page_zonenum(const struct page *page)
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif
/*
* The identification function is only used by the buddy allocator for
* determining if two pages could be buddies. We are not really
@ -693,31 +661,48 @@ static inline int page_to_nid(const struct page *page)
#endif
#ifdef CONFIG_NUMA_BALANCING
static inline int page_xchg_last_nid(struct page *page, int nid)
#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
static inline int page_nid_xchg_last(struct page *page, int nid)
{
return xchg(&page->_last_nid, nid);
}
static inline int page_last_nid(struct page *page)
static inline int page_nid_last(struct page *page)
{
return page->_last_nid;
}
static inline void reset_page_last_nid(struct page *page)
static inline void page_nid_reset_last(struct page *page)
{
page->_last_nid = -1;
}
#else
static inline int page_xchg_last_nid(struct page *page, int nid)
static inline int page_nid_last(struct page *page)
{
return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
}
extern int page_nid_xchg_last(struct page *page, int nid);
static inline void page_nid_reset_last(struct page *page)
{
int nid = (1 << LAST_NID_SHIFT) - 1;
page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
}
#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
#else
static inline int page_nid_xchg_last(struct page *page, int nid)
{
return page_to_nid(page);
}
static inline int page_last_nid(struct page *page)
static inline int page_nid_last(struct page *page)
{
return page_to_nid(page);
}
static inline void reset_page_last_nid(struct page *page)
static inline void page_nid_reset_last(struct page *page)
{
}
#endif
@ -727,7 +712,7 @@ static inline struct zone *page_zone(const struct page *page)
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
@ -757,7 +742,7 @@ static inline void set_page_links(struct page *page, enum zone_type zone,
{
set_page_zone(page, zone);
set_page_node(page, node);
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#ifdef SECTION_IN_PAGE_FLAGS
set_page_section(page, pfn_to_section_nr(pfn));
#endif
}
@ -817,18 +802,7 @@ void page_address_init(void);
#define PAGE_MAPPING_KSM 2
#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
extern struct address_space swapper_space;
static inline struct address_space *page_mapping(struct page *page)
{
struct address_space *mapping = page->mapping;
VM_BUG_ON(PageSlab(page));
if (unlikely(PageSwapCache(page)))
mapping = &swapper_space;
else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
mapping = NULL;
return mapping;
}
extern struct address_space *page_mapping(struct page *page);
/* Neutral page->mapping pointer to address_space or anon_vma or other */
static inline void *page_rmapping(struct page *page)
@ -1035,18 +1009,18 @@ static inline int fixup_user_fault(struct task_struct *tsk,
}
#endif
extern int make_pages_present(unsigned long addr, unsigned long end);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, int write);
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, unsigned int foll_flags,
struct page **pages, struct vm_area_struct **vmas,
int *nonblocking);
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, int write, int force,
struct page **pages, struct vm_area_struct **vmas);
long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int foll_flags, struct page **pages,
struct vm_area_struct **vmas, int *nonblocking);
long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
int write, int force, struct page **pages,
struct vm_area_struct **vmas);
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
struct page **pages);
struct kvec;
@ -1359,6 +1333,24 @@ extern void free_bootmem_with_active_regions(int nid,
unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);
#define MOVABLEMEM_MAP_MAX MAX_NUMNODES
struct movablemem_entry {
unsigned long start_pfn; /* start pfn of memory segment */
unsigned long end_pfn; /* end pfn of memory segment (exclusive) */
};
struct movablemem_map {
bool acpi; /* true if using SRAT info */
int nr_map;
struct movablemem_entry map[MOVABLEMEM_MAP_MAX];
nodemask_t numa_nodes_hotplug; /* on which nodes we specify memory */
nodemask_t numa_nodes_kernel; /* on which nodes kernel resides in */
};
extern void __init insert_movablemem_map(unsigned long start_pfn,
unsigned long end_pfn);
extern int __init movablemem_map_overlap(unsigned long start_pfn,
unsigned long end_pfn);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
@ -1395,6 +1387,9 @@ extern void setup_per_cpu_pageset(void);
extern void zone_pcp_update(struct zone *zone);
extern void zone_pcp_reset(struct zone *zone);
/* page_alloc.c */
extern int min_free_kbytes;
/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
@ -1472,13 +1467,24 @@ extern int install_special_mapping(struct mm_struct *mm,
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff);
extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
unsigned long pgoff, unsigned long *populate);
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
/* Ignore errors */
(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif
/* These take the mm semaphore themselves */
extern unsigned long vm_brk(unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
@ -1623,8 +1629,17 @@ int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn);
struct page *follow_page(struct vm_area_struct *, unsigned long address,
unsigned int foll_flags);
struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int foll_flags,
unsigned int *page_mask);
static inline struct page *follow_page(struct vm_area_struct *vma,
unsigned long address, unsigned int foll_flags)
{
unsigned int unused_page_mask;
return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
}
#define FOLL_WRITE 0x01 /* check pte is writable */
#define FOLL_TOUCH 0x02 /* mark page accessed */
#define FOLL_GET 0x04 /* do get_page on page */
@ -1636,6 +1651,7 @@ struct page *follow_page(struct vm_area_struct *, unsigned long address,
#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
void *data);
@ -1707,7 +1723,11 @@ int vmemmap_populate_basepages(struct page *start_page,
unsigned long pages, int node);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(struct page *memmap, unsigned long nr_pages);
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
unsigned long size);
enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
@ -1720,7 +1740,7 @@ extern int unpoison_memory(unsigned long pfn);
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
extern void shake_page(struct page *p, int access);
extern atomic_long_t mce_bad_pages;
extern atomic_long_t num_poisoned_pages;
extern int soft_offline_page(struct page *page, int flags);
extern void dump_page(struct page *page);

View File

@ -12,6 +12,7 @@
#include <linux/cpumask.h>
#include <linux/page-debug-flags.h>
#include <linux/uprobes.h>
#include <linux/page-flags-layout.h>
#include <asm/page.h>
#include <asm/mmu.h>
@ -173,7 +174,7 @@ struct page {
void *shadow;
#endif
#ifdef CONFIG_NUMA_BALANCING
#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
int _last_nid;
#endif
}
@ -414,9 +415,9 @@ struct mm_struct {
#endif
#ifdef CONFIG_NUMA_BALANCING
/*
* numa_next_scan is the next time when the PTEs will me marked
* pte_numa to gather statistics and migrate pages to new nodes
* if necessary
* numa_next_scan is the next time that the PTEs will be marked
* pte_numa. NUMA hinting faults will gather statistics and migrate
* pages to new nodes if necessary.
*/
unsigned long numa_next_scan;

View File

@ -79,6 +79,8 @@ calc_vm_flag_bits(unsigned long flags)
{
return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) |
_calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) |
_calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED );
((flags & MAP_LOCKED) ? (VM_LOCKED | VM_POPULATE) : 0) |
(((flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE) ?
VM_POPULATE : 0);
}
#endif /* _LINUX_MMAN_H */

View File

@ -15,7 +15,7 @@
#include <linux/seqlock.h>
#include <linux/nodemask.h>
#include <linux/pageblock-flags.h>
#include <generated/bounds.h>
#include <linux/page-flags-layout.h>
#include <linux/atomic.h>
#include <asm/page.h>
@ -57,7 +57,9 @@ enum {
*/
MIGRATE_CMA,
#endif
#ifdef CONFIG_MEMORY_ISOLATION
MIGRATE_ISOLATE, /* can't allocate from here */
#endif
MIGRATE_TYPES
};
@ -308,24 +310,6 @@ enum zone_type {
#ifndef __GENERATING_BOUNDS_H
/*
* When a memory allocation must conform to specific limitations (such
* as being suitable for DMA) the caller will pass in hints to the
* allocator in the gfp_mask, in the zone modifier bits. These bits
* are used to select a priority ordered list of memory zones which
* match the requested limits. See gfp_zone() in include/linux/gfp.h
*/
#if MAX_NR_ZONES < 2
#define ZONES_SHIFT 0
#elif MAX_NR_ZONES <= 2
#define ZONES_SHIFT 1
#elif MAX_NR_ZONES <= 4
#define ZONES_SHIFT 2
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
#endif
struct zone {
/* Fields commonly accessed by the page allocator */
@ -543,6 +527,26 @@ static inline int zone_is_oom_locked(const struct zone *zone)
return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
static inline unsigned zone_end_pfn(const struct zone *zone)
{
return zone->zone_start_pfn + zone->spanned_pages;
}
static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
{
return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
}
static inline bool zone_is_initialized(struct zone *zone)
{
return !!zone->wait_table;
}
static inline bool zone_is_empty(struct zone *zone)
{
return zone->spanned_pages == 0;
}
/*
* The "priority" of VM scanning is how much of the queues we will scan in one
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
@ -752,11 +756,17 @@ typedef struct pglist_data {
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
#define node_end_pfn(nid) ({\
pg_data_t *__pgdat = NODE_DATA(nid);\
__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
})
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
{
return pgdat->node_start_pfn + pgdat->node_spanned_pages;
}
static inline bool pgdat_is_empty(pg_data_t *pgdat)
{
return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
}
#include <linux/memory_hotplug.h>
@ -1053,8 +1063,6 @@ static inline unsigned long early_pfn_to_nid(unsigned long pfn)
* PA_SECTION_SHIFT physical address to/from section number
* PFN_SECTION_SHIFT pfn to/from section number
*/
#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)

View File

@ -0,0 +1,88 @@
#ifndef PAGE_FLAGS_LAYOUT_H
#define PAGE_FLAGS_LAYOUT_H
#include <linux/numa.h>
#include <generated/bounds.h>
/*
* When a memory allocation must conform to specific limitations (such
* as being suitable for DMA) the caller will pass in hints to the
* allocator in the gfp_mask, in the zone modifier bits. These bits
* are used to select a priority ordered list of memory zones which
* match the requested limits. See gfp_zone() in include/linux/gfp.h
*/
#if MAX_NR_ZONES < 2
#define ZONES_SHIFT 0
#elif MAX_NR_ZONES <= 2
#define ZONES_SHIFT 1
#elif MAX_NR_ZONES <= 4
#define ZONES_SHIFT 2
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
#endif
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
/* SECTION_SHIFT #bits space required to store a section # */
#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
#endif /* CONFIG_SPARSEMEM */
/*
* page->flags layout:
*
* There are five possibilities for how page->flags get laid out. The first
* pair is for the normal case without sparsemem. The second pair is for
* sparsemem when there is plenty of space for node and section information.
* The last is when there is insufficient space in page->flags and a separate
* lookup is necessary.
*
* No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
* " plus space for last_nid: | NODE | ZONE | LAST_NID ... | FLAGS |
* classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
* " plus space for last_nid: | SECTION | NODE | ZONE | LAST_NID ... | FLAGS |
* classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
*/
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTIONS_WIDTH SECTIONS_SHIFT
#else
#define SECTIONS_WIDTH 0
#endif
#define ZONES_WIDTH ZONES_SHIFT
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
#define NODES_WIDTH NODES_SHIFT
#else
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#error "Vmemmap: No space for nodes field in page flags"
#endif
#define NODES_WIDTH 0
#endif
#ifdef CONFIG_NUMA_BALANCING
#define LAST_NID_SHIFT NODES_SHIFT
#else
#define LAST_NID_SHIFT 0
#endif
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT+LAST_NID_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
#define LAST_NID_WIDTH LAST_NID_SHIFT
#else
#define LAST_NID_WIDTH 0
#endif
/*
* We are going to use the flags for the page to node mapping if its in
* there. This includes the case where there is no node, so it is implicit.
*/
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
#define NODE_NOT_IN_PAGE_FLAGS
#endif
#if defined(CONFIG_NUMA_BALANCING) && LAST_NID_WIDTH == 0
#define LAST_NID_NOT_IN_PAGE_FLAGS
#endif
#endif /* _LINUX_PAGE_FLAGS_LAYOUT */

View File

@ -1,6 +1,25 @@
#ifndef __LINUX_PAGEISOLATION_H
#define __LINUX_PAGEISOLATION_H
#ifdef CONFIG_MEMORY_ISOLATION
static inline bool is_migrate_isolate_page(struct page *page)
{
return get_pageblock_migratetype(page) == MIGRATE_ISOLATE;
}
static inline bool is_migrate_isolate(int migratetype)
{
return migratetype == MIGRATE_ISOLATE;
}
#else
static inline bool is_migrate_isolate_page(struct page *page)
{
return false;
}
static inline bool is_migrate_isolate(int migratetype)
{
return false;
}
#endif
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
bool skip_hwpoisoned_pages);

View File

@ -537,6 +537,7 @@ struct dev_pm_info {
unsigned int irq_safe:1;
unsigned int use_autosuspend:1;
unsigned int timer_autosuspends:1;
unsigned int memalloc_noio:1;
enum rpm_request request;
enum rpm_status runtime_status;
int runtime_error;

View File

@ -47,6 +47,7 @@ extern void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
extern unsigned long pm_runtime_autosuspend_expiration(struct device *dev);
extern void pm_runtime_update_max_time_suspended(struct device *dev,
s64 delta_ns);
extern void pm_runtime_set_memalloc_noio(struct device *dev, bool enable);
static inline bool pm_children_suspended(struct device *dev)
{
@ -156,6 +157,8 @@ static inline void pm_runtime_set_autosuspend_delay(struct device *dev,
int delay) {}
static inline unsigned long pm_runtime_autosuspend_expiration(
struct device *dev) { return 0; }
static inline void pm_runtime_set_memalloc_noio(struct device *dev,
bool enable){}
#endif /* !CONFIG_PM_RUNTIME */

View File

@ -123,7 +123,7 @@ static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
down_write(&anon_vma->root->rwsem);
}
static inline void anon_vma_unlock(struct anon_vma *anon_vma)
static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
{
up_write(&anon_vma->root->rwsem);
}

View File

@ -51,6 +51,7 @@ struct sched_param {
#include <linux/cred.h>
#include <linux/llist.h>
#include <linux/uidgid.h>
#include <linux/gfp.h>
#include <asm/processor.h>
@ -1791,6 +1792,7 @@ extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut,
#define PF_FROZEN 0x00010000 /* frozen for system suspend */
#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000 /* I am kswapd */
#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
@ -1828,6 +1830,26 @@ extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut,
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)
/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
static inline gfp_t memalloc_noio_flags(gfp_t flags)
{
if (unlikely(current->flags & PF_MEMALLOC_NOIO))
flags &= ~__GFP_IO;
return flags;
}
static inline unsigned int memalloc_noio_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
current->flags |= PF_MEMALLOC_NOIO;
return flags;
}
static inline void memalloc_noio_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
}
/*
* task->jobctl flags
*/

View File

@ -8,7 +8,7 @@
#include <linux/memcontrol.h>
#include <linux/sched.h>
#include <linux/node.h>
#include <linux/fs.h>
#include <linux/atomic.h>
#include <asm/page.h>
@ -156,7 +156,7 @@ enum {
SWP_SCANNING = (1 << 8), /* refcount in scan_swap_map */
};
#define SWAP_CLUSTER_MAX 32
#define SWAP_CLUSTER_MAX 32UL
#define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX
/*
@ -202,6 +202,18 @@ struct swap_info_struct {
unsigned long *frontswap_map; /* frontswap in-use, one bit per page */
atomic_t frontswap_pages; /* frontswap pages in-use counter */
#endif
spinlock_t lock; /*
* protect map scan related fields like
* swap_map, lowest_bit, highest_bit,
* inuse_pages, cluster_next,
* cluster_nr, lowest_alloc and
* highest_alloc. other fields are only
* changed at swapon/swapoff, so are
* protected by swap_lock. changing
* flags need hold this lock and
* swap_lock. If both locks need hold,
* hold swap_lock first.
*/
};
struct swap_list_t {
@ -209,15 +221,12 @@ struct swap_list_t {
int next; /* swapfile to be used next */
};
/* Swap 50% full? Release swapcache more aggressively.. */
#define vm_swap_full() (nr_swap_pages*2 < total_swap_pages)
/* linux/mm/page_alloc.c */
extern unsigned long totalram_pages;
extern unsigned long totalreserve_pages;
extern unsigned long dirty_balance_reserve;
extern unsigned int nr_free_buffer_pages(void);
extern unsigned int nr_free_pagecache_pages(void);
extern unsigned long nr_free_buffer_pages(void);
extern unsigned long nr_free_pagecache_pages(void);
/* Definition of global_page_state not available yet */
#define nr_free_pages() global_page_state(NR_FREE_PAGES)
@ -266,7 +275,7 @@ extern unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
extern unsigned long shrink_all_memory(unsigned long nr_pages);
extern int vm_swappiness;
extern int remove_mapping(struct address_space *mapping, struct page *page);
extern long vm_total_pages;
extern unsigned long vm_total_pages;
#ifdef CONFIG_NUMA
extern int zone_reclaim_mode;
@ -330,8 +339,9 @@ int generic_swapfile_activate(struct swap_info_struct *, struct file *,
sector_t *);
/* linux/mm/swap_state.c */
extern struct address_space swapper_space;
#define total_swapcache_pages swapper_space.nrpages
extern struct address_space swapper_spaces[];
#define swap_address_space(entry) (&swapper_spaces[swp_type(entry)])
extern unsigned long total_swapcache_pages(void);
extern void show_swap_cache_info(void);
extern int add_to_swap(struct page *);
extern int add_to_swap_cache(struct page *, swp_entry_t, gfp_t);
@ -346,8 +356,20 @@ extern struct page *swapin_readahead(swp_entry_t, gfp_t,
struct vm_area_struct *vma, unsigned long addr);
/* linux/mm/swapfile.c */
extern long nr_swap_pages;
extern atomic_long_t nr_swap_pages;
extern long total_swap_pages;
/* Swap 50% full? Release swapcache more aggressively.. */
static inline bool vm_swap_full(void)
{
return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages;
}
static inline long get_nr_swap_pages(void)
{
return atomic_long_read(&nr_swap_pages);
}
extern void si_swapinfo(struct sysinfo *);
extern swp_entry_t get_swap_page(void);
extern swp_entry_t get_swap_page_of_type(int);
@ -380,9 +402,10 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
#else /* CONFIG_SWAP */
#define nr_swap_pages 0L
#define get_nr_swap_pages() 0L
#define total_swap_pages 0L
#define total_swapcache_pages 0UL
#define total_swapcache_pages() 0UL
#define vm_swap_full() 0
#define si_swapinfo(val) \
do { (val)->freeswap = (val)->totalswap = 0; } while (0)

View File

@ -36,7 +36,6 @@ enum vm_event_item { PGPGIN, PGPGOUT, PSWPIN, PSWPOUT,
#endif
PGINODESTEAL, SLABS_SCANNED, KSWAPD_INODESTEAL,
KSWAPD_LOW_WMARK_HIT_QUICKLY, KSWAPD_HIGH_WMARK_HIT_QUICKLY,
KSWAPD_SKIP_CONGESTION_WAIT,
PAGEOUTRUN, ALLOCSTALL, PGROTATED,
#ifdef CONFIG_NUMA_BALANCING
NUMA_PTE_UPDATES,

View File

@ -85,7 +85,7 @@ static inline void vm_events_fold_cpu(int cpu)
#define count_vm_numa_events(x, y) count_vm_events(x, y)
#else
#define count_vm_numa_event(x) do {} while (0)
#define count_vm_numa_events(x, y) do {} while (0)
#define count_vm_numa_events(x, y) do { (void)(y); } while (0)
#endif /* CONFIG_NUMA_BALANCING */
#define __count_zone_vm_events(item, zone, delta) \

View File

@ -967,11 +967,11 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong *raddr,
unsigned long flags;
unsigned long prot;
int acc_mode;
unsigned long user_addr;
struct ipc_namespace *ns;
struct shm_file_data *sfd;
struct path path;
fmode_t f_mode;
unsigned long populate = 0;
err = -EINVAL;
if (shmid < 0)
@ -1070,13 +1070,15 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong *raddr,
goto invalid;
}
user_addr = do_mmap_pgoff(file, addr, size, prot, flags, 0);
*raddr = user_addr;
addr = do_mmap_pgoff(file, addr, size, prot, flags, 0, &populate);
*raddr = addr;
err = 0;
if (IS_ERR_VALUE(user_addr))
err = (long)user_addr;
if (IS_ERR_VALUE(addr))
err = (long)addr;
invalid:
up_write(&current->mm->mmap_sem);
if (populate)
mm_populate(addr, populate);
out_fput:
fput(file);

View File

@ -1132,18 +1132,28 @@ EXPORT_SYMBOL_GPL(kick_process);
*/
static int select_fallback_rq(int cpu, struct task_struct *p)
{
const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
int nid = cpu_to_node(cpu);
const struct cpumask *nodemask = NULL;
enum { cpuset, possible, fail } state = cpuset;
int dest_cpu;
/* Look for allowed, online CPU in same node. */
for_each_cpu(dest_cpu, nodemask) {
if (!cpu_online(dest_cpu))
continue;
if (!cpu_active(dest_cpu))
continue;
if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
return dest_cpu;
/*
* If the node that the cpu is on has been offlined, cpu_to_node()
* will return -1. There is no cpu on the node, and we should
* select the cpu on the other node.
*/
if (nid != -1) {
nodemask = cpumask_of_node(nid);
/* Look for allowed, online CPU in same node. */
for_each_cpu(dest_cpu, nodemask) {
if (!cpu_online(dest_cpu))
continue;
if (!cpu_active(dest_cpu))
continue;
if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
return dest_cpu;
}
}
for (;;) {

View File

@ -105,7 +105,6 @@ extern char core_pattern[];
extern unsigned int core_pipe_limit;
#endif
extern int pid_max;
extern int min_free_kbytes;
extern int pid_max_min, pid_max_max;
extern int sysctl_drop_caches;
extern int percpu_pagelist_fraction;

View File

@ -162,10 +162,16 @@ config MOVABLE_NODE
Say Y here if you want to hotplug a whole node.
Say N here if you want kernel to use memory on all nodes evenly.
#
# Only be set on architectures that have completely implemented memory hotplug
# feature. If you are not sure, don't touch it.
#
config HAVE_BOOTMEM_INFO_NODE
def_bool n
# eventually, we can have this option just 'select SPARSEMEM'
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"
select MEMORY_ISOLATION
depends on SPARSEMEM || X86_64_ACPI_NUMA
depends on HOTPLUG && ARCH_ENABLE_MEMORY_HOTPLUG
depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390)
@ -176,6 +182,8 @@ config MEMORY_HOTPLUG_SPARSE
config MEMORY_HOTREMOVE
bool "Allow for memory hot remove"
select MEMORY_ISOLATION
select HAVE_BOOTMEM_INFO_NODE if X86_64
depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
depends on MIGRATION

View File

@ -15,6 +15,7 @@
#include <linux/sysctl.h>
#include <linux/sysfs.h>
#include <linux/balloon_compaction.h>
#include <linux/page-isolation.h>
#include "internal.h"
#ifdef CONFIG_COMPACTION
@ -85,7 +86,7 @@ static inline bool isolation_suitable(struct compact_control *cc,
static void __reset_isolation_suitable(struct zone *zone)
{
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
unsigned long end_pfn = zone_end_pfn(zone);
unsigned long pfn;
zone->compact_cached_migrate_pfn = start_pfn;
@ -215,7 +216,10 @@ static bool suitable_migration_target(struct page *page)
int migratetype = get_pageblock_migratetype(page);
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
if (migratetype == MIGRATE_RESERVE)
return false;
if (is_migrate_isolate(migratetype))
return false;
/* If the page is a large free page, then allow migration */
@ -611,8 +615,7 @@ check_compact_cluster:
continue;
next_pageblock:
low_pfn += pageblock_nr_pages;
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
last_pageblock_nr = pageblock_nr;
}
@ -644,7 +647,7 @@ static void isolate_freepages(struct zone *zone,
struct compact_control *cc)
{
struct page *page;
unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
int nr_freepages = cc->nr_freepages;
struct list_head *freelist = &cc->freepages;
@ -663,7 +666,7 @@ static void isolate_freepages(struct zone *zone,
*/
high_pfn = min(low_pfn, pfn);
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
z_end_pfn = zone_end_pfn(zone);
/*
* Isolate free pages until enough are available to migrate the
@ -706,7 +709,7 @@ static void isolate_freepages(struct zone *zone,
* only scans within a pageblock
*/
end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
end_pfn = min(end_pfn, zone_end_pfn);
end_pfn = min(end_pfn, z_end_pfn);
isolated = isolate_freepages_block(cc, pfn, end_pfn,
freelist, false);
nr_freepages += isolated;
@ -795,7 +798,7 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
/* Only scan within a pageblock boundary */
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
/* Do not cross the free scanner or scan within a memory hole */
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
@ -920,7 +923,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc)
{
int ret;
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
unsigned long end_pfn = zone_end_pfn(zone);
ret = compaction_suitable(zone, cc->order);
switch (ret) {
@ -977,7 +980,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc)
nr_migrate = cc->nr_migratepages;
err = migrate_pages(&cc->migratepages, compaction_alloc,
(unsigned long)cc, false,
(unsigned long)cc,
cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
MR_COMPACTION);
update_nr_listpages(cc);
@ -1086,7 +1089,7 @@ unsigned long try_to_compact_pages(struct zonelist *zonelist,
/* Compact all zones within a node */
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
{
int zoneid;
struct zone *zone;
@ -1119,28 +1122,26 @@ static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
VM_BUG_ON(!list_empty(&cc->freepages));
VM_BUG_ON(!list_empty(&cc->migratepages));
}
return 0;
}
int compact_pgdat(pg_data_t *pgdat, int order)
void compact_pgdat(pg_data_t *pgdat, int order)
{
struct compact_control cc = {
.order = order,
.sync = false,
};
return __compact_pgdat(pgdat, &cc);
__compact_pgdat(pgdat, &cc);
}
static int compact_node(int nid)
static void compact_node(int nid)
{
struct compact_control cc = {
.order = -1,
.sync = true,
};
return __compact_pgdat(NODE_DATA(nid), &cc);
__compact_pgdat(NODE_DATA(nid), &cc);
}
/* Compact all nodes in the system */

View File

@ -17,6 +17,7 @@
#include <linux/fadvise.h>
#include <linux/writeback.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <asm/unistd.h>
@ -120,9 +121,22 @@ SYSCALL_DEFINE(fadvise64_64)(int fd, loff_t offset, loff_t len, int advice)
start_index = (offset+(PAGE_CACHE_SIZE-1)) >> PAGE_CACHE_SHIFT;
end_index = (endbyte >> PAGE_CACHE_SHIFT);
if (end_index >= start_index)
invalidate_mapping_pages(mapping, start_index,
if (end_index >= start_index) {
unsigned long count = invalidate_mapping_pages(mapping,
start_index, end_index);
/*
* If fewer pages were invalidated than expected then
* it is possible that some of the pages were on
* a per-cpu pagevec for a remote CPU. Drain all
* pagevecs and try again.
*/
if (count < (end_index - start_index + 1)) {
lru_add_drain_all();
invalidate_mapping_pages(mapping, start_index,
end_index);
}
}
break;
default:
ret = -EINVAL;

View File

@ -129,6 +129,7 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
struct vm_area_struct *vma;
int err = -EINVAL;
int has_write_lock = 0;
vm_flags_t vm_flags;
if (prot)
return err;
@ -160,15 +161,11 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
/*
* Make sure the vma is shared, that it supports prefaulting,
* and that the remapped range is valid and fully within
* the single existing vma. vm_private_data is used as a
* swapout cursor in a VM_NONLINEAR vma.
* the single existing vma.
*/
if (!vma || !(vma->vm_flags & VM_SHARED))
goto out;
if (vma->vm_private_data && !(vma->vm_flags & VM_NONLINEAR))
goto out;
if (!vma->vm_ops || !vma->vm_ops->remap_pages)
goto out;
@ -177,6 +174,13 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
/* Must set VM_NONLINEAR before any pages are populated. */
if (!(vma->vm_flags & VM_NONLINEAR)) {
/*
* vm_private_data is used as a swapout cursor
* in a VM_NONLINEAR vma.
*/
if (vma->vm_private_data)
goto out;
/* Don't need a nonlinear mapping, exit success */
if (pgoff == linear_page_index(vma, start)) {
err = 0;
@ -184,6 +188,7 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
}
if (!has_write_lock) {
get_write_lock:
up_read(&mm->mmap_sem);
down_write(&mm->mmap_sem);
has_write_lock = 1;
@ -199,9 +204,10 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
unsigned long addr;
struct file *file = get_file(vma->vm_file);
flags &= MAP_NONBLOCK;
addr = mmap_region(file, start, size,
flags, vma->vm_flags, pgoff);
vm_flags = vma->vm_flags;
if (!(flags & MAP_NONBLOCK))
vm_flags |= VM_POPULATE;
addr = mmap_region(file, start, size, vm_flags, pgoff);
fput(file);
if (IS_ERR_VALUE(addr)) {
err = addr;
@ -220,32 +226,26 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
mutex_unlock(&mapping->i_mmap_mutex);
}
if (!(flags & MAP_NONBLOCK) && !(vma->vm_flags & VM_POPULATE)) {
if (!has_write_lock)
goto get_write_lock;
vma->vm_flags |= VM_POPULATE;
}
if (vma->vm_flags & VM_LOCKED) {
/*
* drop PG_Mlocked flag for over-mapped range
*/
vm_flags_t saved_flags = vma->vm_flags;
if (!has_write_lock)
goto get_write_lock;
vm_flags = vma->vm_flags;
munlock_vma_pages_range(vma, start, start + size);
vma->vm_flags = saved_flags;
vma->vm_flags = vm_flags;
}
mmu_notifier_invalidate_range_start(mm, start, start + size);
err = vma->vm_ops->remap_pages(vma, start, size, pgoff);
mmu_notifier_invalidate_range_end(mm, start, start + size);
if (!err && !(flags & MAP_NONBLOCK)) {
if (vma->vm_flags & VM_LOCKED) {
/*
* might be mapping previously unmapped range of file
*/
mlock_vma_pages_range(vma, start, start + size);
} else {
if (unlikely(has_write_lock)) {
downgrade_write(&mm->mmap_sem);
has_write_lock = 0;
}
make_pages_present(start, start+size);
}
}
/*
* We can't clear VM_NONLINEAR because we'd have to do
@ -254,10 +254,13 @@ SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
*/
out:
vm_flags = vma->vm_flags;
if (likely(!has_write_lock))
up_read(&mm->mmap_sem);
else
up_write(&mm->mmap_sem);
if (!err && ((vm_flags & VM_LOCKED) || !(flags & MAP_NONBLOCK)))
mm_populate(start, size);
return err;
}

View File

@ -20,6 +20,7 @@
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/migrate.h>
#include <linux/hashtable.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
@ -62,12 +63,11 @@ static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
static int khugepaged(void *none);
static int mm_slots_hash_init(void);
static int khugepaged_slab_init(void);
static void khugepaged_slab_free(void);
#define MM_SLOTS_HASH_HEADS 1024
static struct hlist_head *mm_slots_hash __read_mostly;
#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
static struct kmem_cache *mm_slot_cache __read_mostly;
/**
@ -105,7 +105,6 @@ static int set_recommended_min_free_kbytes(void)
struct zone *zone;
int nr_zones = 0;
unsigned long recommended_min;
extern int min_free_kbytes;
if (!khugepaged_enabled())
return 0;
@ -634,12 +633,6 @@ static int __init hugepage_init(void)
if (err)
goto out;
err = mm_slots_hash_init();
if (err) {
khugepaged_slab_free();
goto out;
}
register_shrinker(&huge_zero_page_shrinker);
/*
@ -1302,7 +1295,6 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
int target_nid;
int current_nid = -1;
bool migrated;
bool page_locked = false;
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp)))
@ -1324,7 +1316,6 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
/* Acquire the page lock to serialise THP migrations */
spin_unlock(&mm->page_table_lock);
lock_page(page);
page_locked = true;
/* Confirm the PTE did not while locked */
spin_lock(&mm->page_table_lock);
@ -1337,34 +1328,26 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
/* Migrate the THP to the requested node */
migrated = migrate_misplaced_transhuge_page(mm, vma,
pmdp, pmd, addr,
page, target_nid);
if (migrated)
current_nid = target_nid;
else {
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp))) {
unlock_page(page);
goto out_unlock;
}
goto clear_pmdnuma;
}
pmdp, pmd, addr, page, target_nid);
if (!migrated)
goto check_same;
task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
task_numa_fault(target_nid, HPAGE_PMD_NR, true);
return 0;
check_same:
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp)))
goto out_unlock;
clear_pmdnuma:
pmd = pmd_mknonnuma(pmd);
set_pmd_at(mm, haddr, pmdp, pmd);
VM_BUG_ON(pmd_numa(*pmdp));
update_mmu_cache_pmd(vma, addr, pmdp);
if (page_locked)
unlock_page(page);
out_unlock:
spin_unlock(&mm->page_table_lock);
if (current_nid != -1)
task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
task_numa_fault(current_nid, HPAGE_PMD_NR, false);
return 0;
}
@ -1656,7 +1639,7 @@ static void __split_huge_page_refcount(struct page *page)
page_tail->mapping = page->mapping;
page_tail->index = page->index + i;
page_xchg_last_nid(page_tail, page_last_nid(page));
page_nid_xchg_last(page_tail, page_nid_last(page));
BUG_ON(!PageAnon(page_tail));
BUG_ON(!PageUptodate(page_tail));
@ -1846,7 +1829,7 @@ int split_huge_page(struct page *page)
BUG_ON(PageCompound(page));
out_unlock:
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
put_anon_vma(anon_vma);
out:
return ret;
@ -1908,12 +1891,6 @@ static int __init khugepaged_slab_init(void)
return 0;
}
static void __init khugepaged_slab_free(void)
{
kmem_cache_destroy(mm_slot_cache);
mm_slot_cache = NULL;
}
static inline struct mm_slot *alloc_mm_slot(void)
{
if (!mm_slot_cache) /* initialization failed */
@ -1926,47 +1903,23 @@ static inline void free_mm_slot(struct mm_slot *mm_slot)
kmem_cache_free(mm_slot_cache, mm_slot);
}
static int __init mm_slots_hash_init(void)
{
mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
GFP_KERNEL);
if (!mm_slots_hash)
return -ENOMEM;
return 0;
}
#if 0
static void __init mm_slots_hash_free(void)
{
kfree(mm_slots_hash);
mm_slots_hash = NULL;
}
#endif
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
struct mm_slot *mm_slot;
struct hlist_head *bucket;
struct hlist_node *node;
bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
% MM_SLOTS_HASH_HEADS];
hlist_for_each_entry(mm_slot, node, bucket, hash) {
hash_for_each_possible(mm_slots_hash, mm_slot, node, hash, (unsigned long)mm)
if (mm == mm_slot->mm)
return mm_slot;
}
return NULL;
}
static void insert_to_mm_slots_hash(struct mm_struct *mm,
struct mm_slot *mm_slot)
{
struct hlist_head *bucket;
bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
% MM_SLOTS_HASH_HEADS];
mm_slot->mm = mm;
hlist_add_head(&mm_slot->hash, bucket);
hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}
static inline int khugepaged_test_exit(struct mm_struct *mm)
@ -2035,7 +1988,7 @@ void __khugepaged_exit(struct mm_struct *mm)
spin_lock(&khugepaged_mm_lock);
mm_slot = get_mm_slot(mm);
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
hlist_del(&mm_slot->hash);
hash_del(&mm_slot->hash);
list_del(&mm_slot->mm_node);
free = 1;
}
@ -2368,7 +2321,7 @@ static void collapse_huge_page(struct mm_struct *mm,
BUG_ON(!pmd_none(*pmd));
set_pmd_at(mm, address, pmd, _pmd);
spin_unlock(&mm->page_table_lock);
anon_vma_unlock(vma->anon_vma);
anon_vma_unlock_write(vma->anon_vma);
goto out;
}
@ -2376,7 +2329,7 @@ static void collapse_huge_page(struct mm_struct *mm,
* All pages are isolated and locked so anon_vma rmap
* can't run anymore.
*/
anon_vma_unlock(vma->anon_vma);
anon_vma_unlock_write(vma->anon_vma);
__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
pte_unmap(pte);
@ -2423,7 +2376,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
struct page *page;
unsigned long _address;
spinlock_t *ptl;
int node = -1;
int node = NUMA_NO_NODE;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
@ -2453,7 +2406,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
* be more sophisticated and look at more pages,
* but isn't for now.
*/
if (node == -1)
if (node == NUMA_NO_NODE)
node = page_to_nid(page);
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
@ -2484,7 +2437,7 @@ static void collect_mm_slot(struct mm_slot *mm_slot)
if (khugepaged_test_exit(mm)) {
/* free mm_slot */
hlist_del(&mm_slot->hash);
hash_del(&mm_slot->hash);
list_del(&mm_slot->mm_node);
/*

View File

@ -1293,8 +1293,7 @@ static void __init report_hugepages(void)
for_each_hstate(h) {
char buf[32];
printk(KERN_INFO "HugeTLB registered %s page size, "
"pre-allocated %ld pages\n",
pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
memfmt(buf, huge_page_size(h)),
h->free_huge_pages);
}
@ -1702,8 +1701,7 @@ static void __init hugetlb_sysfs_init(void)
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
hstate_kobjs, &hstate_attr_group);
if (err)
printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
h->name);
pr_err("Hugetlb: Unable to add hstate %s", h->name);
}
}
@ -1826,9 +1824,8 @@ void hugetlb_register_node(struct node *node)
nhs->hstate_kobjs,
&per_node_hstate_attr_group);
if (err) {
printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
" for node %d\n",
h->name, node->dev.id);
pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
h->name, node->dev.id);
hugetlb_unregister_node(node);
break;
}
@ -1924,7 +1921,7 @@ void __init hugetlb_add_hstate(unsigned order)
unsigned long i;
if (size_to_hstate(PAGE_SIZE << order)) {
printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
pr_warning("hugepagesz= specified twice, ignoring\n");
return;
}
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
@ -1960,8 +1957,8 @@ static int __init hugetlb_nrpages_setup(char *s)
mhp = &parsed_hstate->max_huge_pages;
if (mhp == last_mhp) {
printk(KERN_WARNING "hugepages= specified twice without "
"interleaving hugepagesz=, ignoring\n");
pr_warning("hugepages= specified twice without "
"interleaving hugepagesz=, ignoring\n");
return 1;
}
@ -2692,9 +2689,8 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
* COW. Warn that such a situation has occurred as it may not be obvious
*/
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
printk(KERN_WARNING
"PID %d killed due to inadequate hugepage pool\n",
current->pid);
pr_warning("PID %d killed due to inadequate hugepage pool\n",
current->pid);
return ret;
}
@ -2924,14 +2920,14 @@ follow_huge_pud(struct mm_struct *mm, unsigned long address,
return NULL;
}
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i,
unsigned int flags)
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, unsigned long *nr_pages,
long i, unsigned int flags)
{
unsigned long pfn_offset;
unsigned long vaddr = *position;
int remainder = *length;
unsigned long remainder = *nr_pages;
struct hstate *h = hstate_vma(vma);
spin_lock(&mm->page_table_lock);
@ -3001,7 +2997,7 @@ same_page:
}
}
spin_unlock(&mm->page_table_lock);
*length = remainder;
*nr_pages = remainder;
*position = vaddr;
return i ? i : -EFAULT;

View File

@ -162,8 +162,8 @@ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node *rb_parent);
#ifdef CONFIG_MMU
extern long mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern long __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking);
extern void munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
static inline void munlock_vma_pages_all(struct vm_area_struct *vma)

View File

@ -1300,9 +1300,8 @@ static void kmemleak_scan(void)
*/
lock_memory_hotplug();
for_each_online_node(i) {
pg_data_t *pgdat = NODE_DATA(i);
unsigned long start_pfn = pgdat->node_start_pfn;
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
unsigned long start_pfn = node_start_pfn(i);
unsigned long end_pfn = node_end_pfn(i);
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {

703
mm/ksm.c

File diff suppressed because it is too large Load Diff

View File

@ -16,6 +16,9 @@
#include <linux/ksm.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
/*
* Any behaviour which results in changes to the vma->vm_flags needs to
@ -131,6 +134,84 @@ out:
return error;
}
#ifdef CONFIG_SWAP
static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
{
pte_t *orig_pte;
struct vm_area_struct *vma = walk->private;
unsigned long index;
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
return 0;
for (index = start; index != end; index += PAGE_SIZE) {
pte_t pte;
swp_entry_t entry;
struct page *page;
spinlock_t *ptl;
orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
pte = *(orig_pte + ((index - start) / PAGE_SIZE));
pte_unmap_unlock(orig_pte, ptl);
if (pte_present(pte) || pte_none(pte) || pte_file(pte))
continue;
entry = pte_to_swp_entry(pte);
if (unlikely(non_swap_entry(entry)))
continue;
page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
vma, index);
if (page)
page_cache_release(page);
}
return 0;
}
static void force_swapin_readahead(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_walk walk = {
.mm = vma->vm_mm,
.pmd_entry = swapin_walk_pmd_entry,
.private = vma,
};
walk_page_range(start, end, &walk);
lru_add_drain(); /* Push any new pages onto the LRU now */
}
static void force_shm_swapin_readahead(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct address_space *mapping)
{
pgoff_t index;
struct page *page;
swp_entry_t swap;
for (; start < end; start += PAGE_SIZE) {
index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
page = find_get_page(mapping, index);
if (!radix_tree_exceptional_entry(page)) {
if (page)
page_cache_release(page);
continue;
}
swap = radix_to_swp_entry(page);
page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
NULL, 0);
if (page)
page_cache_release(page);
}
lru_add_drain(); /* Push any new pages onto the LRU now */
}
#endif /* CONFIG_SWAP */
/*
* Schedule all required I/O operations. Do not wait for completion.
*/
@ -140,6 +221,18 @@ static long madvise_willneed(struct vm_area_struct * vma,
{
struct file *file = vma->vm_file;
#ifdef CONFIG_SWAP
if (!file || mapping_cap_swap_backed(file->f_mapping)) {
*prev = vma;
if (!file)
force_swapin_readahead(vma, start, end);
else
force_shm_swapin_readahead(vma, start, end,
file->f_mapping);
return 0;
}
#endif
if (!file)
return -EBADF;
@ -371,6 +464,7 @@ SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
int error = -EINVAL;
int write;
size_t len;
struct blk_plug plug;
#ifdef CONFIG_MEMORY_FAILURE
if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
@ -410,18 +504,19 @@ SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
if (vma && start > vma->vm_start)
prev = vma;
blk_start_plug(&plug);
for (;;) {
/* Still start < end. */
error = -ENOMEM;
if (!vma)
goto out;
goto out_plug;
/* Here start < (end|vma->vm_end). */
if (start < vma->vm_start) {
unmapped_error = -ENOMEM;
start = vma->vm_start;
if (start >= end)
goto out;
goto out_plug;
}
/* Here vma->vm_start <= start < (end|vma->vm_end) */
@ -432,18 +527,20 @@ SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = madvise_vma(vma, &prev, start, tmp, behavior);
if (error)
goto out;
goto out_plug;
start = tmp;
if (prev && start < prev->vm_end)
start = prev->vm_end;
error = unmapped_error;
if (start >= end)
goto out;
goto out_plug;
if (prev)
vma = prev->vm_next;
else /* madvise_remove dropped mmap_sem */
vma = find_vma(current->mm, start);
}
out_plug:
blk_finish_plug(&plug);
out:
if (write)
up_write(&current->mm->mmap_sem);

View File

@ -92,9 +92,58 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
*
* Find @size free area aligned to @align in the specified range and node.
*
* If we have CONFIG_HAVE_MEMBLOCK_NODE_MAP defined, we need to check if the
* memory we found if not in hotpluggable ranges.
*
* RETURNS:
* Found address on success, %0 on failure.
*/
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align, int nid)
{
phys_addr_t this_start, this_end, cand;
u64 i;
int curr = movablemem_map.nr_map - 1;
/* pump up @end */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
end = memblock.current_limit;
/* avoid allocating the first page */
start = max_t(phys_addr_t, start, PAGE_SIZE);
end = max(start, end);
for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
this_start = clamp(this_start, start, end);
this_end = clamp(this_end, start, end);
restart:
if (this_end <= this_start || this_end < size)
continue;
for (; curr >= 0; curr--) {
if ((movablemem_map.map[curr].start_pfn << PAGE_SHIFT)
< this_end)
break;
}
cand = round_down(this_end - size, align);
if (curr >= 0 &&
cand < movablemem_map.map[curr].end_pfn << PAGE_SHIFT) {
this_end = movablemem_map.map[curr].start_pfn
<< PAGE_SHIFT;
goto restart;
}
if (cand >= this_start)
return cand;
}
return 0;
}
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align, int nid)
@ -123,6 +172,7 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
}
return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
/**
* memblock_find_in_range - find free area in given range

View File

@ -120,6 +120,14 @@ static const char * const mem_cgroup_events_names[] = {
"pgmajfault",
};
static const char * const mem_cgroup_lru_names[] = {
"inactive_anon",
"active_anon",
"inactive_file",
"active_file",
"unevictable",
};
/*
* Per memcg event counter is incremented at every pagein/pageout. With THP,
* it will be incremated by the number of pages. This counter is used for
@ -172,7 +180,7 @@ struct mem_cgroup_per_node {
};
struct mem_cgroup_lru_info {
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
struct mem_cgroup_per_node *nodeinfo[0];
};
/*
@ -275,17 +283,6 @@ struct mem_cgroup {
* the counter to account for kernel memory usage.
*/
struct res_counter kmem;
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
struct mem_cgroup_lru_info info;
int last_scanned_node;
#if MAX_NUMNODES > 1
nodemask_t scan_nodes;
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
/*
* Should the accounting and control be hierarchical, per subtree?
*/
@ -349,8 +346,29 @@ struct mem_cgroup {
/* Index in the kmem_cache->memcg_params->memcg_caches array */
int kmemcg_id;
#endif
int last_scanned_node;
#if MAX_NUMNODES > 1
nodemask_t scan_nodes;
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*
* WARNING: This has to be the last element of the struct. Don't
* add new fields after this point.
*/
struct mem_cgroup_lru_info info;
};
static size_t memcg_size(void)
{
return sizeof(struct mem_cgroup) +
nr_node_ids * sizeof(struct mem_cgroup_per_node);
}
/* internal only representation about the status of kmem accounting. */
enum {
KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
@ -398,8 +416,8 @@ static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
* left-shifted bitmap of these types.
* Types of charges to be moved. "move_charge_at_immitgrate" and
* "immigrate_flags" are treated as a left-shifted bitmap of these types.
*/
enum move_type {
MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
@ -412,6 +430,7 @@ static struct move_charge_struct {
spinlock_t lock; /* for from, to */
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long immigrate_flags;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
@ -424,14 +443,12 @@ static struct move_charge_struct {
static bool move_anon(void)
{
return test_bit(MOVE_CHARGE_TYPE_ANON,
&mc.to->move_charge_at_immigrate);
return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
}
static bool move_file(void)
{
return test_bit(MOVE_CHARGE_TYPE_FILE,
&mc.to->move_charge_at_immigrate);
return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
}
/*
@ -471,6 +488,13 @@ enum res_type {
#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
/*
* The memcg_create_mutex will be held whenever a new cgroup is created.
* As a consequence, any change that needs to protect against new child cgroups
* appearing has to hold it as well.
*/
static DEFINE_MUTEX(memcg_create_mutex);
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
@ -627,6 +651,7 @@ static void drain_all_stock_async(struct mem_cgroup *memcg);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
{
VM_BUG_ON((unsigned)nid >= nr_node_ids);
return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
}
@ -1371,17 +1396,6 @@ int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
return inactive * inactive_ratio < active;
}
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
{
unsigned long active;
unsigned long inactive;
inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
return (active > inactive);
}
#define mem_cgroup_from_res_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
@ -1524,8 +1538,9 @@ static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
spin_unlock_irqrestore(&memcg->move_lock, *flags);
}
#define K(x) ((x) << (PAGE_SHIFT-10))
/**
* mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
* mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
@ -1543,8 +1558,10 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
*/
static char memcg_name[PATH_MAX];
int ret;
struct mem_cgroup *iter;
unsigned int i;
if (!memcg || !p)
if (!p)
return;
rcu_read_lock();
@ -1563,7 +1580,7 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
}
rcu_read_unlock();
printk(KERN_INFO "Task in %s killed", memcg_name);
pr_info("Task in %s killed", memcg_name);
rcu_read_lock();
ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
@ -1576,22 +1593,45 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
/*
* Continues from above, so we don't need an KERN_ level
*/
printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
pr_cont(" as a result of limit of %s\n", memcg_name);
done:
printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->res, RES_FAILCNT));
printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
"failcnt %llu\n",
pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
for_each_mem_cgroup_tree(iter, memcg) {
pr_info("Memory cgroup stats");
rcu_read_lock();
ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
if (!ret)
pr_cont(" for %s", memcg_name);
rcu_read_unlock();
pr_cont(":");
for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
continue;
pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
K(mem_cgroup_read_stat(iter, i)));
}
for (i = 0; i < NR_LRU_LISTS; i++)
pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
pr_cont("\n");
}
}
/*
@ -2256,6 +2296,17 @@ static void drain_local_stock(struct work_struct *dummy)
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
}
static void __init memcg_stock_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct memcg_stock_pcp *stock =
&per_cpu(memcg_stock, cpu);
INIT_WORK(&stock->work, drain_local_stock);
}
}
/*
* Cache charges(val) which is from res_counter, to local per_cpu area.
* This will be consumed by consume_stock() function, later.
@ -4391,8 +4442,8 @@ void mem_cgroup_print_bad_page(struct page *page)
pc = lookup_page_cgroup_used(page);
if (pc) {
printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
pc, pc->flags, pc->mem_cgroup);
pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
pc, pc->flags, pc->mem_cgroup);
}
}
#endif
@ -4718,6 +4769,33 @@ static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
} while (usage > 0);
}
/*
* This mainly exists for tests during the setting of set of use_hierarchy.
* Since this is the very setting we are changing, the current hierarchy value
* is meaningless
*/
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
struct cgroup *pos;
/* bounce at first found */
cgroup_for_each_child(pos, memcg->css.cgroup)
return true;
return false;
}
/*
* Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
* to be already dead (as in mem_cgroup_force_empty, for instance). This is
* from mem_cgroup_count_children(), in the sense that we don't really care how
* many children we have; we only need to know if we have any. It also counts
* any memcg without hierarchy as infertile.
*/
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
return memcg->use_hierarchy && __memcg_has_children(memcg);
}
/*
* Reclaims as many pages from the given memcg as possible and moves
* the rest to the parent.
@ -4788,7 +4866,7 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
if (parent)
parent_memcg = mem_cgroup_from_cont(parent);
cgroup_lock();
mutex_lock(&memcg_create_mutex);
if (memcg->use_hierarchy == val)
goto out;
@ -4803,7 +4881,7 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
*/
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
if (list_empty(&cont->children))
if (!__memcg_has_children(memcg))
memcg->use_hierarchy = val;
else
retval = -EBUSY;
@ -4811,7 +4889,7 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
retval = -EINVAL;
out:
cgroup_unlock();
mutex_unlock(&memcg_create_mutex);
return retval;
}
@ -4896,8 +4974,6 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
bool must_inc_static_branch = false;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
/*
* For simplicity, we won't allow this to be disabled. It also can't
@ -4910,18 +4986,11 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
*
* After it first became limited, changes in the value of the limit are
* of course permitted.
*
* Taking the cgroup_lock is really offensive, but it is so far the only
* way to guarantee that no children will appear. There are plenty of
* other offenders, and they should all go away. Fine grained locking
* is probably the way to go here. When we are fully hierarchical, we
* can also get rid of the use_hierarchy check.
*/
cgroup_lock();
mutex_lock(&memcg_create_mutex);
mutex_lock(&set_limit_mutex);
if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
!list_empty(&cont->children))) {
if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
ret = -EBUSY;
goto out;
}
@ -4933,7 +5002,13 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
goto out;
}
must_inc_static_branch = true;
static_key_slow_inc(&memcg_kmem_enabled_key);
/*
* setting the active bit after the inc will guarantee no one
* starts accounting before all call sites are patched
*/
memcg_kmem_set_active(memcg);
/*
* kmem charges can outlive the cgroup. In the case of slab
* pages, for instance, a page contain objects from various
@ -4945,32 +5020,12 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
ret = res_counter_set_limit(&memcg->kmem, val);
out:
mutex_unlock(&set_limit_mutex);
cgroup_unlock();
/*
* We are by now familiar with the fact that we can't inc the static
* branch inside cgroup_lock. See disarm functions for details. A
* worker here is overkill, but also wrong: After the limit is set, we
* must start accounting right away. Since this operation can't fail,
* we can safely defer it to here - no rollback will be needed.
*
* The boolean used to control this is also safe, because
* KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
* able to set it to true;
*/
if (must_inc_static_branch) {
static_key_slow_inc(&memcg_kmem_enabled_key);
/*
* setting the active bit after the inc will guarantee no one
* starts accounting before all call sites are patched
*/
memcg_kmem_set_active(memcg);
}
mutex_unlock(&memcg_create_mutex);
#endif
return ret;
}
#ifdef CONFIG_MEMCG_KMEM
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
{
int ret = 0;
@ -4979,7 +5034,6 @@ static int memcg_propagate_kmem(struct mem_cgroup *memcg)
goto out;
memcg->kmem_account_flags = parent->kmem_account_flags;
#ifdef CONFIG_MEMCG_KMEM
/*
* When that happen, we need to disable the static branch only on those
* memcgs that enabled it. To achieve this, we would be forced to
@ -5005,10 +5059,10 @@ static int memcg_propagate_kmem(struct mem_cgroup *memcg)
mutex_lock(&set_limit_mutex);
ret = memcg_update_cache_sizes(memcg);
mutex_unlock(&set_limit_mutex);
#endif
out:
return ret;
}
#endif /* CONFIG_MEMCG_KMEM */
/*
* The user of this function is...
@ -5148,15 +5202,14 @@ static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
if (val >= (1 << NR_MOVE_TYPE))
return -EINVAL;
/*
* We check this value several times in both in can_attach() and
* attach(), so we need cgroup lock to prevent this value from being
* inconsistent.
*/
cgroup_lock();
memcg->move_charge_at_immigrate = val;
cgroup_unlock();
/*
* No kind of locking is needed in here, because ->can_attach() will
* check this value once in the beginning of the process, and then carry
* on with stale data. This means that changes to this value will only
* affect task migrations starting after the change.
*/
memcg->move_charge_at_immigrate = val;
return 0;
}
#else
@ -5214,14 +5267,6 @@ static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
}
#endif /* CONFIG_NUMA */
static const char * const mem_cgroup_lru_names[] = {
"inactive_anon",
"active_anon",
"inactive_file",
"active_file",
"unevictable",
};
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
@ -5335,18 +5380,17 @@ static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
mutex_lock(&memcg_create_mutex);
/* If under hierarchy, only empty-root can set this value */
if ((parent->use_hierarchy) ||
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
mutex_unlock(&memcg_create_mutex);
return -EINVAL;
}
memcg->swappiness = val;
cgroup_unlock();
mutex_unlock(&memcg_create_mutex);
return 0;
}
@ -5672,17 +5716,16 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
mutex_lock(&memcg_create_mutex);
/* oom-kill-disable is a flag for subhierarchy. */
if ((parent->use_hierarchy) ||
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
mutex_unlock(&memcg_create_mutex);
return -EINVAL;
}
memcg->oom_kill_disable = val;
if (!val)
memcg_oom_recover(memcg);
cgroup_unlock();
mutex_unlock(&memcg_create_mutex);
return 0;
}
@ -5797,33 +5840,6 @@ static struct cftype mem_cgroup_files[] = {
.read_seq_string = memcg_numa_stat_show,
},
#endif
#ifdef CONFIG_MEMCG_SWAP
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read = mem_cgroup_read,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write_string = mem_cgroup_write,
.read = mem_cgroup_read,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read = mem_cgroup_read,
},
#endif
#ifdef CONFIG_MEMCG_KMEM
{
.name = "kmem.limit_in_bytes",
@ -5858,6 +5874,36 @@ static struct cftype mem_cgroup_files[] = {
{ }, /* terminate */
};
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read = mem_cgroup_read,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write_string = mem_cgroup_write,
.read = mem_cgroup_read,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read = mem_cgroup_read,
},
{ }, /* terminate */
};
#endif
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
@ -5896,9 +5942,9 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *memcg;
int size = sizeof(struct mem_cgroup);
size_t size = memcg_size();
/* Can be very big if MAX_NUMNODES is very big */
/* Can be very big if nr_node_ids is very big */
if (size < PAGE_SIZE)
memcg = kzalloc(size, GFP_KERNEL);
else
@ -5935,7 +5981,7 @@ out_free:
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
int size = sizeof(struct mem_cgroup);
size_t size = memcg_size();
mem_cgroup_remove_from_trees(memcg);
free_css_id(&mem_cgroup_subsys, &memcg->css);
@ -6017,19 +6063,7 @@ struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
}
EXPORT_SYMBOL(parent_mem_cgroup);
#ifdef CONFIG_MEMCG_SWAP
static void __init enable_swap_cgroup(void)
{
if (!mem_cgroup_disabled() && really_do_swap_account)
do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif
static int mem_cgroup_soft_limit_tree_init(void)
static void __init mem_cgroup_soft_limit_tree_init(void)
{
struct mem_cgroup_tree_per_node *rtpn;
struct mem_cgroup_tree_per_zone *rtpz;
@ -6040,8 +6074,7 @@ static int mem_cgroup_soft_limit_tree_init(void)
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
if (!rtpn)
goto err_cleanup;
BUG_ON(!rtpn);
soft_limit_tree.rb_tree_per_node[node] = rtpn;
@ -6051,23 +6084,12 @@ static int mem_cgroup_soft_limit_tree_init(void)
spin_lock_init(&rtpz->lock);
}
}
return 0;
err_cleanup:
for_each_node(node) {
if (!soft_limit_tree.rb_tree_per_node[node])
break;
kfree(soft_limit_tree.rb_tree_per_node[node]);
soft_limit_tree.rb_tree_per_node[node] = NULL;
}
return 1;
}
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup *cont)
{
struct mem_cgroup *memcg, *parent;
struct mem_cgroup *memcg;
long error = -ENOMEM;
int node;
@ -6081,24 +6103,44 @@ mem_cgroup_css_alloc(struct cgroup *cont)
/* root ? */
if (cont->parent == NULL) {
int cpu;
enable_swap_cgroup();
parent = NULL;
if (mem_cgroup_soft_limit_tree_init())
goto free_out;
root_mem_cgroup = memcg;
for_each_possible_cpu(cpu) {
struct memcg_stock_pcp *stock =
&per_cpu(memcg_stock, cpu);
INIT_WORK(&stock->work, drain_local_stock);
}
} else {
parent = mem_cgroup_from_cont(cont->parent);
memcg->use_hierarchy = parent->use_hierarchy;
memcg->oom_kill_disable = parent->oom_kill_disable;
res_counter_init(&memcg->res, NULL);
res_counter_init(&memcg->memsw, NULL);
res_counter_init(&memcg->kmem, NULL);
}
if (parent && parent->use_hierarchy) {
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
atomic_set(&memcg->refcnt, 1);
memcg->move_charge_at_immigrate = 0;
mutex_init(&memcg->thresholds_lock);
spin_lock_init(&memcg->move_lock);
return &memcg->css;
free_out:
__mem_cgroup_free(memcg);
return ERR_PTR(error);
}
static int
mem_cgroup_css_online(struct cgroup *cont)
{
struct mem_cgroup *memcg, *parent;
int error = 0;
if (!cont->parent)
return 0;
mutex_lock(&memcg_create_mutex);
memcg = mem_cgroup_from_cont(cont);
parent = mem_cgroup_from_cont(cont->parent);
memcg->use_hierarchy = parent->use_hierarchy;
memcg->oom_kill_disable = parent->oom_kill_disable;
memcg->swappiness = mem_cgroup_swappiness(parent);
if (parent->use_hierarchy) {
res_counter_init(&memcg->res, &parent->res);
res_counter_init(&memcg->memsw, &parent->memsw);
res_counter_init(&memcg->kmem, &parent->kmem);
@ -6119,20 +6161,12 @@ mem_cgroup_css_alloc(struct cgroup *cont)
* much sense so let cgroup subsystem know about this
* unfortunate state in our controller.
*/
if (parent && parent != root_mem_cgroup)
if (parent != root_mem_cgroup)
mem_cgroup_subsys.broken_hierarchy = true;
}
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
if (parent)
memcg->swappiness = mem_cgroup_swappiness(parent);
atomic_set(&memcg->refcnt, 1);
memcg->move_charge_at_immigrate = 0;
mutex_init(&memcg->thresholds_lock);
spin_lock_init(&memcg->move_lock);
error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
mutex_unlock(&memcg_create_mutex);
if (error) {
/*
* We call put now because our (and parent's) refcnts
@ -6140,12 +6174,10 @@ mem_cgroup_css_alloc(struct cgroup *cont)
* call __mem_cgroup_free, so return directly
*/
mem_cgroup_put(memcg);
return ERR_PTR(error);
if (parent->use_hierarchy)
mem_cgroup_put(parent);
}
return &memcg->css;
free_out:
__mem_cgroup_free(memcg);
return ERR_PTR(error);
return error;
}
static void mem_cgroup_css_offline(struct cgroup *cont)
@ -6281,7 +6313,7 @@ static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
* Because lookup_swap_cache() updates some statistics counter,
* we call find_get_page() with swapper_space directly.
*/
page = find_get_page(&swapper_space, ent.val);
page = find_get_page(swap_address_space(ent), ent.val);
if (do_swap_account)
entry->val = ent.val;
@ -6322,7 +6354,7 @@ static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
swp_entry_t swap = radix_to_swp_entry(page);
if (do_swap_account)
*entry = swap;
page = find_get_page(&swapper_space, swap.val);
page = find_get_page(swap_address_space(swap), swap.val);
}
#endif
return page;
@ -6532,8 +6564,15 @@ static int mem_cgroup_can_attach(struct cgroup *cgroup,
struct task_struct *p = cgroup_taskset_first(tset);
int ret = 0;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
unsigned long move_charge_at_immigrate;
if (memcg->move_charge_at_immigrate) {
/*
* We are now commited to this value whatever it is. Changes in this
* tunable will only affect upcoming migrations, not the current one.
* So we need to save it, and keep it going.
*/
move_charge_at_immigrate = memcg->move_charge_at_immigrate;
if (move_charge_at_immigrate) {
struct mm_struct *mm;
struct mem_cgroup *from = mem_cgroup_from_task(p);
@ -6553,6 +6592,7 @@ static int mem_cgroup_can_attach(struct cgroup *cgroup,
spin_lock(&mc.lock);
mc.from = from;
mc.to = memcg;
mc.immigrate_flags = move_charge_at_immigrate;
spin_unlock(&mc.lock);
/* We set mc.moving_task later */
@ -6747,6 +6787,7 @@ struct cgroup_subsys mem_cgroup_subsys = {
.name = "memory",
.subsys_id = mem_cgroup_subsys_id,
.css_alloc = mem_cgroup_css_alloc,
.css_online = mem_cgroup_css_online,
.css_offline = mem_cgroup_css_offline,
.css_free = mem_cgroup_css_free,
.can_attach = mem_cgroup_can_attach,
@ -6757,19 +6798,6 @@ struct cgroup_subsys mem_cgroup_subsys = {
.use_id = 1,
};
/*
* The rest of init is performed during ->css_alloc() for root css which
* happens before initcalls. hotcpu_notifier() can't be done together as
* it would introduce circular locking by adding cgroup_lock -> cpu hotplug
* dependency. Do it from a subsys_initcall().
*/
static int __init mem_cgroup_init(void)
{
hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
return 0;
}
subsys_initcall(mem_cgroup_init);
#ifdef CONFIG_MEMCG_SWAP
static int __init enable_swap_account(char *s)
{
@ -6782,4 +6810,39 @@ static int __init enable_swap_account(char *s)
}
__setup("swapaccount=", enable_swap_account);
static void __init memsw_file_init(void)
{
WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}
static void __init enable_swap_cgroup(void)
{
if (!mem_cgroup_disabled() && really_do_swap_account) {
do_swap_account = 1;
memsw_file_init();
}
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif
/*
* subsys_initcall() for memory controller.
*
* Some parts like hotcpu_notifier() have to be initialized from this context
* because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
* everything that doesn't depend on a specific mem_cgroup structure should
* be initialized from here.
*/
static int __init mem_cgroup_init(void)
{
hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
enable_swap_cgroup();
mem_cgroup_soft_limit_tree_init();
memcg_stock_init();
return 0;
}
subsys_initcall(mem_cgroup_init);

View File

@ -61,7 +61,7 @@ int sysctl_memory_failure_early_kill __read_mostly = 0;
int sysctl_memory_failure_recovery __read_mostly = 1;
atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
@ -784,12 +784,12 @@ static struct page_state {
{ sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
{ sc|dirty, sc, "clean swapcache", me_swapcache_clean },
{ unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
{ unevict, unevict, "clean unevictable LRU", me_pagecache_clean },
{ mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
{ mlock, mlock, "clean mlocked LRU", me_pagecache_clean },
{ unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
{ unevict, unevict, "clean unevictable LRU", me_pagecache_clean },
{ lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
{ lru|dirty, lru, "clean LRU", me_pagecache_clean },
@ -1021,6 +1021,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
struct page *hpage;
int res;
unsigned int nr_pages;
unsigned long page_flags;
if (!sysctl_memory_failure_recovery)
panic("Memory failure from trap %d on page %lx", trapno, pfn);
@ -1039,8 +1040,18 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
return 0;
}
nr_pages = 1 << compound_trans_order(hpage);
atomic_long_add(nr_pages, &mce_bad_pages);
/*
* Currently errors on hugetlbfs pages are measured in hugepage units,
* so nr_pages should be 1 << compound_order. OTOH when errors are on
* transparent hugepages, they are supposed to be split and error
* measurement is done in normal page units. So nr_pages should be one
* in this case.
*/
if (PageHuge(p))
nr_pages = 1 << compound_order(hpage);
else /* normal page or thp */
nr_pages = 1;
atomic_long_add(nr_pages, &num_poisoned_pages);
/*
* We need/can do nothing about count=0 pages.
@ -1070,7 +1081,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
if (!PageHWPoison(hpage)
|| (hwpoison_filter(p) && TestClearPageHWPoison(p))
|| (p != hpage && TestSetPageHWPoison(hpage))) {
atomic_long_sub(nr_pages, &mce_bad_pages);
atomic_long_sub(nr_pages, &num_poisoned_pages);
return 0;
}
set_page_hwpoison_huge_page(hpage);
@ -1118,6 +1129,15 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
*/
lock_page(hpage);
/*
* We use page flags to determine what action should be taken, but
* the flags can be modified by the error containment action. One
* example is an mlocked page, where PG_mlocked is cleared by
* page_remove_rmap() in try_to_unmap_one(). So to determine page status
* correctly, we save a copy of the page flags at this time.
*/
page_flags = p->flags;
/*
* unpoison always clear PG_hwpoison inside page lock
*/
@ -1128,7 +1148,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
}
if (hwpoison_filter(p)) {
if (TestClearPageHWPoison(p))
atomic_long_sub(nr_pages, &mce_bad_pages);
atomic_long_sub(nr_pages, &num_poisoned_pages);
unlock_page(hpage);
put_page(hpage);
return 0;
@ -1176,12 +1196,19 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
}
res = -EBUSY;
for (ps = error_states;; ps++) {
if ((p->flags & ps->mask) == ps->res) {
res = page_action(ps, p, pfn);
/*
* The first check uses the current page flags which may not have any
* relevant information. The second check with the saved page flagss is
* carried out only if the first check can't determine the page status.
*/
for (ps = error_states;; ps++)
if ((p->flags & ps->mask) == ps->res)
break;
}
}
if (!ps->mask)
for (ps = error_states;; ps++)
if ((page_flags & ps->mask) == ps->res)
break;
res = page_action(ps, p, pfn);
out:
unlock_page(hpage);
return res;
@ -1323,7 +1350,7 @@ int unpoison_memory(unsigned long pfn)
return 0;
}
if (TestClearPageHWPoison(p))
atomic_long_sub(nr_pages, &mce_bad_pages);
atomic_long_sub(nr_pages, &num_poisoned_pages);
pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
return 0;
}
@ -1337,7 +1364,7 @@ int unpoison_memory(unsigned long pfn)
*/
if (TestClearPageHWPoison(page)) {
pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
atomic_long_sub(nr_pages, &mce_bad_pages);
atomic_long_sub(nr_pages, &num_poisoned_pages);
freeit = 1;
if (PageHuge(page))
clear_page_hwpoison_huge_page(page);
@ -1368,7 +1395,7 @@ static struct page *new_page(struct page *p, unsigned long private, int **x)
* that is not free, and 1 for any other page type.
* For 1 the page is returned with increased page count, otherwise not.
*/
static int get_any_page(struct page *p, unsigned long pfn, int flags)
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
{
int ret;
@ -1393,11 +1420,9 @@ static int get_any_page(struct page *p, unsigned long pfn, int flags)
if (!get_page_unless_zero(compound_head(p))) {
if (PageHuge(p)) {
pr_info("%s: %#lx free huge page\n", __func__, pfn);
ret = dequeue_hwpoisoned_huge_page(compound_head(p));
ret = 0;
} else if (is_free_buddy_page(p)) {
pr_info("%s: %#lx free buddy page\n", __func__, pfn);
/* Set hwpoison bit while page is still isolated */
SetPageHWPoison(p);
ret = 0;
} else {
pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
@ -1413,43 +1438,68 @@ static int get_any_page(struct page *p, unsigned long pfn, int flags)
return ret;
}
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
int ret = __get_any_page(page, pfn, flags);
if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
/*
* Try to free it.
*/
put_page(page);
shake_page(page, 1);
/*
* Did it turn free?
*/
ret = __get_any_page(page, pfn, 0);
if (!PageLRU(page)) {
pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
pfn, page->flags);
return -EIO;
}
}
return ret;
}
static int soft_offline_huge_page(struct page *page, int flags)
{
int ret;
unsigned long pfn = page_to_pfn(page);
struct page *hpage = compound_head(page);
ret = get_any_page(page, pfn, flags);
if (ret < 0)
return ret;
if (ret == 0)
goto done;
/*
* This double-check of PageHWPoison is to avoid the race with
* memory_failure(). See also comment in __soft_offline_page().
*/
lock_page(hpage);
if (PageHWPoison(hpage)) {
unlock_page(hpage);
put_page(hpage);
pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
return -EBUSY;
}
unlock_page(hpage);
/* Keep page count to indicate a given hugepage is isolated. */
ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC);
put_page(hpage);
if (ret) {
pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
pfn, ret, page->flags);
return ret;
}
done:
if (!PageHWPoison(hpage))
} else {
set_page_hwpoison_huge_page(hpage);
dequeue_hwpoisoned_huge_page(hpage);
atomic_long_add(1 << compound_trans_order(hpage),
&mce_bad_pages);
set_page_hwpoison_huge_page(hpage);
dequeue_hwpoisoned_huge_page(hpage);
&num_poisoned_pages);
}
/* keep elevated page count for bad page */
return ret;
}
static int __soft_offline_page(struct page *page, int flags);
/**
* soft_offline_page - Soft offline a page.
* @page: page to offline
@ -1478,9 +1528,11 @@ int soft_offline_page(struct page *page, int flags)
unsigned long pfn = page_to_pfn(page);
struct page *hpage = compound_trans_head(page);
if (PageHuge(page))
return soft_offline_huge_page(page, flags);
if (PageTransHuge(hpage)) {
if (PageHWPoison(page)) {
pr_info("soft offline: %#lx page already poisoned\n", pfn);
return -EBUSY;
}
if (!PageHuge(page) && PageTransHuge(hpage)) {
if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
pr_info("soft offline: %#lx: failed to split THP\n",
pfn);
@ -1491,47 +1543,45 @@ int soft_offline_page(struct page *page, int flags)
ret = get_any_page(page, pfn, flags);
if (ret < 0)
return ret;
if (ret == 0)
goto done;
if (ret) { /* for in-use pages */
if (PageHuge(page))
ret = soft_offline_huge_page(page, flags);
else
ret = __soft_offline_page(page, flags);
} else { /* for free pages */
if (PageHuge(page)) {
set_page_hwpoison_huge_page(hpage);
dequeue_hwpoisoned_huge_page(hpage);
atomic_long_add(1 << compound_trans_order(hpage),
&num_poisoned_pages);
} else {
SetPageHWPoison(page);
atomic_long_inc(&num_poisoned_pages);
}
}
/* keep elevated page count for bad page */
return ret;
}
static int __soft_offline_page(struct page *page, int flags)
{
int ret;
unsigned long pfn = page_to_pfn(page);
/*
* Page cache page we can handle?
* Check PageHWPoison again inside page lock because PageHWPoison
* is set by memory_failure() outside page lock. Note that
* memory_failure() also double-checks PageHWPoison inside page lock,
* so there's no race between soft_offline_page() and memory_failure().
*/
if (!PageLRU(page)) {
/*
* Try to free it.
*/
put_page(page);
shake_page(page, 1);
/*
* Did it turn free?
*/
ret = get_any_page(page, pfn, 0);
if (ret < 0)
return ret;
if (ret == 0)
goto done;
}
if (!PageLRU(page)) {
pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
pfn, page->flags);
return -EIO;
}
lock_page(page);
wait_on_page_writeback(page);
/*
* Synchronized using the page lock with memory_failure()
*/
if (PageHWPoison(page)) {
unlock_page(page);
put_page(page);
pr_info("soft offline: %#lx page already poisoned\n", pfn);
return -EBUSY;
}
/*
* Try to invalidate first. This should work for
* non dirty unmapped page cache pages.
@ -1544,9 +1594,10 @@ int soft_offline_page(struct page *page, int flags)
*/
if (ret == 1) {
put_page(page);
ret = 0;
pr_info("soft_offline: %#lx: invalidated\n", pfn);
goto done;
SetPageHWPoison(page);
atomic_long_inc(&num_poisoned_pages);
return 0;
}
/*
@ -1563,28 +1614,23 @@ int soft_offline_page(struct page *page, int flags)
if (!ret) {
LIST_HEAD(pagelist);
inc_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
page_is_file_cache(page));
list_add(&page->lru, &pagelist);
ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
false, MIGRATE_SYNC,
MR_MEMORY_FAILURE);
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
putback_lru_pages(&pagelist);
pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
pfn, ret, page->flags);
if (ret > 0)
ret = -EIO;
} else {
SetPageHWPoison(page);
atomic_long_inc(&num_poisoned_pages);
}
} else {
pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
pfn, ret, page_count(page), page->flags);
}
if (ret)
return ret;
done:
atomic_long_add(1, &mce_bad_pages);
SetPageHWPoison(page);
/* keep elevated page count for bad page */
return ret;
}

View File

@ -69,6 +69,10 @@
#include "internal.h"
#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
#endif
#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
@ -1458,10 +1462,11 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
EXPORT_SYMBOL_GPL(zap_vma_ptes);
/**
* follow_page - look up a page descriptor from a user-virtual address
* follow_page_mask - look up a page descriptor from a user-virtual address
* @vma: vm_area_struct mapping @address
* @address: virtual address to look up
* @flags: flags modifying lookup behaviour
* @page_mask: on output, *page_mask is set according to the size of the page
*
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
*
@ -1469,8 +1474,9 @@ EXPORT_SYMBOL_GPL(zap_vma_ptes);
* an error pointer if there is a mapping to something not represented
* by a page descriptor (see also vm_normal_page()).
*/
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
unsigned int *page_mask)
{
pgd_t *pgd;
pud_t *pud;
@ -1480,6 +1486,8 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
struct page *page;
struct mm_struct *mm = vma->vm_mm;
*page_mask = 0;
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
BUG_ON(flags & FOLL_GET);
@ -1526,6 +1534,7 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
page = follow_trans_huge_pmd(vma, address,
pmd, flags);
spin_unlock(&mm->page_table_lock);
*page_mask = HPAGE_PMD_NR - 1;
goto out;
}
} else
@ -1539,8 +1548,24 @@ split_fallthrough:
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!pte_present(pte))
goto no_page;
if (!pte_present(pte)) {
swp_entry_t entry;
/*
* KSM's break_ksm() relies upon recognizing a ksm page
* even while it is being migrated, so for that case we
* need migration_entry_wait().
*/
if (likely(!(flags & FOLL_MIGRATION)))
goto no_page;
if (pte_none(pte) || pte_file(pte))
goto no_page;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto no_page;
pte_unmap_unlock(ptep, ptl);
migration_entry_wait(mm, pmd, address);
goto split_fallthrough;
}
if ((flags & FOLL_NUMA) && pte_numa(pte))
goto no_page;
if ((flags & FOLL_WRITE) && !pte_write(pte))
@ -1673,15 +1698,16 @@ static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long add
* instead of __get_user_pages. __get_user_pages should be used only if
* you need some special @gup_flags.
*/
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, unsigned int gup_flags,
struct page **pages, struct vm_area_struct **vmas,
int *nonblocking)
long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *nonblocking)
{
int i;
long i;
unsigned long vm_flags;
unsigned int page_mask;
if (nr_pages <= 0)
if (!nr_pages)
return 0;
VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
@ -1757,6 +1783,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
get_page(page);
}
pte_unmap(pte);
page_mask = 0;
goto next_page;
}
@ -1774,6 +1801,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
do {
struct page *page;
unsigned int foll_flags = gup_flags;
unsigned int page_increm;
/*
* If we have a pending SIGKILL, don't keep faulting
@ -1783,7 +1811,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
return i ? i : -ERESTARTSYS;
cond_resched();
while (!(page = follow_page(vma, start, foll_flags))) {
while (!(page = follow_page_mask(vma, start,
foll_flags, &page_mask))) {
int ret;
unsigned int fault_flags = 0;
@ -1857,13 +1886,19 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
flush_anon_page(vma, page, start);
flush_dcache_page(page);
page_mask = 0;
}
next_page:
if (vmas)
if (vmas) {
vmas[i] = vma;
i++;
start += PAGE_SIZE;
nr_pages--;
page_mask = 0;
}
page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
if (page_increm > nr_pages)
page_increm = nr_pages;
i += page_increm;
start += page_increm * PAGE_SIZE;
nr_pages -= page_increm;
} while (nr_pages && start < vma->vm_end);
} while (nr_pages);
return i;
@ -1977,9 +2012,9 @@ int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
*
* See also get_user_pages_fast, for performance critical applications.
*/
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages, int write,
int force, struct page **pages, struct vm_area_struct **vmas)
{
int flags = FOLL_TOUCH;
@ -2919,7 +2954,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned int flags, pte_t orig_pte)
{
spinlock_t *ptl;
struct page *page, *swapcache = NULL;
struct page *page, *swapcache;
swp_entry_t entry;
pte_t pte;
int locked;
@ -2970,9 +3005,11 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
*/
ret = VM_FAULT_HWPOISON;
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
swapcache = page;
goto out_release;
}
swapcache = page;
locked = lock_page_or_retry(page, mm, flags);
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
@ -2990,16 +3027,11 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
goto out_page;
if (ksm_might_need_to_copy(page, vma, address)) {
swapcache = page;
page = ksm_does_need_to_copy(page, vma, address);
if (unlikely(!page)) {
ret = VM_FAULT_OOM;
page = swapcache;
swapcache = NULL;
goto out_page;
}
page = ksm_might_need_to_copy(page, vma, address);
if (unlikely(!page)) {
ret = VM_FAULT_OOM;
page = swapcache;
goto out_page;
}
if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
@ -3044,7 +3076,10 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
}
flush_icache_page(vma, page);
set_pte_at(mm, address, page_table, pte);
do_page_add_anon_rmap(page, vma, address, exclusive);
if (page == swapcache)
do_page_add_anon_rmap(page, vma, address, exclusive);
else /* ksm created a completely new copy */
page_add_new_anon_rmap(page, vma, address);
/* It's better to call commit-charge after rmap is established */
mem_cgroup_commit_charge_swapin(page, ptr);
@ -3052,7 +3087,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
try_to_free_swap(page);
unlock_page(page);
if (swapcache) {
if (page != swapcache) {
/*
* Hold the lock to avoid the swap entry to be reused
* until we take the PT lock for the pte_same() check
@ -3085,7 +3120,7 @@ out_page:
unlock_page(page);
out_release:
page_cache_release(page);
if (swapcache) {
if (page != swapcache) {
unlock_page(swapcache);
page_cache_release(swapcache);
}
@ -3821,30 +3856,6 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
}
#endif /* __PAGETABLE_PMD_FOLDED */
int make_pages_present(unsigned long addr, unsigned long end)
{
int ret, len, write;
struct vm_area_struct * vma;
vma = find_vma(current->mm, addr);
if (!vma)
return -ENOMEM;
/*
* We want to touch writable mappings with a write fault in order
* to break COW, except for shared mappings because these don't COW
* and we would not want to dirty them for nothing.
*/
write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
BUG_ON(addr >= end);
BUG_ON(end > vma->vm_end);
len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
ret = get_user_pages(current, current->mm, addr,
len, write, 0, NULL, NULL);
if (ret < 0)
return ret;
return ret == len ? 0 : -EFAULT;
}
#if !defined(__HAVE_ARCH_GATE_AREA)
#if defined(AT_SYSINFO_EHDR)

View File

@ -29,6 +29,7 @@
#include <linux/suspend.h>
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
#include <asm/tlbflush.h>
@ -91,9 +92,8 @@ static void release_memory_resource(struct resource *res)
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static void get_page_bootmem(unsigned long info, struct page *page,
unsigned long type)
void get_page_bootmem(unsigned long info, struct page *page,
unsigned long type)
{
page->lru.next = (struct list_head *) type;
SetPagePrivate(page);
@ -124,10 +124,13 @@ void __ref put_page_bootmem(struct page *page)
mutex_lock(&ppb_lock);
__free_pages_bootmem(page, 0);
mutex_unlock(&ppb_lock);
totalram_pages++;
}
}
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
@ -161,6 +164,32 @@ static void register_page_bootmem_info_section(unsigned long start_pfn)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#else /* CONFIG_SPARSEMEM_VMEMMAP */
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
if (!pfn_valid(start_pfn))
return;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
usemap = __nr_to_section(section_nr)->pageblock_flags;
page = virt_to_page(usemap);
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
void register_page_bootmem_info_node(struct pglist_data *pgdat)
{
@ -189,7 +218,7 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat)
}
pfn = pgdat->node_start_pfn;
end_pfn = pfn + pgdat->node_spanned_pages;
end_pfn = pgdat_end_pfn(pgdat);
/* register_section info */
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
@ -203,7 +232,7 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat)
register_page_bootmem_info_section(pfn);
}
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
@ -253,6 +282,17 @@ static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
set_page_links(pfn_to_page(pfn), zid, nid, pfn);
}
/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
* alloc_bootmem_node_nopanic() */
static int __ref ensure_zone_is_initialized(struct zone *zone,
unsigned long start_pfn, unsigned long num_pages)
{
if (!zone_is_initialized(zone))
return init_currently_empty_zone(zone, start_pfn, num_pages,
MEMMAP_HOTPLUG);
return 0;
}
static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
unsigned long start_pfn, unsigned long end_pfn)
{
@ -260,17 +300,14 @@ static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
unsigned long flags;
unsigned long z1_start_pfn;
if (!z1->wait_table) {
ret = init_currently_empty_zone(z1, start_pfn,
end_pfn - start_pfn, MEMMAP_HOTPLUG);
if (ret)
return ret;
}
ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
if (ret)
return ret;
pgdat_resize_lock(z1->zone_pgdat, &flags);
/* can't move pfns which are higher than @z2 */
if (end_pfn > z2->zone_start_pfn + z2->spanned_pages)
if (end_pfn > zone_end_pfn(z2))
goto out_fail;
/* the move out part mast at the left most of @z2 */
if (start_pfn > z2->zone_start_pfn)
@ -286,7 +323,7 @@ static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
z1_start_pfn = start_pfn;
resize_zone(z1, z1_start_pfn, end_pfn);
resize_zone(z2, end_pfn, z2->zone_start_pfn + z2->spanned_pages);
resize_zone(z2, end_pfn, zone_end_pfn(z2));
pgdat_resize_unlock(z1->zone_pgdat, &flags);
@ -305,12 +342,9 @@ static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
unsigned long flags;
unsigned long z2_end_pfn;
if (!z2->wait_table) {
ret = init_currently_empty_zone(z2, start_pfn,
end_pfn - start_pfn, MEMMAP_HOTPLUG);
if (ret)
return ret;
}
ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
if (ret)
return ret;
pgdat_resize_lock(z1->zone_pgdat, &flags);
@ -318,15 +352,15 @@ static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
if (z1->zone_start_pfn > start_pfn)
goto out_fail;
/* the move out part mast at the right most of @z1 */
if (z1->zone_start_pfn + z1->spanned_pages > end_pfn)
if (zone_end_pfn(z1) > end_pfn)
goto out_fail;
/* must included/overlap */
if (start_pfn >= z1->zone_start_pfn + z1->spanned_pages)
if (start_pfn >= zone_end_pfn(z1))
goto out_fail;
/* use end_pfn for z2's end_pfn if z2 is empty */
if (z2->spanned_pages)
z2_end_pfn = z2->zone_start_pfn + z2->spanned_pages;
z2_end_pfn = zone_end_pfn(z2);
else
z2_end_pfn = end_pfn;
@ -363,16 +397,13 @@ static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
int nid = pgdat->node_id;
int zone_type;
unsigned long flags;
int ret;
zone_type = zone - pgdat->node_zones;
if (!zone->wait_table) {
int ret;
ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
if (ret)
return ret;
ret = init_currently_empty_zone(zone, phys_start_pfn,
nr_pages, MEMMAP_HOTPLUG);
if (ret)
return ret;
}
pgdat_resize_lock(zone->zone_pgdat, &flags);
grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
@ -405,20 +436,211 @@ static int __meminit __add_section(int nid, struct zone *zone,
return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static int __remove_section(struct zone *zone, struct mem_section *ms)
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
static int find_smallest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
/*
* XXX: Freeing memmap with vmemmap is not implement yet.
* This should be removed later.
*/
return -EBUSY;
struct mem_section *ms;
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(start_pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(start_pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(start_pfn)))
continue;
return start_pfn;
}
return 0;
}
#else
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
static int find_biggest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
struct mem_section *ms;
unsigned long pfn;
/* pfn is the end pfn of a memory section. */
pfn = end_pfn - 1;
for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(pfn)))
continue;
return pfn;
}
return 0;
}
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long zone_start_pfn = zone->zone_start_pfn;
unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
unsigned long pfn;
struct mem_section *ms;
int nid = zone_to_nid(zone);
zone_span_writelock(zone);
if (zone_start_pfn == start_pfn) {
/*
* If the section is smallest section in the zone, it need
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
zone_end_pfn);
if (pfn) {
zone->zone_start_pfn = pfn;
zone->spanned_pages = zone_end_pfn - pfn;
}
} else if (zone_end_pfn == end_pfn) {
/*
* If the section is biggest section in the zone, it need
* shrink zone->spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
start_pfn);
if (pfn)
zone->spanned_pages = pfn - zone_start_pfn + 1;
}
/*
* The section is not biggest or smallest mem_section in the zone, it
* only creates a hole in the zone. So in this case, we need not
* change the zone. But perhaps, the zone has only hole data. Thus
* it check the zone has only hole or not.
*/
pfn = zone_start_pfn;
for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (page_zone(pfn_to_page(pfn)) != zone)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
zone_span_writeunlock(zone);
return;
}
/* The zone has no valid section */
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
zone_span_writeunlock(zone);
}
static void shrink_pgdat_span(struct pglist_data *pgdat,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
unsigned long pgdat_end_pfn =
pgdat->node_start_pfn + pgdat->node_spanned_pages;
unsigned long pfn;
struct mem_section *ms;
int nid = pgdat->node_id;
if (pgdat_start_pfn == start_pfn) {
/*
* If the section is smallest section in the pgdat, it need
* shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
pgdat_end_pfn);
if (pfn) {
pgdat->node_start_pfn = pfn;
pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
}
} else if (pgdat_end_pfn == end_pfn) {
/*
* If the section is biggest section in the pgdat, it need
* shrink pgdat->node_spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
start_pfn);
if (pfn)
pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
}
/*
* If the section is not biggest or smallest mem_section in the pgdat,
* it only creates a hole in the pgdat. So in this case, we need not
* change the pgdat.
* But perhaps, the pgdat has only hole data. Thus it check the pgdat
* has only hole or not.
*/
pfn = pgdat_start_pfn;
for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
return;
}
/* The pgdat has no valid section */
pgdat->node_start_pfn = 0;
pgdat->node_spanned_pages = 0;
}
static void __remove_zone(struct zone *zone, unsigned long start_pfn)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nr_pages = PAGES_PER_SECTION;
int zone_type;
unsigned long flags;
zone_type = zone - pgdat->node_zones;
pgdat_resize_lock(zone->zone_pgdat, &flags);
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
}
static int __remove_section(struct zone *zone, struct mem_section *ms)
{
unsigned long flags;
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long start_pfn;
int scn_nr;
int ret = -EINVAL;
if (!valid_section(ms))
@ -428,12 +650,13 @@ static int __remove_section(struct zone *zone, struct mem_section *ms)
if (ret)
return ret;
pgdat_resize_lock(pgdat, &flags);
scn_nr = __section_nr(ms);
start_pfn = section_nr_to_pfn(scn_nr);
__remove_zone(zone, start_pfn);
sparse_remove_one_section(zone, ms);
pgdat_resize_unlock(pgdat, &flags);
return 0;
}
#endif
/*
* Reasonably generic function for adding memory. It is
@ -797,11 +1020,14 @@ static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
unsigned long zholes_size[MAX_NR_ZONES] = {0};
unsigned long start_pfn = start >> PAGE_SHIFT;
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
pgdat = NODE_DATA(nid);
if (!pgdat) {
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
arch_refresh_nodedata(nid, pgdat);
arch_refresh_nodedata(nid, pgdat);
}
/* we can use NODE_DATA(nid) from here */
@ -854,7 +1080,8 @@ out:
int __ref add_memory(int nid, u64 start, u64 size)
{
pg_data_t *pgdat = NULL;
int new_pgdat = 0;
bool new_pgdat;
bool new_node;
struct resource *res;
int ret;
@ -865,12 +1092,16 @@ int __ref add_memory(int nid, u64 start, u64 size)
if (!res)
goto out;
if (!node_online(nid)) {
{ /* Stupid hack to suppress address-never-null warning */
void *p = NODE_DATA(nid);
new_pgdat = !p;
}
new_node = !node_online(nid);
if (new_node) {
pgdat = hotadd_new_pgdat(nid, start);
ret = -ENOMEM;
if (!pgdat)
goto error;
new_pgdat = 1;
}
/* call arch's memory hotadd */
@ -882,7 +1113,7 @@ int __ref add_memory(int nid, u64 start, u64 size)
/* we online node here. we can't roll back from here. */
node_set_online(nid);
if (new_pgdat) {
if (new_node) {
ret = register_one_node(nid);
/*
* If sysfs file of new node can't create, cpu on the node
@ -901,8 +1132,7 @@ error:
/* rollback pgdat allocation and others */
if (new_pgdat)
rollback_node_hotadd(nid, pgdat);
if (res)
release_memory_resource(res);
release_memory_resource(res);
out:
unlock_memory_hotplug();
@ -1058,8 +1288,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
* migrate_pages returns # of failed pages.
*/
ret = migrate_pages(&source, alloc_migrate_target, 0,
true, MIGRATE_SYNC,
MR_MEMORY_HOTPLUG);
MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
if (ret)
putback_lru_pages(&source);
}
@ -1381,17 +1610,26 @@ int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
}
int remove_memory(u64 start, u64 size)
/**
* walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
* @start_pfn: start pfn of the memory range
* @end_pfn: end pft of the memory range
* @arg: argument passed to func
* @func: callback for each memory section walked
*
* This function walks through all present mem sections in range
* [start_pfn, end_pfn) and call func on each mem section.
*
* Returns the return value of func.
*/
static int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
void *arg, int (*func)(struct memory_block *, void *))
{
struct memory_block *mem = NULL;
struct mem_section *section;
unsigned long start_pfn, end_pfn;
unsigned long pfn, section_nr;
int ret;
start_pfn = PFN_DOWN(start);
end_pfn = start_pfn + PFN_DOWN(size);
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
@ -1408,7 +1646,7 @@ int remove_memory(u64 start, u64 size)
if (!mem)
continue;
ret = offline_memory_block(mem);
ret = func(mem, arg);
if (ret) {
kobject_put(&mem->dev.kobj);
return ret;
@ -1420,12 +1658,209 @@ int remove_memory(u64 start, u64 size)
return 0;
}
/**
* offline_memory_block_cb - callback function for offlining memory block
* @mem: the memory block to be offlined
* @arg: buffer to hold error msg
*
* Always return 0, and put the error msg in arg if any.
*/
static int offline_memory_block_cb(struct memory_block *mem, void *arg)
{
int *ret = arg;
int error = offline_memory_block(mem);
if (error != 0 && *ret == 0)
*ret = error;
return 0;
}
static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
if (unlikely(ret))
pr_warn("removing memory fails, because memory "
"[%#010llx-%#010llx] is onlined\n",
PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)),
PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1);
return ret;
}
static int check_cpu_on_node(void *data)
{
struct pglist_data *pgdat = data;
int cpu;
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == pgdat->node_id)
/*
* the cpu on this node isn't removed, and we can't
* offline this node.
*/
return -EBUSY;
}
return 0;
}
static void unmap_cpu_on_node(void *data)
{
#ifdef CONFIG_ACPI_NUMA
struct pglist_data *pgdat = data;
int cpu;
for_each_possible_cpu(cpu)
if (cpu_to_node(cpu) == pgdat->node_id)
numa_clear_node(cpu);
#endif
}
static int check_and_unmap_cpu_on_node(void *data)
{
int ret = check_cpu_on_node(data);
if (ret)
return ret;
/*
* the node will be offlined when we come here, so we can clear
* the cpu_to_node() now.
*/
unmap_cpu_on_node(data);
return 0;
}
/* offline the node if all memory sections of this node are removed */
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = pgdat->node_start_pfn;
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
unsigned long pfn;
struct page *pgdat_page = virt_to_page(pgdat);
int i;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/*
* some memory sections of this node are not removed, and we
* can't offline node now.
*/
return;
}
if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL))
return;
/*
* all memory/cpu of this node are removed, we can offline this
* node now.
*/
node_set_offline(nid);
unregister_one_node(nid);
if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
/* node data is allocated from boot memory */
return;
/* free waittable in each zone */
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
if (zone->wait_table)
vfree(zone->wait_table);
}
/*
* Since there is no way to guarentee the address of pgdat/zone is not
* on stack of any kernel threads or used by other kernel objects
* without reference counting or other symchronizing method, do not
* reset node_data and free pgdat here. Just reset it to 0 and reuse
* the memory when the node is online again.
*/
memset(pgdat, 0, sizeof(*pgdat));
}
EXPORT_SYMBOL(try_offline_node);
int __ref remove_memory(int nid, u64 start, u64 size)
{
unsigned long start_pfn, end_pfn;
int ret = 0;
int retry = 1;
start_pfn = PFN_DOWN(start);
end_pfn = start_pfn + PFN_DOWN(size);
/*
* When CONFIG_MEMCG is on, one memory block may be used by other
* blocks to store page cgroup when onlining pages. But we don't know
* in what order pages are onlined. So we iterate twice to offline
* memory:
* 1st iterate: offline every non primary memory block.
* 2nd iterate: offline primary (i.e. first added) memory block.
*/
repeat:
walk_memory_range(start_pfn, end_pfn, &ret,
offline_memory_block_cb);
if (ret) {
if (!retry)
return ret;
retry = 0;
ret = 0;
goto repeat;
}
lock_memory_hotplug();
/*
* we have offlined all memory blocks like this:
* 1. lock memory hotplug
* 2. offline a memory block
* 3. unlock memory hotplug
*
* repeat step1-3 to offline the memory block. All memory blocks
* must be offlined before removing memory. But we don't hold the
* lock in the whole operation. So we should check whether all
* memory blocks are offlined.
*/
ret = walk_memory_range(start_pfn, end_pfn, NULL,
is_memblock_offlined_cb);
if (ret) {
unlock_memory_hotplug();
return ret;
}
/* remove memmap entry */
firmware_map_remove(start, start + size, "System RAM");
arch_remove_memory(start, size);
try_offline_node(nid);
unlock_memory_hotplug();
return 0;
}
#else
int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
return -EINVAL;
}
int remove_memory(u64 start, u64 size)
int remove_memory(int nid, u64 start, u64 size)
{
return -EINVAL;
}

View File

@ -26,7 +26,7 @@
* the allocation to memory nodes instead
*
* preferred Try a specific node first before normal fallback.
* As a special case node -1 here means do the allocation
* As a special case NUMA_NO_NODE here means do the allocation
* on the local CPU. This is normally identical to default,
* but useful to set in a VMA when you have a non default
* process policy.
@ -127,7 +127,7 @@ static struct mempolicy *get_task_policy(struct task_struct *p)
if (!pol) {
node = numa_node_id();
if (node != -1)
if (node != NUMA_NO_NODE)
pol = &preferred_node_policy[node];
/* preferred_node_policy is not initialised early in boot */
@ -161,19 +161,7 @@ static const struct mempolicy_operations {
/* Check that the nodemask contains at least one populated zone */
static int is_valid_nodemask(const nodemask_t *nodemask)
{
int nd, k;
for_each_node_mask(nd, *nodemask) {
struct zone *z;
for (k = 0; k <= policy_zone; k++) {
z = &NODE_DATA(nd)->node_zones[k];
if (z->present_pages > 0)
return 1;
}
}
return 0;
return nodes_intersects(*nodemask, node_states[N_MEMORY]);
}
static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
@ -270,7 +258,7 @@ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
struct mempolicy *policy;
pr_debug("setting mode %d flags %d nodes[0] %lx\n",
mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
if (mode == MPOL_DEFAULT) {
if (nodes && !nodes_empty(*nodes))
@ -508,9 +496,8 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
/*
* vm_normal_page() filters out zero pages, but there might
* still be PageReserved pages to skip, perhaps in a VDSO.
* And we cannot move PageKsm pages sensibly or safely yet.
*/
if (PageReserved(page) || PageKsm(page))
if (PageReserved(page))
continue;
nid = page_to_nid(page);
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
@ -1027,8 +1014,7 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest,
if (!list_empty(&pagelist)) {
err = migrate_pages(&pagelist, new_node_page, dest,
false, MIGRATE_SYNC,
MR_SYSCALL);
MIGRATE_SYNC, MR_SYSCALL);
if (err)
putback_lru_pages(&pagelist);
}
@ -1235,7 +1221,7 @@ static long do_mbind(unsigned long start, unsigned long len,
pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
start, start + len, mode, mode_flags,
nmask ? nodes_addr(*nmask)[0] : -1);
nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
@ -1272,9 +1258,8 @@ static long do_mbind(unsigned long start, unsigned long len,
if (!list_empty(&pagelist)) {
WARN_ON_ONCE(flags & MPOL_MF_LAZY);
nr_failed = migrate_pages(&pagelist, new_vma_page,
(unsigned long)vma,
false, MIGRATE_SYNC,
MR_MEMPOLICY_MBIND);
(unsigned long)vma,
MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
if (nr_failed)
putback_lru_pages(&pagelist);
}
@ -1644,6 +1629,26 @@ struct mempolicy *get_vma_policy(struct task_struct *task,
return pol;
}
static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
{
enum zone_type dynamic_policy_zone = policy_zone;
BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
/*
* if policy->v.nodes has movable memory only,
* we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
*
* policy->v.nodes is intersect with node_states[N_MEMORY].
* so if the following test faile, it implies
* policy->v.nodes has movable memory only.
*/
if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
dynamic_policy_zone = ZONE_MOVABLE;
return zone >= dynamic_policy_zone;
}
/*
* Return a nodemask representing a mempolicy for filtering nodes for
* page allocation
@ -1652,7 +1657,7 @@ static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
{
/* Lower zones don't get a nodemask applied for MPOL_BIND */
if (unlikely(policy->mode == MPOL_BIND) &&
gfp_zone(gfp) >= policy_zone &&
apply_policy_zone(policy, gfp_zone(gfp)) &&
cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
return &policy->v.nodes;
@ -2308,7 +2313,7 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
* it less likely we act on an unlikely task<->page
* relation.
*/
last_nid = page_xchg_last_nid(page, polnid);
last_nid = page_nid_xchg_last(page, polnid);
if (last_nid != polnid)
goto out;
}
@ -2483,7 +2488,7 @@ int mpol_set_shared_policy(struct shared_policy *info,
vma->vm_pgoff,
sz, npol ? npol->mode : -1,
npol ? npol->flags : -1,
npol ? nodes_addr(npol->v.nodes)[0] : -1);
npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
if (npol) {
new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);

View File

@ -464,7 +464,10 @@ void migrate_page_copy(struct page *newpage, struct page *page)
mlock_migrate_page(newpage, page);
ksm_migrate_page(newpage, page);
/*
* Please do not reorder this without considering how mm/ksm.c's
* get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
*/
ClearPageSwapCache(page);
ClearPagePrivate(page);
set_page_private(page, 0);
@ -698,7 +701,7 @@ static int move_to_new_page(struct page *newpage, struct page *page,
}
static int __unmap_and_move(struct page *page, struct page *newpage,
int force, bool offlining, enum migrate_mode mode)
int force, enum migrate_mode mode)
{
int rc = -EAGAIN;
int remap_swapcache = 1;
@ -728,20 +731,6 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
lock_page(page);
}
/*
* Only memory hotplug's offline_pages() caller has locked out KSM,
* and can safely migrate a KSM page. The other cases have skipped
* PageKsm along with PageReserved - but it is only now when we have
* the page lock that we can be certain it will not go KSM beneath us
* (KSM will not upgrade a page from PageAnon to PageKsm when it sees
* its pagecount raised, but only here do we take the page lock which
* serializes that).
*/
if (PageKsm(page) && !offlining) {
rc = -EBUSY;
goto unlock;
}
/* charge against new page */
mem_cgroup_prepare_migration(page, newpage, &mem);
@ -768,7 +757,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
* File Caches may use write_page() or lock_page() in migration, then,
* just care Anon page here.
*/
if (PageAnon(page)) {
if (PageAnon(page) && !PageKsm(page)) {
/*
* Only page_lock_anon_vma_read() understands the subtleties of
* getting a hold on an anon_vma from outside one of its mms.
@ -848,7 +837,6 @@ uncharge:
mem_cgroup_end_migration(mem, page, newpage,
(rc == MIGRATEPAGE_SUCCESS ||
rc == MIGRATEPAGE_BALLOON_SUCCESS));
unlock:
unlock_page(page);
out:
return rc;
@ -859,8 +847,7 @@ out:
* to the newly allocated page in newpage.
*/
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
struct page *page, int force, bool offlining,
enum migrate_mode mode)
struct page *page, int force, enum migrate_mode mode)
{
int rc = 0;
int *result = NULL;
@ -878,7 +865,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
if (unlikely(split_huge_page(page)))
goto out;
rc = __unmap_and_move(page, newpage, force, offlining, mode);
rc = __unmap_and_move(page, newpage, force, mode);
if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
/*
@ -938,8 +925,7 @@ out:
*/
static int unmap_and_move_huge_page(new_page_t get_new_page,
unsigned long private, struct page *hpage,
int force, bool offlining,
enum migrate_mode mode)
int force, enum migrate_mode mode)
{
int rc = 0;
int *result = NULL;
@ -1001,9 +987,8 @@ out:
*
* Return: Number of pages not migrated or error code.
*/
int migrate_pages(struct list_head *from,
new_page_t get_new_page, unsigned long private, bool offlining,
enum migrate_mode mode, int reason)
int migrate_pages(struct list_head *from, new_page_t get_new_page,
unsigned long private, enum migrate_mode mode, int reason)
{
int retry = 1;
int nr_failed = 0;
@ -1024,8 +1009,7 @@ int migrate_pages(struct list_head *from,
cond_resched();
rc = unmap_and_move(get_new_page, private,
page, pass > 2, offlining,
mode);
page, pass > 2, mode);
switch(rc) {
case -ENOMEM:
@ -1058,15 +1042,13 @@ out:
}
int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
unsigned long private, bool offlining,
enum migrate_mode mode)
unsigned long private, enum migrate_mode mode)
{
int pass, rc;
for (pass = 0; pass < 10; pass++) {
rc = unmap_and_move_huge_page(get_new_page,
private, hpage, pass > 2, offlining,
mode);
rc = unmap_and_move_huge_page(get_new_page, private,
hpage, pass > 2, mode);
switch (rc) {
case -ENOMEM:
goto out;
@ -1152,7 +1134,7 @@ static int do_move_page_to_node_array(struct mm_struct *mm,
goto set_status;
/* Use PageReserved to check for zero page */
if (PageReserved(page) || PageKsm(page))
if (PageReserved(page))
goto put_and_set;
pp->page = page;
@ -1189,8 +1171,7 @@ set_status:
err = 0;
if (!list_empty(&pagelist)) {
err = migrate_pages(&pagelist, new_page_node,
(unsigned long)pm, 0, MIGRATE_SYNC,
MR_SYSCALL);
(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
if (err)
putback_lru_pages(&pagelist);
}
@ -1314,7 +1295,7 @@ static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
err = -ENOENT;
/* Use PageReserved to check for zero page */
if (!page || PageReserved(page) || PageKsm(page))
if (!page || PageReserved(page))
goto set_status;
err = page_to_nid(page);
@ -1461,7 +1442,7 @@ int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
* pages. Currently it only checks the watermarks which crude
*/
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
int nr_migrate_pages)
unsigned long nr_migrate_pages)
{
int z;
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
@ -1497,7 +1478,7 @@ static struct page *alloc_misplaced_dst_page(struct page *page,
__GFP_NOWARN) &
~GFP_IOFS, 0);
if (newpage)
page_xchg_last_nid(newpage, page_last_nid(page));
page_nid_xchg_last(newpage, page_nid_last(page));
return newpage;
}
@ -1557,39 +1538,40 @@ bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
{
int ret = 0;
int page_lru;
VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
/* Avoid migrating to a node that is nearly full */
if (migrate_balanced_pgdat(pgdat, 1)) {
int page_lru;
if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
return 0;
if (isolate_lru_page(page)) {
put_page(page);
return 0;
}
/* Page is isolated */
ret = 1;
page_lru = page_is_file_cache(page);
if (!PageTransHuge(page))
inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru);
else
mod_zone_page_state(page_zone(page),
NR_ISOLATED_ANON + page_lru,
HPAGE_PMD_NR);
}
if (isolate_lru_page(page))
return 0;
/*
* Page is either isolated or there is not enough space on the target
* node. If isolated, then it has taken a reference count and the
* callers reference can be safely dropped without the page
* disappearing underneath us during migration. Otherwise the page is
* not to be migrated but the callers reference should still be
* dropped so it does not leak.
* migrate_misplaced_transhuge_page() skips page migration's usual
* check on page_count(), so we must do it here, now that the page
* has been isolated: a GUP pin, or any other pin, prevents migration.
* The expected page count is 3: 1 for page's mapcount and 1 for the
* caller's pin and 1 for the reference taken by isolate_lru_page().
*/
if (PageTransHuge(page) && page_count(page) != 3) {
putback_lru_page(page);
return 0;
}
page_lru = page_is_file_cache(page);
mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
hpage_nr_pages(page));
/*
* Isolating the page has taken another reference, so the
* caller's reference can be safely dropped without the page
* disappearing underneath us during migration.
*/
put_page(page);
return ret;
return 1;
}
/*
@ -1600,7 +1582,7 @@ int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
int migrate_misplaced_page(struct page *page, int node)
{
pg_data_t *pgdat = NODE_DATA(node);
int isolated = 0;
int isolated;
int nr_remaining;
LIST_HEAD(migratepages);
@ -1608,42 +1590,43 @@ int migrate_misplaced_page(struct page *page, int node)
* Don't migrate pages that are mapped in multiple processes.
* TODO: Handle false sharing detection instead of this hammer
*/
if (page_mapcount(page) != 1) {
put_page(page);
if (page_mapcount(page) != 1)
goto out;
}
/*
* Rate-limit the amount of data that is being migrated to a node.
* Optimal placement is no good if the memory bus is saturated and
* all the time is being spent migrating!
*/
if (numamigrate_update_ratelimit(pgdat, 1)) {
put_page(page);
if (numamigrate_update_ratelimit(pgdat, 1))
goto out;
}
isolated = numamigrate_isolate_page(pgdat, page);
if (!isolated)
goto out;
list_add(&page->lru, &migratepages);
nr_remaining = migrate_pages(&migratepages,
alloc_misplaced_dst_page,
node, false, MIGRATE_ASYNC,
MR_NUMA_MISPLACED);
nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
if (nr_remaining) {
putback_lru_pages(&migratepages);
isolated = 0;
} else
count_vm_numa_event(NUMA_PAGE_MIGRATE);
BUG_ON(!list_empty(&migratepages));
out:
return isolated;
out:
put_page(page);
return 0;
}
#endif /* CONFIG_NUMA_BALANCING */
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
/*
* Migrates a THP to a given target node. page must be locked and is unlocked
* before returning.
*/
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
struct vm_area_struct *vma,
pmd_t *pmd, pmd_t entry,
@ -1674,29 +1657,15 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
new_page = alloc_pages_node(node,
(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
if (!new_page) {
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
goto out_dropref;
}
page_xchg_last_nid(new_page, page_last_nid(page));
if (!new_page)
goto out_fail;
page_nid_xchg_last(new_page, page_nid_last(page));
isolated = numamigrate_isolate_page(pgdat, page);
/*
* Failing to isolate or a GUP pin prevents migration. The expected
* page count is 2. 1 for anonymous pages without a mapping and 1
* for the callers pin. If the page was isolated, the page will
* need to be put back on the LRU.
*/
if (!isolated || page_count(page) != 2) {
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
if (!isolated) {
put_page(new_page);
if (isolated) {
putback_lru_page(page);
isolated = 0;
goto out;
}
goto out_keep_locked;
goto out_fail;
}
/* Prepare a page as a migration target */
@ -1728,6 +1697,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
putback_lru_page(page);
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
isolated = 0;
goto out;
}
@ -1772,9 +1742,11 @@ out:
-HPAGE_PMD_NR);
return isolated;
out_fail:
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
out_dropref:
unlock_page(page);
put_page(page);
out_keep_locked:
return 0;
}
#endif /* CONFIG_NUMA_BALANCING */

View File

@ -75,7 +75,7 @@ static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff)
/* shmem/tmpfs may return swap: account for swapcache page too. */
if (radix_tree_exceptional_entry(page)) {
swp_entry_t swap = radix_to_swp_entry(page);
page = find_get_page(&swapper_space, swap.val);
page = find_get_page(swap_address_space(swap), swap.val);
}
#endif
if (page) {
@ -135,7 +135,8 @@ static void mincore_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
} else {
#ifdef CONFIG_SWAP
pgoff = entry.val;
*vec = mincore_page(&swapper_space, pgoff);
*vec = mincore_page(swap_address_space(entry),
pgoff);
#else
WARN_ON(1);
*vec = 1;

View File

@ -155,13 +155,12 @@ void munlock_vma_page(struct page *page)
*
* vma->vm_mm->mmap_sem must be held for at least read.
*/
static long __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
int *nonblocking)
long __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start;
int nr_pages = (end - start) / PAGE_SIZE;
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags;
VM_BUG_ON(start & ~PAGE_MASK);
@ -186,6 +185,10 @@ static long __mlock_vma_pages_range(struct vm_area_struct *vma,
if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
gup_flags |= FOLL_FORCE;
/*
* We made sure addr is within a VMA, so the following will
* not result in a stack expansion that recurses back here.
*/
return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
NULL, NULL, nonblocking);
}
@ -202,56 +205,6 @@ static int __mlock_posix_error_return(long retval)
return retval;
}
/**
* mlock_vma_pages_range() - mlock pages in specified vma range.
* @vma - the vma containing the specfied address range
* @start - starting address in @vma to mlock
* @end - end address [+1] in @vma to mlock
*
* For mmap()/mremap()/expansion of mlocked vma.
*
* return 0 on success for "normal" vmas.
*
* return number of pages [> 0] to be removed from locked_vm on success
* of "special" vmas.
*/
long mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int nr_pages = (end - start) / PAGE_SIZE;
BUG_ON(!(vma->vm_flags & VM_LOCKED));
/*
* filter unlockable vmas
*/
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
goto no_mlock;
if (!((vma->vm_flags & VM_DONTEXPAND) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm))) {
__mlock_vma_pages_range(vma, start, end, NULL);
/* Hide errors from mmap() and other callers */
return 0;
}
/*
* User mapped kernel pages or huge pages:
* make these pages present to populate the ptes, but
* fall thru' to reset VM_LOCKED--no need to unlock, and
* return nr_pages so these don't get counted against task's
* locked limit. huge pages are already counted against
* locked vm limit.
*/
make_pages_present(start, end);
no_mlock:
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
return nr_pages; /* error or pages NOT mlocked */
}
/*
* munlock_vma_pages_range() - munlock all pages in the vma range.'
* @vma - vma containing range to be munlock()ed.
@ -303,7 +256,7 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
*
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
* munlock is a no-op. However, for some special vmas, we go ahead and
* populate the ptes via make_pages_present().
* populate the ptes.
*
* For vmas that pass the filters, merge/split as appropriate.
*/
@ -391,9 +344,9 @@ static int do_mlock(unsigned long start, size_t len, int on)
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
newflags = vma->vm_flags | VM_LOCKED;
if (!on)
newflags &= ~VM_LOCKED;
newflags = vma->vm_flags & ~VM_LOCKED;
if (on)
newflags |= VM_LOCKED | VM_POPULATE;
tmp = vma->vm_end;
if (tmp > end)
@ -416,13 +369,20 @@ static int do_mlock(unsigned long start, size_t len, int on)
return error;
}
static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
/*
* __mm_populate - populate and/or mlock pages within a range of address space.
*
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
* flags. VMAs must be already marked with the desired vm_flags, and
* mmap_sem must not be held.
*/
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
struct mm_struct *mm = current->mm;
unsigned long end, nstart, nend;
struct vm_area_struct *vma = NULL;
int locked = 0;
int ret = 0;
long ret = 0;
VM_BUG_ON(start & ~PAGE_MASK);
VM_BUG_ON(len != PAGE_ALIGN(len));
@ -446,7 +406,8 @@ static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
* range with the first VMA. Also, skip undesirable VMA types.
*/
nend = min(end, vma->vm_end);
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_POPULATE)) !=
VM_POPULATE)
continue;
if (nstart < vma->vm_start)
nstart = vma->vm_start;
@ -498,7 +459,7 @@ SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
error = do_mlock(start, len, 1);
up_write(&current->mm->mmap_sem);
if (!error)
error = do_mlock_pages(start, len, 0);
error = __mm_populate(start, len, 0);
return error;
}
@ -519,18 +480,18 @@ static int do_mlockall(int flags)
struct vm_area_struct * vma, * prev = NULL;
if (flags & MCL_FUTURE)
current->mm->def_flags |= VM_LOCKED;
current->mm->def_flags |= VM_LOCKED | VM_POPULATE;
else
current->mm->def_flags &= ~VM_LOCKED;
current->mm->def_flags &= ~(VM_LOCKED | VM_POPULATE);
if (flags == MCL_FUTURE)
goto out;
for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
vm_flags_t newflags;
newflags = vma->vm_flags | VM_LOCKED;
if (!(flags & MCL_CURRENT))
newflags &= ~VM_LOCKED;
newflags = vma->vm_flags & ~VM_LOCKED;
if (flags & MCL_CURRENT)
newflags |= VM_LOCKED | VM_POPULATE;
/* Ignore errors */
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
@ -564,10 +525,8 @@ SYSCALL_DEFINE1(mlockall, int, flags)
capable(CAP_IPC_LOCK))
ret = do_mlockall(flags);
up_write(&current->mm->mmap_sem);
if (!ret && (flags & MCL_CURRENT)) {
/* Ignore errors */
do_mlock_pages(0, TASK_SIZE, 1);
}
if (!ret && (flags & MCL_CURRENT))
mm_populate(0, TASK_SIZE);
out:
return ret;
}

View File

@ -69,34 +69,41 @@ void __init mminit_verify_pageflags_layout(void)
unsigned long or_mask, add_mask;
shift = 8 * sizeof(unsigned long);
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH;
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH - LAST_NID_SHIFT;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
"Section %d Node %d Zone %d Flags %d\n",
"Section %d Node %d Zone %d Lastnid %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
LAST_NID_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
"Section %d Node %d Zone %d\n",
"Section %d Node %d Zone %d Lastnid %d\n",
SECTIONS_SHIFT,
NODES_SHIFT,
ZONES_SHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_offsets",
"Section %lu Node %lu Zone %lu\n",
ZONES_SHIFT,
LAST_NID_SHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
"Section %lu Node %lu Zone %lu Lastnid %lu\n",
(unsigned long)SECTIONS_PGSHIFT,
(unsigned long)NODES_PGSHIFT,
(unsigned long)ZONES_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_zoneid",
"Zone ID: %lu -> %lu\n",
(unsigned long)ZONEID_PGOFF,
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT));
(unsigned long)ZONES_PGSHIFT,
(unsigned long)LAST_NID_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
"Node/Zone ID: %lu -> %lu\n",
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
(unsigned long)ZONEID_PGOFF);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
"location: %d -> %d unused %d -> %d flags %d -> %d\n",
"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
#ifdef NODE_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Node not in page flags");
#endif
#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Last nid not in page flags");
#endif
if (SECTIONS_WIDTH) {
shift -= SECTIONS_WIDTH;

View File

@ -144,7 +144,7 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
*/
free -= global_page_state(NR_SHMEM);
free += nr_swap_pages;
free += get_nr_swap_pages();
/*
* Any slabs which are created with the
@ -256,6 +256,7 @@ SYSCALL_DEFINE1(brk, unsigned long, brk)
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
unsigned long min_brk;
bool populate;
down_write(&mm->mmap_sem);
@ -305,8 +306,15 @@ SYSCALL_DEFINE1(brk, unsigned long, brk)
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
up_write(&mm->mmap_sem);
if (populate)
mm_populate(oldbrk, newbrk - oldbrk);
return brk;
out:
retval = mm->brk;
up_write(&mm->mmap_sem);
@ -801,7 +809,7 @@ again: remove_next = 1 + (end > next->vm_end);
anon_vma_interval_tree_post_update_vma(vma);
if (adjust_next)
anon_vma_interval_tree_post_update_vma(next);
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
}
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
@ -1154,12 +1162,15 @@ static inline unsigned long round_hint_to_min(unsigned long hint)
unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, unsigned long pgoff)
unsigned long flags, unsigned long pgoff,
unsigned long *populate)
{
struct mm_struct * mm = current->mm;
struct inode *inode;
vm_flags_t vm_flags;
*populate = 0;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
@ -1280,7 +1291,24 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
}
}
return mmap_region(file, addr, len, flags, vm_flags, pgoff);
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
addr = mmap_region(file, addr, len, vm_flags, pgoff);
if (!IS_ERR_VALUE(addr) && (vm_flags & VM_POPULATE))
*populate = len;
return addr;
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
@ -1395,8 +1423,7 @@ static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
}
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff)
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
@ -1419,20 +1446,6 @@ munmap_back:
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if ((flags & MAP_NORESERVE)) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
/*
* Private writable mapping: check memory availability
*/
@ -1531,10 +1544,12 @@ out:
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if (!mlock_vma_pages_range(vma, addr, addr + len))
if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm)))
mm->locked_vm += (len >> PAGE_SHIFT);
} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
make_pages_present(addr, addr + len);
else
vma->vm_flags &= ~VM_LOCKED;
}
if (file)
uprobe_mmap(vma);
@ -2187,9 +2202,8 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr)
return vma;
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED) {
mlock_vma_pages_range(prev, addr, prev->vm_end);
}
if (prev->vm_flags & VM_LOCKED)
__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
return prev;
}
#else
@ -2215,9 +2229,8 @@ find_extend_vma(struct mm_struct * mm, unsigned long addr)
start = vma->vm_start;
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED) {
mlock_vma_pages_range(vma, addr, start);
}
if (vma->vm_flags & VM_LOCKED)
__mlock_vma_pages_range(vma, addr, start, NULL);
return vma;
}
#endif
@ -2590,10 +2603,8 @@ static unsigned long do_brk(unsigned long addr, unsigned long len)
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
if (!mlock_vma_pages_range(vma, addr, addr + len))
mm->locked_vm += (len >> PAGE_SHIFT);
}
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
return addr;
}
@ -2601,10 +2612,14 @@ unsigned long vm_brk(unsigned long addr, unsigned long len)
{
struct mm_struct *mm = current->mm;
unsigned long ret;
bool populate;
down_write(&mm->mmap_sem);
ret = do_brk(addr, len);
populate = ((mm->def_flags & VM_LOCKED) != 0);
up_write(&mm->mmap_sem);
if (populate)
mm_populate(addr, len);
return ret;
}
EXPORT_SYMBOL(vm_brk);
@ -3002,7 +3017,7 @@ static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
if (!__test_and_clear_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_node))
BUG();
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
}
}

View File

@ -37,49 +37,51 @@ static struct srcu_struct srcu;
void __mmu_notifier_release(struct mm_struct *mm)
{
struct mmu_notifier *mn;
struct hlist_node *n;
int id;
/*
* SRCU here will block mmu_notifier_unregister until
* ->release returns.
* srcu_read_lock() here will block synchronize_srcu() in
* mmu_notifier_unregister() until all registered
* ->release() callouts this function makes have
* returned.
*/
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist)
/*
* if ->release runs before mmu_notifier_unregister it
* must be handled as it's the only way for the driver
* to flush all existing sptes and stop the driver
* from establishing any more sptes before all the
* pages in the mm are freed.
*/
if (mn->ops->release)
mn->ops->release(mn, mm);
srcu_read_unlock(&srcu, id);
spin_lock(&mm->mmu_notifier_mm->lock);
while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
mn = hlist_entry(mm->mmu_notifier_mm->list.first,
struct mmu_notifier,
hlist);
/*
* We arrived before mmu_notifier_unregister so
* mmu_notifier_unregister will do nothing other than
* to wait ->release to finish and
* mmu_notifier_unregister to return.
* Unlink. This will prevent mmu_notifier_unregister()
* from also making the ->release() callout.
*/
hlist_del_init_rcu(&mn->hlist);
spin_unlock(&mm->mmu_notifier_mm->lock);
/*
* Clear sptes. (see 'release' description in mmu_notifier.h)
*/
if (mn->ops->release)
mn->ops->release(mn, mm);
spin_lock(&mm->mmu_notifier_mm->lock);
}
spin_unlock(&mm->mmu_notifier_mm->lock);
/*
* synchronize_srcu here prevents mmu_notifier_release to
* return to exit_mmap (which would proceed freeing all pages
* in the mm) until the ->release method returns, if it was
* invoked by mmu_notifier_unregister.
*
* The mmu_notifier_mm can't go away from under us because one
* mm_count is hold by exit_mmap.
* All callouts to ->release() which we have done are complete.
* Allow synchronize_srcu() in mmu_notifier_unregister() to complete
*/
srcu_read_unlock(&srcu, id);
/*
* mmu_notifier_unregister() may have unlinked a notifier and may
* still be calling out to it. Additionally, other notifiers
* may have been active via vmtruncate() et. al. Block here
* to ensure that all notifier callouts for this mm have been
* completed and the sptes are really cleaned up before returning
* to exit_mmap().
*/
synchronize_srcu(&srcu);
}
@ -170,6 +172,7 @@ void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
}
srcu_read_unlock(&srcu, id);
}
EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start);
void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
unsigned long start, unsigned long end)
@ -185,6 +188,7 @@ void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
}
srcu_read_unlock(&srcu, id);
}
EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end);
static int do_mmu_notifier_register(struct mmu_notifier *mn,
struct mm_struct *mm,
@ -294,31 +298,31 @@ void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
{
BUG_ON(atomic_read(&mm->mm_count) <= 0);
spin_lock(&mm->mmu_notifier_mm->lock);
if (!hlist_unhashed(&mn->hlist)) {
/*
* SRCU here will force exit_mmap to wait ->release to finish
* before freeing the pages.
*/
int id;
id = srcu_read_lock(&srcu);
/*
* exit_mmap will block in mmu_notifier_release to
* guarantee ->release is called before freeing the
* pages.
* Ensure we synchronize up with __mmu_notifier_release().
*/
if (mn->ops->release)
mn->ops->release(mn, mm);
srcu_read_unlock(&srcu, id);
id = srcu_read_lock(&srcu);
spin_lock(&mm->mmu_notifier_mm->lock);
hlist_del_rcu(&mn->hlist);
spin_unlock(&mm->mmu_notifier_mm->lock);
}
if (mn->ops->release)
mn->ops->release(mn, mm);
/*
* Allow __mmu_notifier_release() to complete.
*/
srcu_read_unlock(&srcu, id);
} else
spin_unlock(&mm->mmu_notifier_mm->lock);
/*
* Wait any running method to finish, of course including
* ->release if it was run by mmu_notifier_relase instead of us.
* Wait for any running method to finish, including ->release() if it
* was run by __mmu_notifier_release() instead of us.
*/
synchronize_srcu(&srcu);

View File

@ -1,7 +1,7 @@
/*
* linux/mm/mmzone.c
*
* management codes for pgdats and zones.
* management codes for pgdats, zones and page flags
*/
@ -96,3 +96,21 @@ void lruvec_init(struct lruvec *lruvec)
for_each_lru(lru)
INIT_LIST_HEAD(&lruvec->lists[lru]);
}
#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_NID_NOT_IN_PAGE_FLAGS)
int page_nid_xchg_last(struct page *page, int nid)
{
unsigned long old_flags, flags;
int last_nid;
do {
old_flags = flags = page->flags;
last_nid = page_nid_last(page);
flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
} while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
return last_nid;
}
#endif

View File

@ -135,7 +135,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
if (anon_vma)
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
}
@ -209,7 +209,7 @@ unsigned long move_page_tables(struct vm_area_struct *vma,
static unsigned long move_vma(struct vm_area_struct *vma,
unsigned long old_addr, unsigned long old_len,
unsigned long new_len, unsigned long new_addr)
unsigned long new_len, unsigned long new_addr, bool *locked)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma;
@ -300,9 +300,7 @@ static unsigned long move_vma(struct vm_area_struct *vma,
if (vm_flags & VM_LOCKED) {
mm->locked_vm += new_len >> PAGE_SHIFT;
if (new_len > old_len)
mlock_vma_pages_range(new_vma, new_addr + old_len,
new_addr + new_len);
*locked = true;
}
return new_addr;
@ -367,9 +365,8 @@ Eagain:
return ERR_PTR(-EAGAIN);
}
static unsigned long mremap_to(unsigned long addr,
unsigned long old_len, unsigned long new_addr,
unsigned long new_len)
static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
unsigned long new_addr, unsigned long new_len, bool *locked)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
@ -419,7 +416,7 @@ static unsigned long mremap_to(unsigned long addr,
if (ret & ~PAGE_MASK)
goto out1;
ret = move_vma(vma, addr, old_len, new_len, new_addr);
ret = move_vma(vma, addr, old_len, new_len, new_addr, locked);
if (!(ret & ~PAGE_MASK))
goto out;
out1:
@ -457,6 +454,7 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
struct vm_area_struct *vma;
unsigned long ret = -EINVAL;
unsigned long charged = 0;
bool locked = false;
down_write(&current->mm->mmap_sem);
@ -479,7 +477,8 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
if (flags & MREMAP_FIXED) {
if (flags & MREMAP_MAYMOVE)
ret = mremap_to(addr, old_len, new_addr, new_len);
ret = mremap_to(addr, old_len, new_addr, new_len,
&locked);
goto out;
}
@ -521,8 +520,8 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
mlock_vma_pages_range(vma, addr + old_len,
addr + new_len);
locked = true;
new_addr = addr;
}
ret = addr;
goto out;
@ -548,11 +547,13 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
goto out;
}
ret = move_vma(vma, addr, old_len, new_len, new_addr);
ret = move_vma(vma, addr, old_len, new_len, new_addr, &locked);
}
out:
if (ret & ~PAGE_MASK)
vm_unacct_memory(charged);
up_write(&current->mm->mmap_sem);
if (locked && new_len > old_len)
mm_populate(new_addr + old_len, new_len - old_len);
return ret;
}

View File

@ -140,10 +140,10 @@ unsigned int kobjsize(const void *objp)
return PAGE_SIZE << compound_order(page);
}
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, unsigned int foll_flags,
struct page **pages, struct vm_area_struct **vmas,
int *retry)
long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int foll_flags, struct page **pages,
struct vm_area_struct **vmas, int *nonblocking)
{
struct vm_area_struct *vma;
unsigned long vm_flags;
@ -190,9 +190,10 @@ finish_or_fault:
* slab page or a secondary page from a compound page
* - don't permit access to VMAs that don't support it, such as I/O mappings
*/
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
int write, int force, struct page **pages,
struct vm_area_struct **vmas)
{
int flags = 0;
@ -1250,7 +1251,8 @@ unsigned long do_mmap_pgoff(struct file *file,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff)
unsigned long pgoff,
unsigned long *populate)
{
struct vm_area_struct *vma;
struct vm_region *region;
@ -1260,6 +1262,8 @@ unsigned long do_mmap_pgoff(struct file *file,
kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
*populate = 0;
/* decide whether we should attempt the mapping, and if so what sort of
* mapping */
ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
@ -1815,9 +1819,11 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
return ret;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
unsigned int *page_mask)
{
*page_mask = 0;
return NULL;
}
@ -1904,7 +1910,7 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
*/
free -= global_page_state(NR_SHMEM);
free += nr_swap_pages;
free += get_nr_swap_pages();
/*
* Any slabs which are created with the

View File

@ -386,8 +386,10 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
cpuset_print_task_mems_allowed(current);
task_unlock(current);
dump_stack();
mem_cgroup_print_oom_info(memcg, p);
show_mem(SHOW_MEM_FILTER_NODES);
if (memcg)
mem_cgroup_print_oom_info(memcg, p);
else
show_mem(SHOW_MEM_FILTER_NODES);
if (sysctl_oom_dump_tasks)
dump_tasks(memcg, nodemask);
}

View File

@ -241,6 +241,9 @@ static unsigned long global_dirtyable_memory(void)
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
/* Subtract min_free_kbytes */
x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
return x + 1; /* Ensure that we never return 0 */
}

View File

@ -202,11 +202,18 @@ static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/* Movable memory ranges, will also be used by memblock subsystem. */
struct movablemem_map movablemem_map = {
.acpi = false,
.nr_map = 0,
};
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
@ -240,15 +247,20 @@ static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
unsigned long sp, start_pfn;
do {
seq = zone_span_seqbegin(zone);
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
ret = 1;
else if (pfn < zone->zone_start_pfn)
start_pfn = zone->zone_start_pfn;
sp = zone->spanned_pages;
if (!zone_spans_pfn(zone, pfn))
ret = 1;
} while (zone_span_seqretry(zone, seq));
if (ret)
pr_err("page %lu outside zone [ %lu - %lu ]\n",
pfn, start_pfn, start_pfn + sp);
return ret;
}
@ -288,7 +300,7 @@ static void bad_page(struct page *page)
/* Don't complain about poisoned pages */
if (PageHWPoison(page)) {
reset_page_mapcount(page); /* remove PageBuddy */
page_mapcount_reset(page); /* remove PageBuddy */
return;
}
@ -320,7 +332,7 @@ static void bad_page(struct page *page)
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
reset_page_mapcount(page); /* remove PageBuddy */
page_mapcount_reset(page); /* remove PageBuddy */
add_taint(TAINT_BAD_PAGE);
}
@ -533,6 +545,8 @@ static inline void __free_one_page(struct page *page,
unsigned long uninitialized_var(buddy_idx);
struct page *buddy;
VM_BUG_ON(!zone_is_initialized(zone));
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
return;
@ -606,7 +620,7 @@ static inline int free_pages_check(struct page *page)
bad_page(page);
return 1;
}
reset_page_last_nid(page);
page_nid_reset_last(page);
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
@ -666,7 +680,7 @@ static void free_pcppages_bulk(struct zone *zone, int count,
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
__free_one_page(page, zone, 0, mt);
trace_mm_page_pcpu_drain(page, 0, mt);
if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
if (likely(!is_migrate_isolate_page(page))) {
__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
if (is_migrate_cma(mt))
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
@ -684,7 +698,7 @@ static void free_one_page(struct zone *zone, struct page *page, int order,
zone->pages_scanned = 0;
__free_one_page(page, zone, order, migratetype);
if (unlikely(migratetype != MIGRATE_ISOLATE))
if (unlikely(!is_migrate_isolate(migratetype)))
__mod_zone_freepage_state(zone, 1 << order, migratetype);
spin_unlock(&zone->lock);
}
@ -916,7 +930,9 @@ static int fallbacks[MIGRATE_TYPES][4] = {
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
#endif
[MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
#endif
};
/*
@ -981,9 +997,9 @@ int move_freepages_block(struct zone *zone, struct page *page,
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (start_pfn < zone->zone_start_pfn)
if (!zone_spans_pfn(zone, start_pfn))
start_page = page;
if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
if (!zone_spans_pfn(zone, end_pfn))
return 0;
return move_freepages(zone, start_page, end_page, migratetype);
@ -1142,7 +1158,7 @@ static int rmqueue_bulk(struct zone *zone, unsigned int order,
list_add_tail(&page->lru, list);
if (IS_ENABLED(CONFIG_CMA)) {
mt = get_pageblock_migratetype(page);
if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
mt = migratetype;
}
set_freepage_migratetype(page, mt);
@ -1277,7 +1293,7 @@ void mark_free_pages(struct zone *zone)
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
max_zone_pfn = zone_end_pfn(zone);
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
@ -1326,7 +1342,7 @@ void free_hot_cold_page(struct page *page, int cold)
* excessively into the page allocator
*/
if (migratetype >= MIGRATE_PCPTYPES) {
if (unlikely(migratetype == MIGRATE_ISOLATE)) {
if (unlikely(is_migrate_isolate(migratetype))) {
free_one_page(zone, page, 0, migratetype);
goto out;
}
@ -1400,7 +1416,7 @@ static int __isolate_free_page(struct page *page, unsigned int order)
zone = page_zone(page);
mt = get_pageblock_migratetype(page);
if (mt != MIGRATE_ISOLATE) {
if (!is_migrate_isolate(mt)) {
/* Obey watermarks as if the page was being allocated */
watermark = low_wmark_pages(zone) + (1 << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
@ -1419,7 +1435,7 @@ static int __isolate_free_page(struct page *page, unsigned int order)
struct page *endpage = page + (1 << order) - 1;
for (; page < endpage; page += pageblock_nr_pages) {
int mt = get_pageblock_migratetype(page);
if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
set_pageblock_migratetype(page,
MIGRATE_MOVABLE);
}
@ -2615,10 +2631,17 @@ retry_cpuset:
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
zonelist, high_zoneidx, alloc_flags,
preferred_zone, migratetype);
if (unlikely(!page))
if (unlikely(!page)) {
/*
* Runtime PM, block IO and its error handling path
* can deadlock because I/O on the device might not
* complete.
*/
gfp_mask = memalloc_noio_flags(gfp_mask);
page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
}
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
@ -2790,18 +2813,27 @@ void free_pages_exact(void *virt, size_t size)
}
EXPORT_SYMBOL(free_pages_exact);
static unsigned int nr_free_zone_pages(int offset)
/**
* nr_free_zone_pages - count number of pages beyond high watermark
* @offset: The zone index of the highest zone
*
* nr_free_zone_pages() counts the number of counts pages which are beyond the
* high watermark within all zones at or below a given zone index. For each
* zone, the number of pages is calculated as:
* present_pages - high_pages
*/
static unsigned long nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone;
/* Just pick one node, since fallback list is circular */
unsigned int sum = 0;
unsigned long sum = 0;
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->present_pages;
unsigned long size = zone->managed_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
@ -2810,19 +2842,25 @@ static unsigned int nr_free_zone_pages(int offset)
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
/**
* nr_free_buffer_pages - count number of pages beyond high watermark
*
* nr_free_buffer_pages() counts the number of pages which are beyond the high
* watermark within ZONE_DMA and ZONE_NORMAL.
*/
unsigned int nr_free_buffer_pages(void)
unsigned long nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
/*
* Amount of free RAM allocatable within all zones
/**
* nr_free_pagecache_pages - count number of pages beyond high watermark
*
* nr_free_pagecache_pages() counts the number of pages which are beyond the
* high watermark within all zones.
*/
unsigned int nr_free_pagecache_pages(void)
unsigned long nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}
@ -2854,7 +2892,7 @@ void si_meminfo_node(struct sysinfo *val, int nid)
val->totalram = pgdat->node_present_pages;
val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
#else
@ -2897,7 +2935,9 @@ static void show_migration_types(unsigned char type)
#ifdef CONFIG_CMA
[MIGRATE_CMA] = 'C',
#endif
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = 'I',
#endif
};
char tmp[MIGRATE_TYPES + 1];
char *p = tmp;
@ -3236,7 +3276,7 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = -1;
int best_node = NUMA_NO_NODE;
const struct cpumask *tmp = cpumask_of_node(0);
/* Use the local node if we haven't already */
@ -3780,7 +3820,7 @@ static void setup_zone_migrate_reserve(struct zone *zone)
* the block.
*/
start_pfn = zone->zone_start_pfn;
end_pfn = start_pfn + zone->spanned_pages;
end_pfn = zone_end_pfn(zone);
start_pfn = roundup(start_pfn, pageblock_nr_pages);
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
pageblock_order;
@ -3876,8 +3916,8 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
set_page_links(page, zone, nid, pfn);
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
reset_page_last_nid(page);
page_mapcount_reset(page);
page_nid_reset_last(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
@ -3894,7 +3934,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
* pfn out of zone.
*/
if ((z->zone_start_pfn <= pfn)
&& (pfn < z->zone_start_pfn + z->spanned_pages)
&& (pfn < zone_end_pfn(z))
&& !(pfn & (pageblock_nr_pages - 1)))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
@ -3932,7 +3972,7 @@ static int __meminit zone_batchsize(struct zone *zone)
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
batch = zone->managed_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
@ -4016,7 +4056,7 @@ static void __meminit setup_zone_pageset(struct zone *zone)
if (percpu_pagelist_fraction)
setup_pagelist_highmark(pcp,
(zone->present_pages /
(zone->managed_pages /
percpu_pagelist_fraction));
}
}
@ -4372,6 +4412,77 @@ static unsigned long __meminit zone_absent_pages_in_node(int nid,
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}
/**
* sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
*
* zone_movable_limit is initialized as 0. This function will try to get
* the first ZONE_MOVABLE pfn of each node from movablemem_map, and
* assigne them to zone_movable_limit.
* zone_movable_limit[nid] == 0 means no limit for the node.
*
* Note: Each range is represented as [start_pfn, end_pfn)
*/
static void __meminit sanitize_zone_movable_limit(void)
{
int map_pos = 0, i, nid;
unsigned long start_pfn, end_pfn;
if (!movablemem_map.nr_map)
return;
/* Iterate all ranges from minimum to maximum */
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
/*
* If we have found lowest pfn of ZONE_MOVABLE of the node
* specified by user, just go on to check next range.
*/
if (zone_movable_limit[nid])
continue;
#ifdef CONFIG_ZONE_DMA
/* Skip DMA memory. */
if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
#endif
#ifdef CONFIG_ZONE_DMA32
/* Skip DMA32 memory. */
if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
#endif
#ifdef CONFIG_HIGHMEM
/* Skip lowmem if ZONE_MOVABLE is highmem. */
if (zone_movable_is_highmem() &&
start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
#endif
if (start_pfn >= end_pfn)
continue;
while (map_pos < movablemem_map.nr_map) {
if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
break;
if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
map_pos++;
continue;
}
/*
* The start_pfn of ZONE_MOVABLE is either the minimum
* pfn specified by movablemem_map, or 0, which means
* the node has no ZONE_MOVABLE.
*/
zone_movable_limit[nid] = max(start_pfn,
movablemem_map.map[map_pos].start_pfn);
break;
}
}
}
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
@ -4389,7 +4500,6 @@ static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
return zholes_size[zone_type];
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
@ -4573,7 +4683,7 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
nr_all_pages += freesize;
zone->spanned_pages = size;
zone->present_pages = freesize;
zone->present_pages = realsize;
/*
* Set an approximate value for lowmem here, it will be adjusted
* when the bootmem allocator frees pages into the buddy system.
@ -4625,7 +4735,7 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
* for the buddy allocator to function correctly.
*/
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = pgdat_end_pfn(pgdat);
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
@ -4831,12 +4941,19 @@ static void __init find_zone_movable_pfns_for_nodes(void)
required_kernelcore = max(required_kernelcore, corepages);
}
/* If kernelcore was not specified, there is no ZONE_MOVABLE */
if (!required_kernelcore)
/*
* If neither kernelcore/movablecore nor movablemem_map is specified,
* there is no ZONE_MOVABLE. But if movablemem_map is specified, the
* start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
*/
if (!required_kernelcore) {
if (movablemem_map.nr_map)
memcpy(zone_movable_pfn, zone_movable_limit,
sizeof(zone_movable_pfn));
goto out;
}
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
find_usable_zone_for_movable();
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
restart:
@ -4864,10 +4981,24 @@ restart:
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
unsigned long size_pages;
/*
* Find more memory for kernelcore in
* [zone_movable_pfn[nid], zone_movable_limit[nid]).
*/
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
if (start_pfn >= end_pfn)
continue;
if (zone_movable_limit[nid]) {
end_pfn = min(end_pfn, zone_movable_limit[nid]);
/* No range left for kernelcore in this node */
if (start_pfn >= end_pfn) {
zone_movable_pfn[nid] =
zone_movable_limit[nid];
break;
}
}
/* Account for what is only usable for kernelcore */
if (start_pfn < usable_startpfn) {
unsigned long kernel_pages;
@ -4927,12 +5058,12 @@ restart:
if (usable_nodes && required_kernelcore > usable_nodes)
goto restart;
out:
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
for (nid = 0; nid < MAX_NUMNODES; nid++)
zone_movable_pfn[nid] =
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
out:
/* restore the node_state */
node_states[N_MEMORY] = saved_node_state;
}
@ -4995,6 +5126,8 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
find_usable_zone_for_movable();
sanitize_zone_movable_limit();
find_zone_movable_pfns_for_nodes();
/* Print out the zone ranges */
@ -5078,6 +5211,181 @@ static int __init cmdline_parse_movablecore(char *p)
early_param("kernelcore", cmdline_parse_kernelcore);
early_param("movablecore", cmdline_parse_movablecore);
/**
* movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
* @start_pfn: start pfn of the range to be checked
* @end_pfn: end pfn of the range to be checked (exclusive)
*
* This function checks if a given memory range [start_pfn, end_pfn) overlaps
* the movablemem_map.map[] array.
*
* Return: index of the first overlapped element in movablemem_map.map[]
* or -1 if they don't overlap each other.
*/
int __init movablemem_map_overlap(unsigned long start_pfn,
unsigned long end_pfn)
{
int overlap;
if (!movablemem_map.nr_map)
return -1;
for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
if (start_pfn < movablemem_map.map[overlap].end_pfn)
break;
if (overlap == movablemem_map.nr_map ||
end_pfn <= movablemem_map.map[overlap].start_pfn)
return -1;
return overlap;
}
/**
* insert_movablemem_map - Insert a memory range in to movablemem_map.map.
* @start_pfn: start pfn of the range
* @end_pfn: end pfn of the range
*
* This function will also merge the overlapped ranges, and sort the array
* by start_pfn in monotonic increasing order.
*/
void __init insert_movablemem_map(unsigned long start_pfn,
unsigned long end_pfn)
{
int pos, overlap;
/*
* pos will be at the 1st overlapped range, or the position
* where the element should be inserted.
*/
for (pos = 0; pos < movablemem_map.nr_map; pos++)
if (start_pfn <= movablemem_map.map[pos].end_pfn)
break;
/* If there is no overlapped range, just insert the element. */
if (pos == movablemem_map.nr_map ||
end_pfn < movablemem_map.map[pos].start_pfn) {
/*
* If pos is not the end of array, we need to move all
* the rest elements backward.
*/
if (pos < movablemem_map.nr_map)
memmove(&movablemem_map.map[pos+1],
&movablemem_map.map[pos],
sizeof(struct movablemem_entry) *
(movablemem_map.nr_map - pos));
movablemem_map.map[pos].start_pfn = start_pfn;
movablemem_map.map[pos].end_pfn = end_pfn;
movablemem_map.nr_map++;
return;
}
/* overlap will be at the last overlapped range */
for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
if (end_pfn < movablemem_map.map[overlap].start_pfn)
break;
/*
* If there are more ranges overlapped, we need to merge them,
* and move the rest elements forward.
*/
overlap--;
movablemem_map.map[pos].start_pfn = min(start_pfn,
movablemem_map.map[pos].start_pfn);
movablemem_map.map[pos].end_pfn = max(end_pfn,
movablemem_map.map[overlap].end_pfn);
if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
memmove(&movablemem_map.map[pos+1],
&movablemem_map.map[overlap+1],
sizeof(struct movablemem_entry) *
(movablemem_map.nr_map - overlap - 1));
movablemem_map.nr_map -= overlap - pos;
}
/**
* movablemem_map_add_region - Add a memory range into movablemem_map.
* @start: physical start address of range
* @end: physical end address of range
*
* This function transform the physical address into pfn, and then add the
* range into movablemem_map by calling insert_movablemem_map().
*/
static void __init movablemem_map_add_region(u64 start, u64 size)
{
unsigned long start_pfn, end_pfn;
/* In case size == 0 or start + size overflows */
if (start + size <= start)
return;
if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
pr_err("movablemem_map: too many entries;"
" ignoring [mem %#010llx-%#010llx]\n",
(unsigned long long) start,
(unsigned long long) (start + size - 1));
return;
}
start_pfn = PFN_DOWN(start);
end_pfn = PFN_UP(start + size);
insert_movablemem_map(start_pfn, end_pfn);
}
/*
* cmdline_parse_movablemem_map - Parse boot option movablemem_map.
* @p: The boot option of the following format:
* movablemem_map=nn[KMG]@ss[KMG]
*
* This option sets the memory range [ss, ss+nn) to be used as movable memory.
*
* Return: 0 on success or -EINVAL on failure.
*/
static int __init cmdline_parse_movablemem_map(char *p)
{
char *oldp;
u64 start_at, mem_size;
if (!p)
goto err;
if (!strcmp(p, "acpi"))
movablemem_map.acpi = true;
/*
* If user decide to use info from BIOS, all the other user specified
* ranges will be ingored.
*/
if (movablemem_map.acpi) {
if (movablemem_map.nr_map) {
memset(movablemem_map.map, 0,
sizeof(struct movablemem_entry)
* movablemem_map.nr_map);
movablemem_map.nr_map = 0;
}
return 0;
}
oldp = p;
mem_size = memparse(p, &p);
if (p == oldp)
goto err;
if (*p == '@') {
oldp = ++p;
start_at = memparse(p, &p);
if (p == oldp || *p != '\0')
goto err;
movablemem_map_add_region(start_at, mem_size);
return 0;
}
err:
return -EINVAL;
}
early_param("movablemem_map", cmdline_parse_movablemem_map);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
/**
@ -5160,8 +5468,8 @@ static void calculate_totalreserve_pages(void)
/* we treat the high watermark as reserved pages. */
max += high_wmark_pages(zone);
if (max > zone->present_pages)
max = zone->present_pages;
if (max > zone->managed_pages)
max = zone->managed_pages;
reserve_pages += max;
/*
* Lowmem reserves are not available to
@ -5193,7 +5501,7 @@ static void setup_per_zone_lowmem_reserve(void)
for_each_online_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long present_pages = zone->present_pages;
unsigned long managed_pages = zone->managed_pages;
zone->lowmem_reserve[j] = 0;
@ -5207,9 +5515,9 @@ static void setup_per_zone_lowmem_reserve(void)
sysctl_lowmem_reserve_ratio[idx] = 1;
lower_zone = pgdat->node_zones + idx;
lower_zone->lowmem_reserve[j] = present_pages /
lower_zone->lowmem_reserve[j] = managed_pages /
sysctl_lowmem_reserve_ratio[idx];
present_pages += lower_zone->present_pages;
managed_pages += lower_zone->managed_pages;
}
}
}
@ -5228,14 +5536,14 @@ static void __setup_per_zone_wmarks(void)
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->present_pages;
lowmem_pages += zone->managed_pages;
}
for_each_zone(zone) {
u64 tmp;
spin_lock_irqsave(&zone->lock, flags);
tmp = (u64)pages_min * zone->present_pages;
tmp = (u64)pages_min * zone->managed_pages;
do_div(tmp, lowmem_pages);
if (is_highmem(zone)) {
/*
@ -5247,13 +5555,10 @@ static void __setup_per_zone_wmarks(void)
* deltas controls asynch page reclaim, and so should
* not be capped for highmem.
*/
int min_pages;
unsigned long min_pages;
min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
min_pages = zone->managed_pages / 1024;
min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
zone->watermark[WMARK_MIN] = min_pages;
} else {
/*
@ -5314,7 +5619,7 @@ static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
unsigned int gb, ratio;
/* Zone size in gigabytes */
gb = zone->present_pages >> (30 - PAGE_SHIFT);
gb = zone->managed_pages >> (30 - PAGE_SHIFT);
if (gb)
ratio = int_sqrt(10 * gb);
else
@ -5400,7 +5705,7 @@ int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
return rc;
for_each_zone(zone)
zone->min_unmapped_pages = (zone->present_pages *
zone->min_unmapped_pages = (zone->managed_pages *
sysctl_min_unmapped_ratio) / 100;
return 0;
}
@ -5416,7 +5721,7 @@ int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
return rc;
for_each_zone(zone)
zone->min_slab_pages = (zone->present_pages *
zone->min_slab_pages = (zone->managed_pages *
sysctl_min_slab_ratio) / 100;
return 0;
}
@ -5458,7 +5763,7 @@ int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
for_each_populated_zone(zone) {
for_each_possible_cpu(cpu) {
unsigned long high;
high = zone->present_pages / percpu_pagelist_fraction;
high = zone->managed_pages / percpu_pagelist_fraction;
setup_pagelist_highmark(
per_cpu_ptr(zone->pageset, cpu), high);
}
@ -5645,8 +5950,7 @@ void set_pageblock_flags_group(struct page *page, unsigned long flags,
pfn = page_to_pfn(page);
bitmap = get_pageblock_bitmap(zone, pfn);
bitidx = pfn_to_bitidx(zone, pfn);
VM_BUG_ON(pfn < zone->zone_start_pfn);
VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
VM_BUG_ON(!zone_spans_pfn(zone, pfn));
for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
if (flags & value)
@ -5744,8 +6048,7 @@ bool is_pageblock_removable_nolock(struct page *page)
zone = page_zone(page);
pfn = page_to_pfn(page);
if (zone->zone_start_pfn > pfn ||
zone->zone_start_pfn + zone->spanned_pages <= pfn)
if (!zone_spans_pfn(zone, pfn))
return false;
return !has_unmovable_pages(zone, page, 0, true);
@ -5801,14 +6104,14 @@ static int __alloc_contig_migrate_range(struct compact_control *cc,
&cc->migratepages);
cc->nr_migratepages -= nr_reclaimed;
ret = migrate_pages(&cc->migratepages,
alloc_migrate_target,
0, false, MIGRATE_SYNC,
MR_CMA);
ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
0, MIGRATE_SYNC, MR_CMA);
}
putback_movable_pages(&cc->migratepages);
return ret > 0 ? 0 : ret;
if (ret < 0) {
putback_movable_pages(&cc->migratepages);
return ret;
}
return 0;
}
/**

View File

@ -105,7 +105,7 @@ static inline void anon_vma_free(struct anon_vma *anon_vma)
*/
if (rwsem_is_locked(&anon_vma->root->rwsem)) {
anon_vma_lock_write(anon_vma);
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
}
kmem_cache_free(anon_vma_cachep, anon_vma);
@ -191,7 +191,7 @@ int anon_vma_prepare(struct vm_area_struct *vma)
avc = NULL;
}
spin_unlock(&mm->page_table_lock);
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
if (unlikely(allocated))
put_anon_vma(allocated);
@ -308,7 +308,7 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
vma->anon_vma = anon_vma;
anon_vma_lock_write(anon_vma);
anon_vma_chain_link(vma, avc, anon_vma);
anon_vma_unlock(anon_vma);
anon_vma_unlock_write(anon_vma);
return 0;

Some files were not shown because too many files have changed in this diff Show More