Second round of KVM Changes for v4.12:

* ARM: bugfixes; moved shared 32-bit/64-bit files to virt/kvm/arm;
 support for saving/restoring virtual ITS state to userspace
 
 * PPC: XIVE (eXternal Interrupt Virtualization Engine) support
 
 * x86: nVMX improvements, including emulated page modification logging
 (PML) which brings nice performance improvements on some workloads
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJZEeusAAoJEL/70l94x66Dq+cH/RkL9znP717k7Z0jS8/FJN9q
 wKU8j0jRxuqjnvEu89redfFKxElWM9T1fwReBObjWct9+hyJ9Pbpf95Lr9ca39PR
 zhiBMKl79he0gHV/z48ItuzH1mOrU/KzFfxHYLlBd4oGw0ZdUttWAsUtaWQ8UNFo
 xtyu2R+CWYLeAUBrpYmkvrOjhnB+S9+f4y2OY9pXsMg4HN9/Tdn0B656yTOWdu9C
 onO3QQXNY/dzGFLH3tA/kAbz25x4Y+pP2UHlMm5vkW8XWPn+lluUwtBonTKdzy64
 RDWWUWcs0k37ps4H9b56oXmz8ZFZ0FQF3MimDQueGHSYOXCxU5EqmC9c7KZmZrg=
 =KcCv
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull more KVM updates from Paolo Bonzini:
 "ARM:
   - bugfixes
   - moved shared 32-bit/64-bit files to virt/kvm/arm
   - support for saving/restoring virtual ITS state to userspace

  PPC:
   - XIVE (eXternal Interrupt Virtualization Engine) support

  x86:
   - nVMX improvements, including emulated page modification logging
     (PML) which brings nice performance improvements on some workloads"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (45 commits)
  KVM: arm/arm64: vgic-its: Cleanup after failed ITT restore
  KVM: arm/arm64: Don't call map_resources when restoring ITS tables
  KVM: arm/arm64: Register ITS iodev when setting base address
  KVM: arm/arm64: Get rid of its->initialized field
  KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs
  KVM: arm/arm64: Slightly rework kvm_vgic_addr
  KVM: arm/arm64: Make vgic_v3_check_base more broadly usable
  KVM: arm/arm64: Refactor vgic_register_redist_iodevs
  KVM: Add kvm_vcpu_get_idx to get vcpu index in kvm->vcpus
  nVMX: Advertise PML to L1 hypervisor
  nVMX: Implement emulated Page Modification Logging
  kvm: x86: Add a hook for arch specific dirty logging emulation
  kvm: nVMX: Validate CR3 target count on nested VM-entry
  KVM: set no_llseek in stat_fops_per_vm
  KVM: arm/arm64: vgic: Rename kvm_vgic_vcpu_init to kvm_vgic_vcpu_enable
  KVM: arm/arm64: Clarification and relaxation to ITS save/restore ABI
  KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
  KVM: arm64: vgic-its: Fix pending table sync
  KVM: arm64: vgic-its: ITT save and restore
  KVM: arm64: vgic-its: Device table save/restore
  ...
This commit is contained in:
Linus Torvalds 2017-05-10 11:29:23 -07:00
commit 5ccd414080
58 changed files with 5319 additions and 636 deletions

View File

@ -32,7 +32,128 @@ Groups:
KVM_DEV_ARM_VGIC_CTRL_INIT KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the ITS, no additional parameter in request the initialization of the ITS, no additional parameter in
kvm_device_attr.addr. kvm_device_attr.addr.
KVM_DEV_ARM_ITS_SAVE_TABLES
save the ITS table data into guest RAM, at the location provisioned
by the guest in corresponding registers/table entries.
The layout of the tables in guest memory defines an ABI. The entries
are laid out in little endian format as described in the last paragraph.
KVM_DEV_ARM_ITS_RESTORE_TABLES
restore the ITS tables from guest RAM to ITS internal structures.
The GICV3 must be restored before the ITS and all ITS registers but
the GITS_CTLR must be restored before restoring the ITS tables.
The GITS_IIDR read-only register must also be restored before
calling KVM_DEV_ARM_ITS_RESTORE_TABLES as the IIDR revision field
encodes the ABI revision.
The expected ordering when restoring the GICv3/ITS is described in section
"ITS Restore Sequence".
Errors: Errors:
-ENXIO: ITS not properly configured as required prior to setting -ENXIO: ITS not properly configured as required prior to setting
this attribute this attribute
-ENOMEM: Memory shortage when allocating ITS internal data -ENOMEM: Memory shortage when allocating ITS internal data
-EINVAL: Inconsistent restored data
-EFAULT: Invalid guest ram access
-EBUSY: One or more VCPUS are running
KVM_DEV_ARM_VGIC_GRP_ITS_REGS
Attributes:
The attr field of kvm_device_attr encodes the offset of the
ITS register, relative to the ITS control frame base address
(ITS_base).
kvm_device_attr.addr points to a __u64 value whatever the width
of the addressed register (32/64 bits). 64 bit registers can only
be accessed with full length.
Writes to read-only registers are ignored by the kernel except for:
- GITS_CREADR. It must be restored otherwise commands in the queue
will be re-executed after restoring CWRITER. GITS_CREADR must be
restored before restoring the GITS_CTLR which is likely to enable the
ITS. Also it must be restored after GITS_CBASER since a write to
GITS_CBASER resets GITS_CREADR.
- GITS_IIDR. The Revision field encodes the table layout ABI revision.
In the future we might implement direct injection of virtual LPIs.
This will require an upgrade of the table layout and an evolution of
the ABI. GITS_IIDR must be restored before calling
KVM_DEV_ARM_ITS_RESTORE_TABLES.
For other registers, getting or setting a register has the same
effect as reading/writing the register on real hardware.
Errors:
-ENXIO: Offset does not correspond to any supported register
-EFAULT: Invalid user pointer for attr->addr
-EINVAL: Offset is not 64-bit aligned
-EBUSY: one or more VCPUS are running
ITS Restore Sequence:
-------------------------
The following ordering must be followed when restoring the GIC and the ITS:
a) restore all guest memory and create vcpus
b) restore all redistributors
c) provide the its base address
(KVM_DEV_ARM_VGIC_GRP_ADDR)
d) restore the ITS in the following order:
1. Restore GITS_CBASER
2. Restore all other GITS_ registers, except GITS_CTLR!
3. Load the ITS table data (KVM_DEV_ARM_ITS_RESTORE_TABLES)
4. Restore GITS_CTLR
Then vcpus can be started.
ITS Table ABI REV0:
-------------------
Revision 0 of the ABI only supports the features of a virtual GICv3, and does
not support a virtual GICv4 with support for direct injection of virtual
interrupts for nested hypervisors.
The device table and ITT are indexed by the DeviceID and EventID,
respectively. The collection table is not indexed by CollectionID, and the
entries in the collection are listed in no particular order.
All entries are 8 bytes.
Device Table Entry (DTE):
bits: | 63| 62 ... 49 | 48 ... 5 | 4 ... 0 |
values: | V | next | ITT_addr | Size |
where;
- V indicates whether the entry is valid. If not, other fields
are not meaningful.
- next: equals to 0 if this entry is the last one; otherwise it
corresponds to the DeviceID offset to the next DTE, capped by
2^14 -1.
- ITT_addr matches bits [51:8] of the ITT address (256 Byte aligned).
- Size specifies the supported number of bits for the EventID,
minus one
Collection Table Entry (CTE):
bits: | 63| 62 .. 52 | 51 ... 16 | 15 ... 0 |
values: | V | RES0 | RDBase | ICID |
where:
- V indicates whether the entry is valid. If not, other fields are
not meaningful.
- RES0: reserved field with Should-Be-Zero-or-Preserved behavior.
- RDBase is the PE number (GICR_TYPER.Processor_Number semantic),
- ICID is the collection ID
Interrupt Translation Entry (ITE):
bits: | 63 ... 48 | 47 ... 16 | 15 ... 0 |
values: | next | pINTID | ICID |
where:
- next: equals to 0 if this entry is the last one; otherwise it corresponds
to the EventID offset to the next ITE capped by 2^16 -1.
- pINTID is the physical LPI ID; if zero, it means the entry is not valid
and other fields are not meaningful.
- ICID is the collection ID

View File

@ -167,11 +167,17 @@ Groups:
KVM_DEV_ARM_VGIC_CTRL_INIT KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the VGIC, no additional parameter in request the initialization of the VGIC, no additional parameter in
kvm_device_attr.addr. kvm_device_attr.addr.
KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
save all LPI pending bits into guest RAM pending tables.
The first kB of the pending table is not altered by this operation.
Errors: Errors:
-ENXIO: VGIC not properly configured as required prior to calling -ENXIO: VGIC not properly configured as required prior to calling
this attribute this attribute
-ENODEV: no online VCPU -ENODEV: no online VCPU
-ENOMEM: memory shortage when allocating vgic internal data -ENOMEM: memory shortage when allocating vgic internal data
-EFAULT: Invalid guest ram access
-EBUSY: One or more VCPUS are running
KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO

View File

@ -196,6 +196,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5 #define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5
#define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6 #define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6
#define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7 #define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7
#define KVM_DEV_ARM_VGIC_GRP_ITS_REGS 8
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10 #define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \ #define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \
(0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) (0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT)
@ -203,6 +204,9 @@ struct kvm_arch_memory_slot {
#define VGIC_LEVEL_INFO_LINE_LEVEL 0 #define VGIC_LEVEL_INFO_LINE_LEVEL 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0 #define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
/* KVM_IRQ_LINE irq field index values */ /* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24 #define KVM_ARM_IRQ_TYPE_SHIFT 24

View File

@ -18,9 +18,12 @@ KVM := ../../../virt/kvm
kvm-arm-y = $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o kvm-arm-y = $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp/ obj-$(CONFIG_KVM_ARM_HOST) += hyp/
obj-y += kvm-arm.o init.o interrupts.o obj-y += kvm-arm.o init.o interrupts.o
obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o obj-y += handle_exit.o guest.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o vgic-v3-coproc.o obj-y += coproc.o coproc_a15.o coproc_a7.o vgic-v3-coproc.o
obj-y += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
obj-y += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
obj-y += $(KVM)/arm/aarch32.o obj-y += $(KVM)/arm/aarch32.o
obj-y += $(KVM)/arm/vgic/vgic.o obj-y += $(KVM)/arm/vgic/vgic.o

View File

@ -6,133 +6,6 @@
#undef TRACE_SYSTEM #undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm #define TRACE_SYSTEM kvm
/*
* Tracepoints for entry/exit to guest
*/
TRACE_EVENT(kvm_entry,
TP_PROTO(unsigned long vcpu_pc),
TP_ARGS(vcpu_pc),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
),
TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
);
TRACE_EVENT(kvm_exit,
TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc),
TP_ARGS(idx, exit_reason, vcpu_pc),
TP_STRUCT__entry(
__field( int, idx )
__field( unsigned int, exit_reason )
__field( unsigned long, vcpu_pc )
),
TP_fast_assign(
__entry->idx = idx;
__entry->exit_reason = exit_reason;
__entry->vcpu_pc = vcpu_pc;
),
TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx",
__print_symbolic(__entry->idx, kvm_arm_exception_type),
__entry->exit_reason,
__print_symbolic(__entry->exit_reason, kvm_arm_exception_class),
__entry->vcpu_pc)
);
TRACE_EVENT(kvm_guest_fault,
TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
unsigned long hxfar,
unsigned long long ipa),
TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, hsr )
__field( unsigned long, hxfar )
__field( unsigned long long, ipa )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->hsr = hsr;
__entry->hxfar = hxfar;
__entry->ipa = ipa;
),
TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
__entry->ipa, __entry->hsr,
__entry->hxfar, __entry->vcpu_pc)
);
TRACE_EVENT(kvm_access_fault,
TP_PROTO(unsigned long ipa),
TP_ARGS(ipa),
TP_STRUCT__entry(
__field( unsigned long, ipa )
),
TP_fast_assign(
__entry->ipa = ipa;
),
TP_printk("IPA: %lx", __entry->ipa)
);
TRACE_EVENT(kvm_irq_line,
TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
TP_ARGS(type, vcpu_idx, irq_num, level),
TP_STRUCT__entry(
__field( unsigned int, type )
__field( int, vcpu_idx )
__field( int, irq_num )
__field( int, level )
),
TP_fast_assign(
__entry->type = type;
__entry->vcpu_idx = vcpu_idx;
__entry->irq_num = irq_num;
__entry->level = level;
),
TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
(__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
(__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
(__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
__entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
);
TRACE_EVENT(kvm_mmio_emulate,
TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
unsigned long cpsr),
TP_ARGS(vcpu_pc, instr, cpsr),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, instr )
__field( unsigned long, cpsr )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->instr = instr;
__entry->cpsr = cpsr;
),
TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
__entry->vcpu_pc, __entry->instr, __entry->cpsr)
);
/* Architecturally implementation defined CP15 register access */ /* Architecturally implementation defined CP15 register access */
TRACE_EVENT(kvm_emulate_cp15_imp, TRACE_EVENT(kvm_emulate_cp15_imp,
TP_PROTO(unsigned long Op1, unsigned long Rt1, unsigned long CRn, TP_PROTO(unsigned long Op1, unsigned long Rt1, unsigned long CRn,
@ -181,87 +54,6 @@ TRACE_EVENT(kvm_wfx,
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc) __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
); );
TRACE_EVENT(kvm_unmap_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_unmap_hva_range,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_set_spte_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_age_hva,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_test_age_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_hvc, TRACE_EVENT(kvm_hvc,
TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm), TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
TP_ARGS(vcpu_pc, r0, imm), TP_ARGS(vcpu_pc, r0, imm),
@ -282,45 +74,6 @@ TRACE_EVENT(kvm_hvc,
__entry->vcpu_pc, __entry->r0, __entry->imm) __entry->vcpu_pc, __entry->r0, __entry->imm)
); );
TRACE_EVENT(kvm_set_way_flush,
TP_PROTO(unsigned long vcpu_pc, bool cache),
TP_ARGS(vcpu_pc, cache),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, cache )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->cache = cache;
),
TP_printk("S/W flush at 0x%016lx (cache %s)",
__entry->vcpu_pc, __entry->cache ? "on" : "off")
);
TRACE_EVENT(kvm_toggle_cache,
TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
TP_ARGS(vcpu_pc, was, now),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, was )
__field( bool, now )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->was = was;
__entry->now = now;
),
TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
__entry->vcpu_pc, __entry->was ? "on" : "off",
__entry->now ? "on" : "off")
);
#endif /* _TRACE_KVM_H */ #endif /* _TRACE_KVM_H */
#undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_PATH

View File

@ -240,6 +240,12 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE; return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE;
} }
static inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
{
u32 esr = kvm_vcpu_get_hsr(vcpu);
return (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
}
static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{ {
return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;

View File

@ -216,6 +216,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5 #define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5
#define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6 #define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6
#define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7 #define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7
#define KVM_DEV_ARM_VGIC_GRP_ITS_REGS 8
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10 #define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \ #define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \
(0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) (0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT)
@ -223,6 +224,9 @@ struct kvm_arch_memory_slot {
#define VGIC_LEVEL_INFO_LINE_LEVEL 0 #define VGIC_LEVEL_INFO_LINE_LEVEL 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0 #define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
/* Device Control API on vcpu fd */ /* Device Control API on vcpu fd */
#define KVM_ARM_VCPU_PMU_V3_CTRL 0 #define KVM_ARM_VCPU_PMU_V3_CTRL 0

View File

@ -7,14 +7,13 @@ CFLAGS_arm.o := -I.
CFLAGS_mmu.o := -I. CFLAGS_mmu.o := -I.
KVM=../../../virt/kvm KVM=../../../virt/kvm
ARM=../../../arch/arm/kvm
obj-$(CONFIG_KVM_ARM_HOST) += kvm.o obj-$(CONFIG_KVM_ARM_HOST) += kvm.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp/ obj-$(CONFIG_KVM_ARM_HOST) += hyp/
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(ARM)/arm.o $(ARM)/mmu.o $(ARM)/mmio.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(ARM)/psci.o $(ARM)/perf.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
kvm-$(CONFIG_KVM_ARM_HOST) += inject_fault.o regmap.o kvm-$(CONFIG_KVM_ARM_HOST) += inject_fault.o regmap.o
kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o

View File

@ -1529,8 +1529,8 @@ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
{ {
struct sys_reg_params params; struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu); u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf; int Rt = kvm_vcpu_sys_get_rt(vcpu);
int Rt2 = (hsr >> 10) & 0xf; int Rt2 = (hsr >> 10) & 0x1f;
params.is_aarch32 = true; params.is_aarch32 = true;
params.is_32bit = false; params.is_32bit = false;
@ -1586,7 +1586,7 @@ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
{ {
struct sys_reg_params params; struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu); u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf; int Rt = kvm_vcpu_sys_get_rt(vcpu);
params.is_aarch32 = true; params.is_aarch32 = true;
params.is_32bit = true; params.is_32bit = true;
@ -1688,7 +1688,7 @@ int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{ {
struct sys_reg_params params; struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_hsr(vcpu); unsigned long esr = kvm_vcpu_get_hsr(vcpu);
int Rt = (esr >> 5) & 0x1f; int Rt = kvm_vcpu_sys_get_rt(vcpu);
int ret; int ret;
trace_kvm_handle_sys_reg(esr); trace_kvm_handle_sys_reg(esr);

View File

@ -111,6 +111,8 @@ struct kvmppc_host_state {
struct kvm_vcpu *kvm_vcpu; struct kvm_vcpu *kvm_vcpu;
struct kvmppc_vcore *kvm_vcore; struct kvmppc_vcore *kvm_vcore;
void __iomem *xics_phys; void __iomem *xics_phys;
void __iomem *xive_tima_phys;
void __iomem *xive_tima_virt;
u32 saved_xirr; u32 saved_xirr;
u64 dabr; u64 dabr;
u64 host_mmcr[7]; /* MMCR 0,1,A, SIAR, SDAR, MMCR2, SIER */ u64 host_mmcr[7]; /* MMCR 0,1,A, SIAR, SDAR, MMCR2, SIER */

View File

@ -210,6 +210,12 @@ struct kvmppc_spapr_tce_table {
/* XICS components, defined in book3s_xics.c */ /* XICS components, defined in book3s_xics.c */
struct kvmppc_xics; struct kvmppc_xics;
struct kvmppc_icp; struct kvmppc_icp;
extern struct kvm_device_ops kvm_xics_ops;
/* XIVE components, defined in book3s_xive.c */
struct kvmppc_xive;
struct kvmppc_xive_vcpu;
extern struct kvm_device_ops kvm_xive_ops;
struct kvmppc_passthru_irqmap; struct kvmppc_passthru_irqmap;
@ -298,6 +304,7 @@ struct kvm_arch {
#endif #endif
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
struct kvmppc_xics *xics; struct kvmppc_xics *xics;
struct kvmppc_xive *xive;
struct kvmppc_passthru_irqmap *pimap; struct kvmppc_passthru_irqmap *pimap;
#endif #endif
struct kvmppc_ops *kvm_ops; struct kvmppc_ops *kvm_ops;
@ -427,7 +434,7 @@ struct kvmppc_passthru_irqmap {
#define KVMPPC_IRQ_DEFAULT 0 #define KVMPPC_IRQ_DEFAULT 0
#define KVMPPC_IRQ_MPIC 1 #define KVMPPC_IRQ_MPIC 1
#define KVMPPC_IRQ_XICS 2 #define KVMPPC_IRQ_XICS 2 /* Includes a XIVE option */
#define MMIO_HPTE_CACHE_SIZE 4 #define MMIO_HPTE_CACHE_SIZE 4
@ -454,6 +461,21 @@ struct mmio_hpte_cache {
struct openpic; struct openpic;
/* W0 and W1 of a XIVE thread management context */
union xive_tma_w01 {
struct {
u8 nsr;
u8 cppr;
u8 ipb;
u8 lsmfb;
u8 ack;
u8 inc;
u8 age;
u8 pipr;
};
__be64 w01;
};
struct kvm_vcpu_arch { struct kvm_vcpu_arch {
ulong host_stack; ulong host_stack;
u32 host_pid; u32 host_pid;
@ -714,6 +736,10 @@ struct kvm_vcpu_arch {
struct openpic *mpic; /* KVM_IRQ_MPIC */ struct openpic *mpic; /* KVM_IRQ_MPIC */
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
struct kvmppc_icp *icp; /* XICS presentation controller */ struct kvmppc_icp *icp; /* XICS presentation controller */
struct kvmppc_xive_vcpu *xive_vcpu; /* XIVE virtual CPU data */
__be32 xive_cam_word; /* Cooked W2 in proper endian with valid bit */
u32 xive_pushed; /* Is the VP pushed on the physical CPU ? */
union xive_tma_w01 xive_saved_state; /* W0..1 of XIVE thread state */
#endif #endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE

View File

@ -240,6 +240,7 @@ int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq);
extern int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp); extern int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp);
extern int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu); extern int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu);
extern void kvmppc_rtas_tokens_free(struct kvm *kvm); extern void kvmppc_rtas_tokens_free(struct kvm *kvm);
extern int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server, extern int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server,
u32 priority); u32 priority);
extern int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server, extern int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server,
@ -428,6 +429,14 @@ static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr)
paca[cpu].kvm_hstate.xics_phys = (void __iomem *)addr; paca[cpu].kvm_hstate.xics_phys = (void __iomem *)addr;
} }
static inline void kvmppc_set_xive_tima(int cpu,
unsigned long phys_addr,
void __iomem *virt_addr)
{
paca[cpu].kvm_hstate.xive_tima_phys = (void __iomem *)phys_addr;
paca[cpu].kvm_hstate.xive_tima_virt = virt_addr;
}
static inline u32 kvmppc_get_xics_latch(void) static inline u32 kvmppc_get_xics_latch(void)
{ {
u32 xirr; u32 xirr;
@ -458,6 +467,11 @@ static inline void __init kvm_cma_reserve(void)
static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr) static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr)
{} {}
static inline void kvmppc_set_xive_tima(int cpu,
unsigned long phys_addr,
void __iomem *virt_addr)
{}
static inline u32 kvmppc_get_xics_latch(void) static inline u32 kvmppc_get_xics_latch(void)
{ {
return 0; return 0;
@ -508,6 +522,10 @@ extern long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu, __be32 xirr,
struct kvmppc_irq_map *irq_map, struct kvmppc_irq_map *irq_map,
struct kvmppc_passthru_irqmap *pimap, struct kvmppc_passthru_irqmap *pimap,
bool *again); bool *again);
extern int kvmppc_xics_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
int level, bool line_status);
extern int h_ipi_redirect; extern int h_ipi_redirect;
#else #else
static inline struct kvmppc_passthru_irqmap *kvmppc_get_passthru_irqmap( static inline struct kvmppc_passthru_irqmap *kvmppc_get_passthru_irqmap(
@ -525,6 +543,60 @@ static inline int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd)
{ return 0; } { return 0; }
#endif #endif
#ifdef CONFIG_KVM_XIVE
/*
* Below the first "xive" is the "eXternal Interrupt Virtualization Engine"
* ie. P9 new interrupt controller, while the second "xive" is the legacy
* "eXternal Interrupt Vector Entry" which is the configuration of an
* interrupt on the "xics" interrupt controller on P8 and earlier. Those
* two function consume or produce a legacy "XIVE" state from the
* new "XIVE" interrupt controller.
*/
extern int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
u32 priority);
extern int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
u32 *priority);
extern int kvmppc_xive_int_on(struct kvm *kvm, u32 irq);
extern int kvmppc_xive_int_off(struct kvm *kvm, u32 irq);
extern void kvmppc_xive_init_module(void);
extern void kvmppc_xive_exit_module(void);
extern int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
struct kvm_vcpu *vcpu, u32 cpu);
extern void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu);
extern int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
struct irq_desc *host_desc);
extern int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
struct irq_desc *host_desc);
extern u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu);
extern int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval);
extern int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
int level, bool line_status);
#else
static inline int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
u32 priority) { return -1; }
static inline int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
u32 *priority) { return -1; }
static inline int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) { return -1; }
static inline int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) { return -1; }
static inline void kvmppc_xive_init_module(void) { }
static inline void kvmppc_xive_exit_module(void) { }
static inline int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
struct kvm_vcpu *vcpu, u32 cpu) { return -EBUSY; }
static inline void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) { }
static inline int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
struct irq_desc *host_desc) { return -ENODEV; }
static inline int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
struct irq_desc *host_desc) { return -ENODEV; }
static inline u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) { return 0; }
static inline int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { return -ENOENT; }
static inline int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
int level, bool line_status) { return -ENODEV; }
#endif /* CONFIG_KVM_XIVE */
/* /*
* Prototypes for functions called only from assembler code. * Prototypes for functions called only from assembler code.
* Having prototypes reduces sparse errors. * Having prototypes reduces sparse errors.
@ -562,6 +634,8 @@ long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
unsigned long slb_v, unsigned int status, bool data); unsigned long slb_v, unsigned int status, bool data);
unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu); unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu);
unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu);
unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server);
int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr); unsigned long mfrr);
int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr); int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);

View File

@ -99,7 +99,6 @@ struct xive_q {
#define XIVE_ESB_SET_PQ_01 0xd00 #define XIVE_ESB_SET_PQ_01 0xd00
#define XIVE_ESB_SET_PQ_10 0xe00 #define XIVE_ESB_SET_PQ_10 0xe00
#define XIVE_ESB_SET_PQ_11 0xf00 #define XIVE_ESB_SET_PQ_11 0xf00
#define XIVE_ESB_MASK XIVE_ESB_SET_PQ_01
#define XIVE_ESB_VAL_P 0x2 #define XIVE_ESB_VAL_P 0x2
#define XIVE_ESB_VAL_Q 0x1 #define XIVE_ESB_VAL_Q 0x1
@ -136,11 +135,11 @@ extern int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
__be32 *qpage, u32 order, bool can_escalate); __be32 *qpage, u32 order, bool can_escalate);
extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio); extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio);
extern bool __xive_irq_trigger(struct xive_irq_data *xd); extern void xive_native_sync_source(u32 hw_irq);
extern bool __xive_irq_retrigger(struct xive_irq_data *xd);
extern void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd);
extern bool is_xive_irq(struct irq_chip *chip); extern bool is_xive_irq(struct irq_chip *chip);
extern int xive_native_enable_vp(u32 vp_id);
extern int xive_native_disable_vp(u32 vp_id);
extern int xive_native_get_vp_info(u32 vp_id, u32 *out_cam_id, u32 *out_chip_id);
#else #else

View File

@ -634,6 +634,8 @@ int main(void)
HSTATE_FIELD(HSTATE_KVM_VCPU, kvm_vcpu); HSTATE_FIELD(HSTATE_KVM_VCPU, kvm_vcpu);
HSTATE_FIELD(HSTATE_KVM_VCORE, kvm_vcore); HSTATE_FIELD(HSTATE_KVM_VCORE, kvm_vcore);
HSTATE_FIELD(HSTATE_XICS_PHYS, xics_phys); HSTATE_FIELD(HSTATE_XICS_PHYS, xics_phys);
HSTATE_FIELD(HSTATE_XIVE_TIMA_PHYS, xive_tima_phys);
HSTATE_FIELD(HSTATE_XIVE_TIMA_VIRT, xive_tima_virt);
HSTATE_FIELD(HSTATE_SAVED_XIRR, saved_xirr); HSTATE_FIELD(HSTATE_SAVED_XIRR, saved_xirr);
HSTATE_FIELD(HSTATE_HOST_IPI, host_ipi); HSTATE_FIELD(HSTATE_HOST_IPI, host_ipi);
HSTATE_FIELD(HSTATE_PTID, ptid); HSTATE_FIELD(HSTATE_PTID, ptid);
@ -719,6 +721,14 @@ int main(void)
OFFSET(VCPU_HOST_MAS6, kvm_vcpu, arch.host_mas6); OFFSET(VCPU_HOST_MAS6, kvm_vcpu, arch.host_mas6);
#endif #endif
#ifdef CONFIG_KVM_XICS
DEFINE(VCPU_XIVE_SAVED_STATE, offsetof(struct kvm_vcpu,
arch.xive_saved_state));
DEFINE(VCPU_XIVE_CAM_WORD, offsetof(struct kvm_vcpu,
arch.xive_cam_word));
DEFINE(VCPU_XIVE_PUSHED, offsetof(struct kvm_vcpu, arch.xive_pushed));
#endif
#ifdef CONFIG_KVM_EXIT_TIMING #ifdef CONFIG_KVM_EXIT_TIMING
OFFSET(VCPU_TIMING_EXIT_TBU, kvm_vcpu, arch.timing_exit.tv32.tbu); OFFSET(VCPU_TIMING_EXIT_TBU, kvm_vcpu, arch.timing_exit.tv32.tbu);
OFFSET(VCPU_TIMING_EXIT_TBL, kvm_vcpu, arch.timing_exit.tv32.tbl); OFFSET(VCPU_TIMING_EXIT_TBL, kvm_vcpu, arch.timing_exit.tv32.tbl);

View File

@ -197,6 +197,11 @@ config KVM_XICS
Specification) interrupt controller architecture used on Specification) interrupt controller architecture used on
IBM POWER (pSeries) servers. IBM POWER (pSeries) servers.
config KVM_XIVE
bool
default y
depends on KVM_XICS && PPC_XIVE_NATIVE && KVM_BOOK3S_HV_POSSIBLE
source drivers/vhost/Kconfig source drivers/vhost/Kconfig
endif # VIRTUALIZATION endif # VIRTUALIZATION

View File

@ -74,7 +74,7 @@ kvm-hv-y += \
book3s_64_mmu_radix.o book3s_64_mmu_radix.o
kvm-book3s_64-builtin-xics-objs-$(CONFIG_KVM_XICS) := \ kvm-book3s_64-builtin-xics-objs-$(CONFIG_KVM_XICS) := \
book3s_hv_rm_xics.o book3s_hv_rm_xics.o book3s_hv_rm_xive.o
ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) += \ kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) += \
@ -89,6 +89,8 @@ endif
kvm-book3s_64-objs-$(CONFIG_KVM_XICS) += \ kvm-book3s_64-objs-$(CONFIG_KVM_XICS) += \
book3s_xics.o book3s_xics.o
kvm-book3s_64-objs-$(CONFIG_KVM_XIVE) += book3s_xive.o
kvm-book3s_64-module-objs := \ kvm-book3s_64-module-objs := \
$(common-objs-y) \ $(common-objs-y) \
book3s.o \ book3s.o \

View File

@ -35,6 +35,7 @@
#include <asm/kvm_book3s.h> #include <asm/kvm_book3s.h>
#include <asm/mmu_context.h> #include <asm/mmu_context.h>
#include <asm/page.h> #include <asm/page.h>
#include <asm/xive.h>
#include "book3s.h" #include "book3s.h"
#include "trace.h" #include "trace.h"
@ -596,10 +597,13 @@ int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
break; break;
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE: case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp) { if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
r = -ENXIO; r = -ENXIO;
break; break;
} }
if (xive_enabled())
*val = get_reg_val(id, kvmppc_xive_get_icp(vcpu));
else
*val = get_reg_val(id, kvmppc_xics_get_icp(vcpu)); *val = get_reg_val(id, kvmppc_xics_get_icp(vcpu));
break; break;
#endif /* CONFIG_KVM_XICS */ #endif /* CONFIG_KVM_XICS */
@ -666,12 +670,14 @@ int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
#endif /* CONFIG_VSX */ #endif /* CONFIG_VSX */
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE: case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp) { if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
r = -ENXIO; r = -ENXIO;
break; break;
} }
r = kvmppc_xics_set_icp(vcpu, if (xive_enabled())
set_reg_val(id, *val)); r = kvmppc_xive_set_icp(vcpu, set_reg_val(id, *val));
else
r = kvmppc_xics_set_icp(vcpu, set_reg_val(id, *val));
break; break;
#endif /* CONFIG_KVM_XICS */ #endif /* CONFIG_KVM_XICS */
case KVM_REG_PPC_FSCR: case KVM_REG_PPC_FSCR:
@ -942,6 +948,50 @@ int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hcall)
return kvm->arch.kvm_ops->hcall_implemented(hcall); return kvm->arch.kvm_ops->hcall_implemented(hcall);
} }
#ifdef CONFIG_KVM_XICS
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
bool line_status)
{
if (xive_enabled())
return kvmppc_xive_set_irq(kvm, irq_source_id, irq, level,
line_status);
else
return kvmppc_xics_set_irq(kvm, irq_source_id, irq, level,
line_status);
}
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *irq_entry,
struct kvm *kvm, int irq_source_id,
int level, bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, irq_entry->gsi,
level, line_status);
}
static int kvmppc_book3s_set_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, e->gsi, level, line_status);
}
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries, int gsi)
{
entries->gsi = gsi;
entries->type = KVM_IRQ_ROUTING_IRQCHIP;
entries->set = kvmppc_book3s_set_irq;
entries->irqchip.irqchip = 0;
entries->irqchip.pin = gsi;
return 1;
}
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
return pin;
}
#endif /* CONFIG_KVM_XICS */
static int kvmppc_book3s_init(void) static int kvmppc_book3s_init(void)
{ {
int r; int r;
@ -952,12 +1002,25 @@ static int kvmppc_book3s_init(void)
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
r = kvmppc_book3s_init_pr(); r = kvmppc_book3s_init_pr();
#endif #endif
return r;
#ifdef CONFIG_KVM_XICS
#ifdef CONFIG_KVM_XIVE
if (xive_enabled()) {
kvmppc_xive_init_module();
kvm_register_device_ops(&kvm_xive_ops, KVM_DEV_TYPE_XICS);
} else
#endif
kvm_register_device_ops(&kvm_xics_ops, KVM_DEV_TYPE_XICS);
#endif
return r;
} }
static void kvmppc_book3s_exit(void) static void kvmppc_book3s_exit(void)
{ {
#ifdef CONFIG_KVM_XICS
if (xive_enabled())
kvmppc_xive_exit_module();
#endif
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
kvmppc_book3s_exit_pr(); kvmppc_book3s_exit_pr();
#endif #endif

View File

@ -67,6 +67,7 @@
#include <asm/mmu.h> #include <asm/mmu.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/xics.h> #include <asm/xics.h>
#include <asm/xive.h>
#include "book3s.h" #include "book3s.h"
@ -837,6 +838,10 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
case H_IPOLL: case H_IPOLL:
case H_XIRR_X: case H_XIRR_X:
if (kvmppc_xics_enabled(vcpu)) { if (kvmppc_xics_enabled(vcpu)) {
if (xive_enabled()) {
ret = H_NOT_AVAILABLE;
return RESUME_GUEST;
}
ret = kvmppc_xics_hcall(vcpu, req); ret = kvmppc_xics_hcall(vcpu, req);
break; break;
} }
@ -2947,8 +2952,12 @@ static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
r = kvmppc_book3s_hv_page_fault(run, vcpu, r = kvmppc_book3s_hv_page_fault(run, vcpu,
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
} else if (r == RESUME_PASSTHROUGH) } else if (r == RESUME_PASSTHROUGH) {
if (WARN_ON(xive_enabled()))
r = H_SUCCESS;
else
r = kvmppc_xics_rm_complete(vcpu, 0); r = kvmppc_xics_rm_complete(vcpu, 0);
}
} while (is_kvmppc_resume_guest(r)); } while (is_kvmppc_resume_guest(r));
out: out:
@ -3400,10 +3409,20 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
/* /*
* On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
* Set HVICE bit to enable hypervisor virtualization interrupts. * Set HVICE bit to enable hypervisor virtualization interrupts.
* Set HEIC to prevent OS interrupts to go to hypervisor (should
* be unnecessary but better safe than sorry in case we re-enable
* EE in HV mode with this LPCR still set)
*/ */
if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (cpu_has_feature(CPU_FTR_ARCH_300)) {
lpcr &= ~LPCR_VPM0; lpcr &= ~LPCR_VPM0;
lpcr |= LPCR_HVICE; lpcr |= LPCR_HVICE | LPCR_HEIC;
/*
* If xive is enabled, we route 0x500 interrupts directly
* to the guest.
*/
if (xive_enabled())
lpcr |= LPCR_LPES;
} }
/* /*
@ -3533,7 +3552,7 @@ static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
struct kvmppc_irq_map *irq_map; struct kvmppc_irq_map *irq_map;
struct kvmppc_passthru_irqmap *pimap; struct kvmppc_passthru_irqmap *pimap;
struct irq_chip *chip; struct irq_chip *chip;
int i; int i, rc = 0;
if (!kvm_irq_bypass) if (!kvm_irq_bypass)
return 1; return 1;
@ -3558,10 +3577,10 @@ static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
/* /*
* For now, we only support interrupts for which the EOI operation * For now, we only support interrupts for which the EOI operation
* is an OPAL call followed by a write to XIRR, since that's * is an OPAL call followed by a write to XIRR, since that's
* what our real-mode EOI code does. * what our real-mode EOI code does, or a XIVE interrupt
*/ */
chip = irq_data_get_irq_chip(&desc->irq_data); chip = irq_data_get_irq_chip(&desc->irq_data);
if (!chip || !is_pnv_opal_msi(chip)) { if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
host_irq, guest_gsi); host_irq, guest_gsi);
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
@ -3603,7 +3622,12 @@ static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
if (i == pimap->n_mapped) if (i == pimap->n_mapped)
pimap->n_mapped++; pimap->n_mapped++;
if (xive_enabled())
rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
else
kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
if (rc)
irq_map->r_hwirq = 0;
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
@ -3614,7 +3638,7 @@ static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{ {
struct irq_desc *desc; struct irq_desc *desc;
struct kvmppc_passthru_irqmap *pimap; struct kvmppc_passthru_irqmap *pimap;
int i; int i, rc = 0;
if (!kvm_irq_bypass) if (!kvm_irq_bypass)
return 0; return 0;
@ -3639,9 +3663,12 @@ static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
return -ENODEV; return -ENODEV;
} }
if (xive_enabled())
rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
else
kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
/* invalidate the entry */ /* invalidate the entry (what do do on error from the above ?) */
pimap->mapped[i].r_hwirq = 0; pimap->mapped[i].r_hwirq = 0;
/* /*
@ -3650,7 +3677,7 @@ static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
*/ */
unlock: unlock:
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
return 0; return rc;
} }
static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
@ -3928,7 +3955,7 @@ static int kvmppc_book3s_init_hv(void)
* indirectly, via OPAL. * indirectly, via OPAL.
*/ */
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (!get_paca()->kvm_hstate.xics_phys) { if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
struct device_node *np; struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");

View File

@ -32,6 +32,24 @@
#define KVM_CMA_CHUNK_ORDER 18 #define KVM_CMA_CHUNK_ORDER 18
#include "book3s_xics.h"
#include "book3s_xive.h"
/*
* The XIVE module will populate these when it loads
*/
unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
/* /*
* Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
* should be power of 2. * should be power of 2.
@ -211,6 +229,7 @@ void kvmhv_rm_send_ipi(int cpu)
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
return; return;
} }
/* On POWER8 for IPIs to threads in the same core, use msgsnd. */ /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
if (cpu_has_feature(CPU_FTR_ARCH_207S) && if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
cpu_first_thread_sibling(cpu) == cpu_first_thread_sibling(cpu) ==
@ -407,6 +426,9 @@ static long kvmppc_read_one_intr(bool *again)
u8 host_ipi; u8 host_ipi;
int64_t rc; int64_t rc;
if (xive_enabled())
return 1;
/* see if a host IPI is pending */ /* see if a host IPI is pending */
host_ipi = local_paca->kvm_hstate.host_ipi; host_ipi = local_paca->kvm_hstate.host_ipi;
if (host_ipi) if (host_ipi)
@ -491,3 +513,84 @@ static long kvmppc_read_one_intr(bool *again)
return kvmppc_check_passthru(xisr, xirr, again); return kvmppc_check_passthru(xisr, xirr, again);
} }
#ifdef CONFIG_KVM_XICS
static inline bool is_rm(void)
{
return !(mfmsr() & MSR_DR);
}
unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
{
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_xirr(vcpu);
if (unlikely(!__xive_vm_h_xirr))
return H_NOT_AVAILABLE;
return __xive_vm_h_xirr(vcpu);
} else
return xics_rm_h_xirr(vcpu);
}
unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
{
vcpu->arch.gpr[5] = get_tb();
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_xirr(vcpu);
if (unlikely(!__xive_vm_h_xirr))
return H_NOT_AVAILABLE;
return __xive_vm_h_xirr(vcpu);
} else
return xics_rm_h_xirr(vcpu);
}
unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
{
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_ipoll(vcpu, server);
if (unlikely(!__xive_vm_h_ipoll))
return H_NOT_AVAILABLE;
return __xive_vm_h_ipoll(vcpu, server);
} else
return H_TOO_HARD;
}
int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr)
{
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_ipi(vcpu, server, mfrr);
if (unlikely(!__xive_vm_h_ipi))
return H_NOT_AVAILABLE;
return __xive_vm_h_ipi(vcpu, server, mfrr);
} else
return xics_rm_h_ipi(vcpu, server, mfrr);
}
int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
{
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_cppr(vcpu, cppr);
if (unlikely(!__xive_vm_h_cppr))
return H_NOT_AVAILABLE;
return __xive_vm_h_cppr(vcpu, cppr);
} else
return xics_rm_h_cppr(vcpu, cppr);
}
int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
{
if (xive_enabled()) {
if (is_rm())
return xive_rm_h_eoi(vcpu, xirr);
if (unlikely(!__xive_vm_h_eoi))
return H_NOT_AVAILABLE;
return __xive_vm_h_eoi(vcpu, xirr);
} else
return xics_rm_h_eoi(vcpu, xirr);
}
#endif /* CONFIG_KVM_XICS */

View File

@ -484,7 +484,7 @@ static void icp_rm_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
} }
unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu) unsigned long xics_rm_h_xirr(struct kvm_vcpu *vcpu)
{ {
union kvmppc_icp_state old_state, new_state; union kvmppc_icp_state old_state, new_state;
struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
@ -522,7 +522,7 @@ unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
return check_too_hard(xics, icp); return check_too_hard(xics, icp);
} }
int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, int xics_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr) unsigned long mfrr)
{ {
union kvmppc_icp_state old_state, new_state; union kvmppc_icp_state old_state, new_state;
@ -609,7 +609,7 @@ int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
return check_too_hard(xics, this_icp); return check_too_hard(xics, this_icp);
} }
int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) int xics_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
{ {
union kvmppc_icp_state old_state, new_state; union kvmppc_icp_state old_state, new_state;
struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
@ -729,7 +729,7 @@ static int ics_rm_eoi(struct kvm_vcpu *vcpu, u32 irq)
return check_too_hard(xics, icp); return check_too_hard(xics, icp);
} }
int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) int xics_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
{ {
struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
struct kvmppc_icp *icp = vcpu->arch.icp; struct kvmppc_icp *icp = vcpu->arch.icp;

View File

@ -0,0 +1,47 @@
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/kernel_stat.h>
#include <asm/kvm_book3s.h>
#include <asm/kvm_ppc.h>
#include <asm/hvcall.h>
#include <asm/xics.h>
#include <asm/debug.h>
#include <asm/synch.h>
#include <asm/cputhreads.h>
#include <asm/pgtable.h>
#include <asm/ppc-opcode.h>
#include <asm/pnv-pci.h>
#include <asm/opal.h>
#include <asm/smp.h>
#include <asm/asm-prototypes.h>
#include <asm/xive.h>
#include <asm/xive-regs.h>
#include "book3s_xive.h"
/* XXX */
#include <asm/udbg.h>
//#define DBG(fmt...) udbg_printf(fmt)
#define DBG(fmt...) do { } while(0)
static inline void __iomem *get_tima_phys(void)
{
return local_paca->kvm_hstate.xive_tima_phys;
}
#undef XIVE_RUNTIME_CHECKS
#define X_PFX xive_rm_
#define X_STATIC
#define X_STAT_PFX stat_rm_
#define __x_tima get_tima_phys()
#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_page))
#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_page))
#define __x_readb __raw_rm_readb
#define __x_writeb __raw_rm_writeb
#define __x_readw __raw_rm_readw
#define __x_readq __raw_rm_readq
#define __x_writeq __raw_rm_writeq
#include "book3s_xive_template.c"

View File

@ -30,6 +30,7 @@
#include <asm/book3s/64/mmu-hash.h> #include <asm/book3s/64/mmu-hash.h>
#include <asm/tm.h> #include <asm/tm.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/xive-regs.h>
#define VCPU_GPRS_TM(reg) (((reg) * ULONG_SIZE) + VCPU_GPR_TM) #define VCPU_GPRS_TM(reg) (((reg) * ULONG_SIZE) + VCPU_GPR_TM)
@ -970,6 +971,23 @@ ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_300)
cmpwi r3, 512 /* 1 microsecond */ cmpwi r3, 512 /* 1 microsecond */
blt hdec_soon blt hdec_soon
#ifdef CONFIG_KVM_XICS
/* We are entering the guest on that thread, push VCPU to XIVE */
ld r10, HSTATE_XIVE_TIMA_PHYS(r13)
cmpldi cr0, r10, r0
beq no_xive
ld r11, VCPU_XIVE_SAVED_STATE(r4)
li r9, TM_QW1_OS
stdcix r11,r9,r10
eieio
lwz r11, VCPU_XIVE_CAM_WORD(r4)
li r9, TM_QW1_OS + TM_WORD2
stwcix r11,r9,r10
li r9, 1
stw r9, VCPU_XIVE_PUSHED(r4)
no_xive:
#endif /* CONFIG_KVM_XICS */
deliver_guest_interrupt: deliver_guest_interrupt:
ld r6, VCPU_CTR(r4) ld r6, VCPU_CTR(r4)
ld r7, VCPU_XER(r4) ld r7, VCPU_XER(r4)
@ -1307,6 +1325,42 @@ END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
blt deliver_guest_interrupt blt deliver_guest_interrupt
guest_exit_cont: /* r9 = vcpu, r12 = trap, r13 = paca */ guest_exit_cont: /* r9 = vcpu, r12 = trap, r13 = paca */
#ifdef CONFIG_KVM_XICS
/* We are exiting, pull the VP from the XIVE */
lwz r0, VCPU_XIVE_PUSHED(r9)
cmpwi cr0, r0, 0
beq 1f
li r7, TM_SPC_PULL_OS_CTX
li r6, TM_QW1_OS
mfmsr r0
andi. r0, r0, MSR_IR /* in real mode? */
beq 2f
ld r10, HSTATE_XIVE_TIMA_VIRT(r13)
cmpldi cr0, r10, 0
beq 1f
/* First load to pull the context, we ignore the value */
lwzx r11, r7, r10
eieio
/* Second load to recover the context state (Words 0 and 1) */
ldx r11, r6, r10
b 3f
2: ld r10, HSTATE_XIVE_TIMA_PHYS(r13)
cmpldi cr0, r10, 0
beq 1f
/* First load to pull the context, we ignore the value */
lwzcix r11, r7, r10
eieio
/* Second load to recover the context state (Words 0 and 1) */
ldcix r11, r6, r10
3: std r11, VCPU_XIVE_SAVED_STATE(r9)
/* Fixup some of the state for the next load */
li r10, 0
li r0, 0xff
stw r10, VCPU_XIVE_PUSHED(r9)
stb r10, (VCPU_XIVE_SAVED_STATE+3)(r9)
stb r0, (VCPU_XIVE_SAVED_STATE+4)(r9)
1:
#endif /* CONFIG_KVM_XICS */
/* Save more register state */ /* Save more register state */
mfdar r6 mfdar r6
mfdsisr r7 mfdsisr r7
@ -2011,7 +2065,7 @@ hcall_real_table:
.long DOTSYM(kvmppc_rm_h_eoi) - hcall_real_table .long DOTSYM(kvmppc_rm_h_eoi) - hcall_real_table
.long DOTSYM(kvmppc_rm_h_cppr) - hcall_real_table .long DOTSYM(kvmppc_rm_h_cppr) - hcall_real_table
.long DOTSYM(kvmppc_rm_h_ipi) - hcall_real_table .long DOTSYM(kvmppc_rm_h_ipi) - hcall_real_table
.long 0 /* 0x70 - H_IPOLL */ .long DOTSYM(kvmppc_rm_h_ipoll) - hcall_real_table
.long DOTSYM(kvmppc_rm_h_xirr) - hcall_real_table .long DOTSYM(kvmppc_rm_h_xirr) - hcall_real_table
#else #else
.long 0 /* 0x64 - H_EOI */ .long 0 /* 0x64 - H_EOI */
@ -2181,7 +2235,11 @@ hcall_real_table:
.long 0 /* 0x2f0 */ .long 0 /* 0x2f0 */
.long 0 /* 0x2f4 */ .long 0 /* 0x2f4 */
.long 0 /* 0x2f8 */ .long 0 /* 0x2f8 */
.long 0 /* 0x2fc */ #ifdef CONFIG_KVM_XICS
.long DOTSYM(kvmppc_rm_h_xirr_x) - hcall_real_table
#else
.long 0 /* 0x2fc - H_XIRR_X*/
#endif
.long DOTSYM(kvmppc_h_random) - hcall_real_table .long DOTSYM(kvmppc_h_random) - hcall_real_table
.globl hcall_real_table_end .globl hcall_real_table_end
hcall_real_table_end: hcall_real_table_end:

View File

@ -16,6 +16,7 @@
#include <asm/kvm_ppc.h> #include <asm/kvm_ppc.h>
#include <asm/hvcall.h> #include <asm/hvcall.h>
#include <asm/rtas.h> #include <asm/rtas.h>
#include <asm/xive.h>
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args)
@ -32,6 +33,9 @@ static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args)
server = be32_to_cpu(args->args[1]); server = be32_to_cpu(args->args[1]);
priority = be32_to_cpu(args->args[2]); priority = be32_to_cpu(args->args[2]);
if (xive_enabled())
rc = kvmppc_xive_set_xive(vcpu->kvm, irq, server, priority);
else
rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority); rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority);
if (rc) if (rc)
rc = -3; rc = -3;
@ -52,6 +56,9 @@ static void kvm_rtas_get_xive(struct kvm_vcpu *vcpu, struct rtas_args *args)
irq = be32_to_cpu(args->args[0]); irq = be32_to_cpu(args->args[0]);
server = priority = 0; server = priority = 0;
if (xive_enabled())
rc = kvmppc_xive_get_xive(vcpu->kvm, irq, &server, &priority);
else
rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority); rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority);
if (rc) { if (rc) {
rc = -3; rc = -3;
@ -76,6 +83,9 @@ static void kvm_rtas_int_off(struct kvm_vcpu *vcpu, struct rtas_args *args)
irq = be32_to_cpu(args->args[0]); irq = be32_to_cpu(args->args[0]);
if (xive_enabled())
rc = kvmppc_xive_int_off(vcpu->kvm, irq);
else
rc = kvmppc_xics_int_off(vcpu->kvm, irq); rc = kvmppc_xics_int_off(vcpu->kvm, irq);
if (rc) if (rc)
rc = -3; rc = -3;
@ -95,6 +105,9 @@ static void kvm_rtas_int_on(struct kvm_vcpu *vcpu, struct rtas_args *args)
irq = be32_to_cpu(args->args[0]); irq = be32_to_cpu(args->args[0]);
if (xive_enabled())
rc = kvmppc_xive_int_on(vcpu->kvm, irq);
else
rc = kvmppc_xics_int_on(vcpu->kvm, irq); rc = kvmppc_xics_int_on(vcpu->kvm, irq);
if (rc) if (rc)
rc = -3; rc = -3;

View File

@ -1306,7 +1306,7 @@ static int xics_set_source(struct kvmppc_xics *xics, long irq, u64 addr)
return 0; return 0;
} }
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, int kvmppc_xics_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
bool line_status) bool line_status)
{ {
struct kvmppc_xics *xics = kvm->arch.xics; struct kvmppc_xics *xics = kvm->arch.xics;
@ -1316,14 +1316,6 @@ int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
return ics_deliver_irq(xics, irq, level); return ics_deliver_irq(xics, irq, level);
} }
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *irq_entry,
struct kvm *kvm, int irq_source_id,
int level, bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, irq_entry->gsi,
level, line_status);
}
static int xics_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) static int xics_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{ {
struct kvmppc_xics *xics = dev->private; struct kvmppc_xics *xics = dev->private;
@ -1457,29 +1449,6 @@ void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu)
vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
} }
static int xics_set_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
return kvm_set_irq(kvm, irq_source_id, e->gsi, level, line_status);
}
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries, int gsi)
{
entries->gsi = gsi;
entries->type = KVM_IRQ_ROUTING_IRQCHIP;
entries->set = xics_set_irq;
entries->irqchip.irqchip = 0;
entries->irqchip.pin = gsi;
return 1;
}
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
return pin;
}
void kvmppc_xics_set_mapped(struct kvm *kvm, unsigned long irq, void kvmppc_xics_set_mapped(struct kvm *kvm, unsigned long irq,
unsigned long host_irq) unsigned long host_irq)
{ {

View File

@ -10,6 +10,7 @@
#ifndef _KVM_PPC_BOOK3S_XICS_H #ifndef _KVM_PPC_BOOK3S_XICS_H
#define _KVM_PPC_BOOK3S_XICS_H #define _KVM_PPC_BOOK3S_XICS_H
#ifdef CONFIG_KVM_XICS
/* /*
* We use a two-level tree to store interrupt source information. * We use a two-level tree to store interrupt source information.
* There are up to 1024 ICS nodes, each of which can represent * There are up to 1024 ICS nodes, each of which can represent
@ -144,5 +145,11 @@ static inline struct kvmppc_ics *kvmppc_xics_find_ics(struct kvmppc_xics *xics,
return ics; return ics;
} }
extern unsigned long xics_rm_h_xirr(struct kvm_vcpu *vcpu);
extern int xics_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
extern int xics_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
extern int xics_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
#endif /* CONFIG_KVM_XICS */
#endif /* _KVM_PPC_BOOK3S_XICS_H */ #endif /* _KVM_PPC_BOOK3S_XICS_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,256 @@
/*
* Copyright 2017 Benjamin Herrenschmidt, IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#ifndef _KVM_PPC_BOOK3S_XIVE_H
#define _KVM_PPC_BOOK3S_XIVE_H
#ifdef CONFIG_KVM_XICS
#include "book3s_xics.h"
/*
* State for one guest irq source.
*
* For each guest source we allocate a HW interrupt in the XIVE
* which we use for all SW triggers. It will be unused for
* pass-through but it's easier to keep around as the same
* guest interrupt can alternatively be emulated or pass-through
* if a physical device is hot unplugged and replaced with an
* emulated one.
*
* This state structure is very similar to the XICS one with
* additional XIVE specific tracking.
*/
struct kvmppc_xive_irq_state {
bool valid; /* Interrupt entry is valid */
u32 number; /* Guest IRQ number */
u32 ipi_number; /* XIVE IPI HW number */
struct xive_irq_data ipi_data; /* XIVE IPI associated data */
u32 pt_number; /* XIVE Pass-through number if any */
struct xive_irq_data *pt_data; /* XIVE Pass-through associated data */
/* Targetting as set by guest */
u32 guest_server; /* Current guest selected target */
u8 guest_priority; /* Guest set priority */
u8 saved_priority; /* Saved priority when masking */
/* Actual targetting */
u32 act_server; /* Actual server */
u8 act_priority; /* Actual priority */
/* Various state bits */
bool in_eoi; /* Synchronize with H_EOI */
bool old_p; /* P bit state when masking */
bool old_q; /* Q bit state when masking */
bool lsi; /* level-sensitive interrupt */
bool asserted; /* Only for emulated LSI: current state */
/* Saved for migration state */
bool in_queue;
bool saved_p;
bool saved_q;
u8 saved_scan_prio;
};
/* Select the "right" interrupt (IPI vs. passthrough) */
static inline void kvmppc_xive_select_irq(struct kvmppc_xive_irq_state *state,
u32 *out_hw_irq,
struct xive_irq_data **out_xd)
{
if (state->pt_number) {
if (out_hw_irq)
*out_hw_irq = state->pt_number;
if (out_xd)
*out_xd = state->pt_data;
} else {
if (out_hw_irq)
*out_hw_irq = state->ipi_number;
if (out_xd)
*out_xd = &state->ipi_data;
}
}
/*
* This corresponds to an "ICS" in XICS terminology, we use it
* as a mean to break up source information into multiple structures.
*/
struct kvmppc_xive_src_block {
arch_spinlock_t lock;
u16 id;
struct kvmppc_xive_irq_state irq_state[KVMPPC_XICS_IRQ_PER_ICS];
};
struct kvmppc_xive {
struct kvm *kvm;
struct kvm_device *dev;
struct dentry *dentry;
/* VP block associated with the VM */
u32 vp_base;
/* Blocks of sources */
struct kvmppc_xive_src_block *src_blocks[KVMPPC_XICS_MAX_ICS_ID + 1];
u32 max_sbid;
/*
* For state save, we lazily scan the queues on the first interrupt
* being migrated. We don't have a clean way to reset that flags
* so we keep track of the number of valid sources and how many of
* them were migrated so we can reset when all of them have been
* processed.
*/
u32 src_count;
u32 saved_src_count;
/*
* Some irqs are delayed on restore until the source is created,
* keep track here of how many of them
*/
u32 delayed_irqs;
/* Which queues (priorities) are in use by the guest */
u8 qmap;
/* Queue orders */
u32 q_order;
u32 q_page_order;
};
#define KVMPPC_XIVE_Q_COUNT 8
struct kvmppc_xive_vcpu {
struct kvmppc_xive *xive;
struct kvm_vcpu *vcpu;
bool valid;
/* Server number. This is the HW CPU ID from a guest perspective */
u32 server_num;
/*
* HW VP corresponding to this VCPU. This is the base of the VP
* block plus the server number.
*/
u32 vp_id;
u32 vp_chip_id;
u32 vp_cam;
/* IPI used for sending ... IPIs */
u32 vp_ipi;
struct xive_irq_data vp_ipi_data;
/* Local emulation state */
uint8_t cppr; /* guest CPPR */
uint8_t hw_cppr;/* Hardware CPPR */
uint8_t mfrr;
uint8_t pending;
/* Each VP has 8 queues though we only provision some */
struct xive_q queues[KVMPPC_XIVE_Q_COUNT];
u32 esc_virq[KVMPPC_XIVE_Q_COUNT];
char *esc_virq_names[KVMPPC_XIVE_Q_COUNT];
/* Stash a delayed irq on restore from migration (see set_icp) */
u32 delayed_irq;
/* Stats */
u64 stat_rm_h_xirr;
u64 stat_rm_h_ipoll;
u64 stat_rm_h_cppr;
u64 stat_rm_h_eoi;
u64 stat_rm_h_ipi;
u64 stat_vm_h_xirr;
u64 stat_vm_h_ipoll;
u64 stat_vm_h_cppr;
u64 stat_vm_h_eoi;
u64 stat_vm_h_ipi;
};
static inline struct kvm_vcpu *kvmppc_xive_find_server(struct kvm *kvm, u32 nr)
{
struct kvm_vcpu *vcpu = NULL;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->arch.xive_vcpu && nr == vcpu->arch.xive_vcpu->server_num)
return vcpu;
}
return NULL;
}
static inline struct kvmppc_xive_src_block *kvmppc_xive_find_source(struct kvmppc_xive *xive,
u32 irq, u16 *source)
{
u32 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
u16 src = irq & KVMPPC_XICS_SRC_MASK;
if (source)
*source = src;
if (bid > KVMPPC_XICS_MAX_ICS_ID)
return NULL;
return xive->src_blocks[bid];
}
/*
* Mapping between guest priorities and host priorities
* is as follow.
*
* Guest request for 0...6 are honored. Guest request for anything
* higher results in a priority of 7 being applied.
*
* However, when XIRR is returned via H_XIRR, 7 is translated to 0xb
* in order to match AIX expectations
*
* Similar mapping is done for CPPR values
*/
static inline u8 xive_prio_from_guest(u8 prio)
{
if (prio == 0xff || prio < 8)
return prio;
return 7;
}
static inline u8 xive_prio_to_guest(u8 prio)
{
if (prio == 0xff || prio < 7)
return prio;
return 0xb;
}
static inline u32 __xive_read_eq(__be32 *qpage, u32 msk, u32 *idx, u32 *toggle)
{
u32 cur;
if (!qpage)
return 0;
cur = be32_to_cpup(qpage + *idx);
if ((cur >> 31) == *toggle)
return 0;
*idx = (*idx + 1) & msk;
if (*idx == 0)
(*toggle) ^= 1;
return cur & 0x7fffffff;
}
extern unsigned long xive_rm_h_xirr(struct kvm_vcpu *vcpu);
extern unsigned long xive_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server);
extern int xive_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
extern int xive_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
extern int xive_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
extern unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
extern unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
extern int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
extern int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
extern int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
#endif /* CONFIG_KVM_XICS */
#endif /* _KVM_PPC_BOOK3S_XICS_H */

View File

@ -0,0 +1,503 @@
/*
* Copyright 2017 Benjamin Herrenschmidt, IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
/* File to be included by other .c files */
#define XGLUE(a,b) a##b
#define GLUE(a,b) XGLUE(a,b)
static void GLUE(X_PFX,ack_pending)(struct kvmppc_xive_vcpu *xc)
{
u8 cppr;
u16 ack;
/* XXX DD1 bug workaround: Check PIPR vs. CPPR first ! */
/* Perform the acknowledge OS to register cycle. */
ack = be16_to_cpu(__x_readw(__x_tima + TM_SPC_ACK_OS_REG));
/* Synchronize subsequent queue accesses */
mb();
/* XXX Check grouping level */
/* Anything ? */
if (!((ack >> 8) & TM_QW1_NSR_EO))
return;
/* Grab CPPR of the most favored pending interrupt */
cppr = ack & 0xff;
if (cppr < 8)
xc->pending |= 1 << cppr;
#ifdef XIVE_RUNTIME_CHECKS
/* Check consistency */
if (cppr >= xc->hw_cppr)
pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
smp_processor_id(), cppr, xc->hw_cppr);
#endif
/*
* Update our image of the HW CPPR. We don't yet modify
* xc->cppr, this will be done as we scan for interrupts
* in the queues.
*/
xc->hw_cppr = cppr;
}
static u8 GLUE(X_PFX,esb_load)(struct xive_irq_data *xd, u32 offset)
{
u64 val;
if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
offset |= offset << 4;
val =__x_readq(__x_eoi_page(xd) + offset);
#ifdef __LITTLE_ENDIAN__
val >>= 64-8;
#endif
return (u8)val;
}
static void GLUE(X_PFX,source_eoi)(u32 hw_irq, struct xive_irq_data *xd)
{
/* If the XIVE supports the new "store EOI facility, use it */
if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
__x_writeq(0, __x_eoi_page(xd));
else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
opal_int_eoi(hw_irq);
} else {
uint64_t eoi_val;
/*
* Otherwise for EOI, we use the special MMIO that does
* a clear of both P and Q and returns the old Q,
* except for LSIs where we use the "EOI cycle" special
* load.
*
* This allows us to then do a re-trigger if Q was set
* rather than synthetizing an interrupt in software
*
* For LSIs, using the HW EOI cycle works around a problem
* on P9 DD1 PHBs where the other ESB accesses don't work
* properly.
*/
if (xd->flags & XIVE_IRQ_FLAG_LSI)
__x_readq(__x_eoi_page(xd));
else {
eoi_val = GLUE(X_PFX,esb_load)(xd, XIVE_ESB_SET_PQ_00);
/* Re-trigger if needed */
if ((eoi_val & 1) && __x_trig_page(xd))
__x_writeq(0, __x_trig_page(xd));
}
}
}
enum {
scan_fetch,
scan_poll,
scan_eoi,
};
static u32 GLUE(X_PFX,scan_interrupts)(struct kvmppc_xive_vcpu *xc,
u8 pending, int scan_type)
{
u32 hirq = 0;
u8 prio = 0xff;
/* Find highest pending priority */
while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
struct xive_q *q;
u32 idx, toggle;
__be32 *qpage;
/*
* If pending is 0 this will return 0xff which is what
* we want
*/
prio = ffs(pending) - 1;
/*
* If the most favoured prio we found pending is less
* favored (or equal) than a pending IPI, we return
* the IPI instead.
*
* Note: If pending was 0 and mfrr is 0xff, we will
* not spurriously take an IPI because mfrr cannot
* then be smaller than cppr.
*/
if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
prio = xc->mfrr;
hirq = XICS_IPI;
break;
}
/* Don't scan past the guest cppr */
if (prio >= xc->cppr || prio > 7)
break;
/* Grab queue and pointers */
q = &xc->queues[prio];
idx = q->idx;
toggle = q->toggle;
/*
* Snapshot the queue page. The test further down for EOI
* must use the same "copy" that was used by __xive_read_eq
* since qpage can be set concurrently and we don't want
* to miss an EOI.
*/
qpage = READ_ONCE(q->qpage);
skip_ipi:
/*
* Try to fetch from the queue. Will return 0 for a
* non-queueing priority (ie, qpage = 0).
*/
hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
/*
* If this was a signal for an MFFR change done by
* H_IPI we skip it. Additionally, if we were fetching
* we EOI it now, thus re-enabling reception of a new
* such signal.
*
* We also need to do that if prio is 0 and we had no
* page for the queue. In this case, we have non-queued
* IPI that needs to be EOId.
*
* This is safe because if we have another pending MFRR
* change that wasn't observed above, the Q bit will have
* been set and another occurrence of the IPI will trigger.
*/
if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
if (scan_type == scan_fetch)
GLUE(X_PFX,source_eoi)(xc->vp_ipi,
&xc->vp_ipi_data);
/* Loop back on same queue with updated idx/toggle */
#ifdef XIVE_RUNTIME_CHECKS
WARN_ON(hirq && hirq != XICS_IPI);
#endif
if (hirq)
goto skip_ipi;
}
/* If fetching, update queue pointers */
if (scan_type == scan_fetch) {
q->idx = idx;
q->toggle = toggle;
}
/* Something found, stop searching */
if (hirq)
break;
/* Clear the pending bit on the now empty queue */
pending &= ~(1 << prio);
/*
* Check if the queue count needs adjusting due to
* interrupts being moved away.
*/
if (atomic_read(&q->pending_count)) {
int p = atomic_xchg(&q->pending_count, 0);
if (p) {
#ifdef XIVE_RUNTIME_CHECKS
WARN_ON(p > atomic_read(&q->count));
#endif
atomic_sub(p, &q->count);
}
}
}
/* If we are just taking a "peek", do nothing else */
if (scan_type == scan_poll)
return hirq;
/* Update the pending bits */
xc->pending = pending;
/*
* If this is an EOI that's it, no CPPR adjustment done here,
* all we needed was cleanup the stale pending bits and check
* if there's anything left.
*/
if (scan_type == scan_eoi)
return hirq;
/*
* If we found an interrupt, adjust what the guest CPPR should
* be as if we had just fetched that interrupt from HW.
*/
if (hirq)
xc->cppr = prio;
/*
* If it was an IPI the HW CPPR might have been lowered too much
* as the HW interrupt we use for IPIs is routed to priority 0.
*
* We re-sync it here.
*/
if (xc->cppr != xc->hw_cppr) {
xc->hw_cppr = xc->cppr;
__x_writeb(xc->cppr, __x_tima + TM_QW1_OS + TM_CPPR);
}
return hirq;
}
X_STATIC unsigned long GLUE(X_PFX,h_xirr)(struct kvm_vcpu *vcpu)
{
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
u8 old_cppr;
u32 hirq;
pr_devel("H_XIRR\n");
xc->GLUE(X_STAT_PFX,h_xirr)++;
/* First collect pending bits from HW */
GLUE(X_PFX,ack_pending)(xc);
/*
* Cleanup the old-style bits if needed (they may have been
* set by pull or an escalation interrupts).
*/
if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions))
clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
&vcpu->arch.pending_exceptions);
pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
xc->pending, xc->hw_cppr, xc->cppr);
/* Grab previous CPPR and reverse map it */
old_cppr = xive_prio_to_guest(xc->cppr);
/* Scan for actual interrupts */
hirq = GLUE(X_PFX,scan_interrupts)(xc, xc->pending, scan_fetch);
pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
hirq, xc->hw_cppr, xc->cppr);
#ifdef XIVE_RUNTIME_CHECKS
/* That should never hit */
if (hirq & 0xff000000)
pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
#endif
/*
* XXX We could check if the interrupt is masked here and
* filter it. If we chose to do so, we would need to do:
*
* if (masked) {
* lock();
* if (masked) {
* old_Q = true;
* hirq = 0;
* }
* unlock();
* }
*/
/* Return interrupt and old CPPR in GPR4 */
vcpu->arch.gpr[4] = hirq | (old_cppr << 24);
return H_SUCCESS;
}
X_STATIC unsigned long GLUE(X_PFX,h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server)
{
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
u8 pending = xc->pending;
u32 hirq;
u8 pipr;
pr_devel("H_IPOLL(server=%ld)\n", server);
xc->GLUE(X_STAT_PFX,h_ipoll)++;
/* Grab the target VCPU if not the current one */
if (xc->server_num != server) {
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
if (!vcpu)
return H_PARAMETER;
xc = vcpu->arch.xive_vcpu;
/* Scan all priorities */
pending = 0xff;
} else {
/* Grab pending interrupt if any */
pipr = __x_readb(__x_tima + TM_QW1_OS + TM_PIPR);
if (pipr < 8)
pending |= 1 << pipr;
}
hirq = GLUE(X_PFX,scan_interrupts)(xc, pending, scan_poll);
/* Return interrupt and old CPPR in GPR4 */
vcpu->arch.gpr[4] = hirq | (xc->cppr << 24);
return H_SUCCESS;
}
static void GLUE(X_PFX,push_pending_to_hw)(struct kvmppc_xive_vcpu *xc)
{
u8 pending, prio;
pending = xc->pending;
if (xc->mfrr != 0xff) {
if (xc->mfrr < 8)
pending |= 1 << xc->mfrr;
else
pending |= 0x80;
}
if (!pending)
return;
prio = ffs(pending) - 1;
__x_writeb(prio, __x_tima + TM_SPC_SET_OS_PENDING);
}
X_STATIC int GLUE(X_PFX,h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr)
{
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
u8 old_cppr;
pr_devel("H_CPPR(cppr=%ld)\n", cppr);
xc->GLUE(X_STAT_PFX,h_cppr)++;
/* Map CPPR */
cppr = xive_prio_from_guest(cppr);
/* Remember old and update SW state */
old_cppr = xc->cppr;
xc->cppr = cppr;
/*
* We are masking less, we need to look for pending things
* to deliver and set VP pending bits accordingly to trigger
* a new interrupt otherwise we might miss MFRR changes for
* which we have optimized out sending an IPI signal.
*/
if (cppr > old_cppr)
GLUE(X_PFX,push_pending_to_hw)(xc);
/* Apply new CPPR */
xc->hw_cppr = cppr;
__x_writeb(cppr, __x_tima + TM_QW1_OS + TM_CPPR);
return H_SUCCESS;
}
X_STATIC int GLUE(X_PFX,h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr)
{
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
struct kvmppc_xive_src_block *sb;
struct kvmppc_xive_irq_state *state;
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
struct xive_irq_data *xd;
u8 new_cppr = xirr >> 24;
u32 irq = xirr & 0x00ffffff, hw_num;
u16 src;
int rc = 0;
pr_devel("H_EOI(xirr=%08lx)\n", xirr);
xc->GLUE(X_STAT_PFX,h_eoi)++;
xc->cppr = xive_prio_from_guest(new_cppr);
/*
* IPIs are synthetized from MFRR and thus don't need
* any special EOI handling. The underlying interrupt
* used to signal MFRR changes is EOId when fetched from
* the queue.
*/
if (irq == XICS_IPI || irq == 0)
goto bail;
/* Find interrupt source */
sb = kvmppc_xive_find_source(xive, irq, &src);
if (!sb) {
pr_devel(" source not found !\n");
rc = H_PARAMETER;
goto bail;
}
state = &sb->irq_state[src];
kvmppc_xive_select_irq(state, &hw_num, &xd);
state->in_eoi = true;
mb();
again:
if (state->guest_priority == MASKED) {
arch_spin_lock(&sb->lock);
if (state->guest_priority != MASKED) {
arch_spin_unlock(&sb->lock);
goto again;
}
pr_devel(" EOI on saved P...\n");
/* Clear old_p, that will cause unmask to perform an EOI */
state->old_p = false;
arch_spin_unlock(&sb->lock);
} else {
pr_devel(" EOI on source...\n");
/* Perform EOI on the source */
GLUE(X_PFX,source_eoi)(hw_num, xd);
/* If it's an emulated LSI, check level and resend */
if (state->lsi && state->asserted)
__x_writeq(0, __x_trig_page(xd));
}
mb();
state->in_eoi = false;
bail:
/* Re-evaluate pending IRQs and update HW */
GLUE(X_PFX,scan_interrupts)(xc, xc->pending, scan_eoi);
GLUE(X_PFX,push_pending_to_hw)(xc);
pr_devel(" after scan pending=%02x\n", xc->pending);
/* Apply new CPPR */
xc->hw_cppr = xc->cppr;
__x_writeb(xc->cppr, __x_tima + TM_QW1_OS + TM_CPPR);
return rc;
}
X_STATIC int GLUE(X_PFX,h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr)
{
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
xc->GLUE(X_STAT_PFX,h_ipi)++;
/* Find target */
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
if (!vcpu)
return H_PARAMETER;
xc = vcpu->arch.xive_vcpu;
/* Locklessly write over MFRR */
xc->mfrr = mfrr;
/* Shoot the IPI if most favored than target cppr */
if (mfrr < xc->cppr)
__x_writeq(0, __x_trig_page(&xc->vp_ipi_data));
return H_SUCCESS;
}

View File

@ -12,6 +12,7 @@ static inline int irqchip_in_kernel(struct kvm *kvm)
#endif #endif
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
ret = ret || (kvm->arch.xics != NULL); ret = ret || (kvm->arch.xics != NULL);
ret = ret || (kvm->arch.xive != NULL);
#endif #endif
smp_rmb(); smp_rmb();
return ret; return ret;

View File

@ -38,6 +38,8 @@
#include <asm/irqflags.h> #include <asm/irqflags.h>
#include <asm/iommu.h> #include <asm/iommu.h>
#include <asm/switch_to.h> #include <asm/switch_to.h>
#include <asm/xive.h>
#include "timing.h" #include "timing.h"
#include "irq.h" #include "irq.h"
#include "../mm/mmu_decl.h" #include "../mm/mmu_decl.h"
@ -697,6 +699,9 @@ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
break; break;
case KVMPPC_IRQ_XICS: case KVMPPC_IRQ_XICS:
if (xive_enabled())
kvmppc_xive_cleanup_vcpu(vcpu);
else
kvmppc_xics_free_icp(vcpu); kvmppc_xics_free_icp(vcpu);
break; break;
} }
@ -1522,8 +1527,12 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
r = -EPERM; r = -EPERM;
dev = kvm_device_from_filp(f.file); dev = kvm_device_from_filp(f.file);
if (dev) if (dev) {
if (xive_enabled())
r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
else
r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
}
fdput(f); fdput(f);
break; break;
@ -1547,7 +1556,7 @@ bool kvm_arch_intc_initialized(struct kvm *kvm)
return true; return true;
#endif #endif
#ifdef CONFIG_KVM_XICS #ifdef CONFIG_KVM_XICS
if (kvm->arch.xics) if (kvm->arch.xics || kvm->arch.xive)
return true; return true;
#endif #endif
return false; return false;

View File

@ -967,3 +967,4 @@ EXPORT_SYMBOL_GPL(opal_leds_set_ind);
EXPORT_SYMBOL_GPL(opal_write_oppanel_async); EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
/* Export this for KVM */ /* Export this for KVM */
EXPORT_SYMBOL_GPL(opal_int_set_mfrr); EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
EXPORT_SYMBOL_GPL(opal_int_eoi);

View File

@ -46,13 +46,15 @@
#endif #endif
bool __xive_enabled; bool __xive_enabled;
EXPORT_SYMBOL_GPL(__xive_enabled);
bool xive_cmdline_disabled; bool xive_cmdline_disabled;
/* We use only one priority for now */ /* We use only one priority for now */
static u8 xive_irq_priority; static u8 xive_irq_priority;
/* TIMA */ /* TIMA exported to KVM */
void __iomem *xive_tima; void __iomem *xive_tima;
EXPORT_SYMBOL_GPL(xive_tima);
u32 xive_tima_offset; u32 xive_tima_offset;
/* Backend ops */ /* Backend ops */
@ -345,8 +347,11 @@ static void xive_irq_eoi(struct irq_data *d)
DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
d->irq, irqd_to_hwirq(d), xc->pending_prio); d->irq, irqd_to_hwirq(d), xc->pending_prio);
/* EOI the source if it hasn't been disabled */ /*
if (!irqd_irq_disabled(d)) * EOI the source if it hasn't been disabled and hasn't
* been passed-through to a KVM guest
*/
if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d))
xive_do_source_eoi(irqd_to_hwirq(d), xd); xive_do_source_eoi(irqd_to_hwirq(d), xd);
/* /*
@ -689,6 +694,11 @@ static int xive_irq_set_affinity(struct irq_data *d,
old_target = xd->target; old_target = xd->target;
/*
* Only configure the irq if it's not currently passed-through to
* a KVM guest
*/
if (!irqd_is_forwarded_to_vcpu(d))
rc = xive_ops->configure_irq(hw_irq, rc = xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(target), get_hard_smp_processor_id(target),
xive_irq_priority, d->irq); xive_irq_priority, d->irq);
@ -771,6 +781,123 @@ static int xive_irq_retrigger(struct irq_data *d)
return 1; return 1;
} }
static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
int rc;
u8 pq;
/*
* We only support this on interrupts that do not require
* firmware calls for masking and unmasking
*/
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
return -EIO;
/*
* This is called by KVM with state non-NULL for enabling
* pass-through or NULL for disabling it
*/
if (state) {
irqd_set_forwarded_to_vcpu(d);
/* Set it to PQ=10 state to prevent further sends */
pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
/* No target ? nothing to do */
if (xd->target == XIVE_INVALID_TARGET) {
/*
* An untargetted interrupt should have been
* also masked at the source
*/
WARN_ON(pq & 2);
return 0;
}
/*
* If P was set, adjust state to PQ=11 to indicate
* that a resend is needed for the interrupt to reach
* the guest. Also remember the value of P.
*
* This also tells us that it's in flight to a host queue
* or has already been fetched but hasn't been EOIed yet
* by the host. This it's potentially using up a host
* queue slot. This is important to know because as long
* as this is the case, we must not hard-unmask it when
* "returning" that interrupt to the host.
*
* This saved_p is cleared by the host EOI, when we know
* for sure the queue slot is no longer in use.
*/
if (pq & 2) {
pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
xd->saved_p = true;
/*
* Sync the XIVE source HW to ensure the interrupt
* has gone through the EAS before we change its
* target to the guest. That should guarantee us
* that we *will* eventually get an EOI for it on
* the host. Otherwise there would be a small window
* for P to be seen here but the interrupt going
* to the guest queue.
*/
if (xive_ops->sync_source)
xive_ops->sync_source(hw_irq);
} else
xd->saved_p = false;
} else {
irqd_clr_forwarded_to_vcpu(d);
/* No host target ? hard mask and return */
if (xd->target == XIVE_INVALID_TARGET) {
xive_do_source_set_mask(xd, true);
return 0;
}
/*
* Sync the XIVE source HW to ensure the interrupt
* has gone through the EAS before we change its
* target to the host.
*/
if (xive_ops->sync_source)
xive_ops->sync_source(hw_irq);
/*
* By convention we are called with the interrupt in
* a PQ=10 or PQ=11 state, ie, it won't fire and will
* have latched in Q whether there's a pending HW
* interrupt or not.
*
* First reconfigure the target.
*/
rc = xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(xd->target),
xive_irq_priority, d->irq);
if (rc)
return rc;
/*
* Then if saved_p is not set, effectively re-enable the
* interrupt with an EOI. If it is set, we know there is
* still a message in a host queue somewhere that will be
* EOId eventually.
*
* Note: We don't check irqd_irq_disabled(). Effectively,
* we *will* let the irq get through even if masked if the
* HW is still firing it in order to deal with the whole
* saved_p business properly. If the interrupt triggers
* while masked, the generic code will re-mask it anyway.
*/
if (!xd->saved_p)
xive_do_source_eoi(hw_irq, xd);
}
return 0;
}
static struct irq_chip xive_irq_chip = { static struct irq_chip xive_irq_chip = {
.name = "XIVE-IRQ", .name = "XIVE-IRQ",
.irq_startup = xive_irq_startup, .irq_startup = xive_irq_startup,
@ -781,12 +908,14 @@ static struct irq_chip xive_irq_chip = {
.irq_set_affinity = xive_irq_set_affinity, .irq_set_affinity = xive_irq_set_affinity,
.irq_set_type = xive_irq_set_type, .irq_set_type = xive_irq_set_type,
.irq_retrigger = xive_irq_retrigger, .irq_retrigger = xive_irq_retrigger,
.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
}; };
bool is_xive_irq(struct irq_chip *chip) bool is_xive_irq(struct irq_chip *chip)
{ {
return chip == &xive_irq_chip; return chip == &xive_irq_chip;
} }
EXPORT_SYMBOL_GPL(is_xive_irq);
void xive_cleanup_irq_data(struct xive_irq_data *xd) void xive_cleanup_irq_data(struct xive_irq_data *xd)
{ {
@ -801,6 +930,7 @@ void xive_cleanup_irq_data(struct xive_irq_data *xd)
xd->trig_mmio = NULL; xd->trig_mmio = NULL;
} }
} }
EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
{ {

View File

@ -31,6 +31,7 @@
#include <asm/xive.h> #include <asm/xive.h>
#include <asm/xive-regs.h> #include <asm/xive-regs.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/kvm_ppc.h>
#include "xive-internal.h" #include "xive-internal.h"
@ -95,6 +96,7 @@ int xive_native_populate_irq_data(u32 hw_irq, struct xive_irq_data *data)
} }
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(xive_native_populate_irq_data);
int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq) int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq)
{ {
@ -108,6 +110,8 @@ int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq)
} }
return rc == 0 ? 0 : -ENXIO; return rc == 0 ? 0 : -ENXIO;
} }
EXPORT_SYMBOL_GPL(xive_native_configure_irq);
/* This can be called multiple time to change a queue configuration */ /* This can be called multiple time to change a queue configuration */
int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio, int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
@ -172,6 +176,7 @@ int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
fail: fail:
return rc; return rc;
} }
EXPORT_SYMBOL_GPL(xive_native_configure_queue);
static void __xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio) static void __xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio)
{ {
@ -192,6 +197,7 @@ void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio)
{ {
__xive_native_disable_queue(vp_id, q, prio); __xive_native_disable_queue(vp_id, q, prio);
} }
EXPORT_SYMBOL_GPL(xive_native_disable_queue);
static int xive_native_setup_queue(unsigned int cpu, struct xive_cpu *xc, u8 prio) static int xive_native_setup_queue(unsigned int cpu, struct xive_cpu *xc, u8 prio)
{ {
@ -262,6 +268,7 @@ static int xive_native_get_ipi(unsigned int cpu, struct xive_cpu *xc)
} }
return 0; return 0;
} }
#endif /* CONFIG_SMP */
u32 xive_native_alloc_irq(void) u32 xive_native_alloc_irq(void)
{ {
@ -277,6 +284,7 @@ u32 xive_native_alloc_irq(void)
return 0; return 0;
return rc; return rc;
} }
EXPORT_SYMBOL_GPL(xive_native_alloc_irq);
void xive_native_free_irq(u32 irq) void xive_native_free_irq(u32 irq)
{ {
@ -287,7 +295,9 @@ void xive_native_free_irq(u32 irq)
msleep(1); msleep(1);
} }
} }
EXPORT_SYMBOL_GPL(xive_native_free_irq);
#ifdef CONFIG_SMP
static void xive_native_put_ipi(unsigned int cpu, struct xive_cpu *xc) static void xive_native_put_ipi(unsigned int cpu, struct xive_cpu *xc)
{ {
s64 rc; s64 rc;
@ -383,7 +393,7 @@ static void xive_native_setup_cpu(unsigned int cpu, struct xive_cpu *xc)
return; return;
/* Enable the pool VP */ /* Enable the pool VP */
vp = xive_pool_vps + get_hard_smp_processor_id(cpu); vp = xive_pool_vps + cpu;
pr_debug("CPU %d setting up pool VP 0x%x\n", cpu, vp); pr_debug("CPU %d setting up pool VP 0x%x\n", cpu, vp);
for (;;) { for (;;) {
rc = opal_xive_set_vp_info(vp, OPAL_XIVE_VP_ENABLED, 0); rc = opal_xive_set_vp_info(vp, OPAL_XIVE_VP_ENABLED, 0);
@ -428,7 +438,7 @@ static void xive_native_teardown_cpu(unsigned int cpu, struct xive_cpu *xc)
in_be64(xive_tima + TM_SPC_PULL_POOL_CTX); in_be64(xive_tima + TM_SPC_PULL_POOL_CTX);
/* Disable it */ /* Disable it */
vp = xive_pool_vps + get_hard_smp_processor_id(cpu); vp = xive_pool_vps + cpu;
for (;;) { for (;;) {
rc = opal_xive_set_vp_info(vp, 0, 0); rc = opal_xive_set_vp_info(vp, 0, 0);
if (rc != OPAL_BUSY) if (rc != OPAL_BUSY)
@ -437,10 +447,11 @@ static void xive_native_teardown_cpu(unsigned int cpu, struct xive_cpu *xc)
} }
} }
static void xive_native_sync_source(u32 hw_irq) void xive_native_sync_source(u32 hw_irq)
{ {
opal_xive_sync(XIVE_SYNC_EAS, hw_irq); opal_xive_sync(XIVE_SYNC_EAS, hw_irq);
} }
EXPORT_SYMBOL_GPL(xive_native_sync_source);
static const struct xive_ops xive_native_ops = { static const struct xive_ops xive_native_ops = {
.populate_irq_data = xive_native_populate_irq_data, .populate_irq_data = xive_native_populate_irq_data,
@ -501,10 +512,24 @@ static bool xive_parse_provisioning(struct device_node *np)
return true; return true;
} }
static void xive_native_setup_pools(void)
{
/* Allocate a pool big enough */
pr_debug("XIVE: Allocating VP block for pool size %d\n", nr_cpu_ids);
xive_pool_vps = xive_native_alloc_vp_block(nr_cpu_ids);
if (WARN_ON(xive_pool_vps == XIVE_INVALID_VP))
pr_err("XIVE: Failed to allocate pool VP, KVM might not function\n");
pr_debug("XIVE: Pool VPs allocated at 0x%x for %d max CPUs\n",
xive_pool_vps, nr_cpu_ids);
}
u32 xive_native_default_eq_shift(void) u32 xive_native_default_eq_shift(void)
{ {
return xive_queue_shift; return xive_queue_shift;
} }
EXPORT_SYMBOL_GPL(xive_native_default_eq_shift);
bool xive_native_init(void) bool xive_native_init(void)
{ {
@ -514,7 +539,7 @@ bool xive_native_init(void)
struct property *prop; struct property *prop;
u8 max_prio = 7; u8 max_prio = 7;
const __be32 *p; const __be32 *p;
u32 val; u32 val, cpu;
s64 rc; s64 rc;
if (xive_cmdline_disabled) if (xive_cmdline_disabled)
@ -550,7 +575,11 @@ bool xive_native_init(void)
break; break;
} }
/* Grab size of provisioning pages */ /* Configure Thread Management areas for KVM */
for_each_possible_cpu(cpu)
kvmppc_set_xive_tima(cpu, r.start, tima);
/* Grab size of provisionning pages */
xive_parse_provisioning(np); xive_parse_provisioning(np);
/* Switch the XIVE to exploitation mode */ /* Switch the XIVE to exploitation mode */
@ -560,6 +589,9 @@ bool xive_native_init(void)
return false; return false;
} }
/* Setup some dummy HV pool VPs */
xive_native_setup_pools();
/* Initialize XIVE core with our backend */ /* Initialize XIVE core with our backend */
if (!xive_core_init(&xive_native_ops, tima, TM_QW3_HV_PHYS, if (!xive_core_init(&xive_native_ops, tima, TM_QW3_HV_PHYS,
max_prio)) { max_prio)) {
@ -638,3 +670,47 @@ void xive_native_free_vp_block(u32 vp_base)
pr_warn("OPAL error %lld freeing VP block\n", rc); pr_warn("OPAL error %lld freeing VP block\n", rc);
} }
EXPORT_SYMBOL_GPL(xive_native_free_vp_block); EXPORT_SYMBOL_GPL(xive_native_free_vp_block);
int xive_native_enable_vp(u32 vp_id)
{
s64 rc;
for (;;) {
rc = opal_xive_set_vp_info(vp_id, OPAL_XIVE_VP_ENABLED, 0);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
return rc ? -EIO : 0;
}
EXPORT_SYMBOL_GPL(xive_native_enable_vp);
int xive_native_disable_vp(u32 vp_id)
{
s64 rc;
for (;;) {
rc = opal_xive_set_vp_info(vp_id, 0, 0);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
return rc ? -EIO : 0;
}
EXPORT_SYMBOL_GPL(xive_native_disable_vp);
int xive_native_get_vp_info(u32 vp_id, u32 *out_cam_id, u32 *out_chip_id)
{
__be64 vp_cam_be;
__be32 vp_chip_id_be;
s64 rc;
rc = opal_xive_get_vp_info(vp_id, NULL, &vp_cam_be, NULL, &vp_chip_id_be);
if (rc)
return -EIO;
*out_cam_id = be64_to_cpu(vp_cam_be) & 0xffffffffu;
*out_chip_id = be32_to_cpu(vp_chip_id_be);
return 0;
}
EXPORT_SYMBOL_GPL(xive_native_get_vp_info);

View File

@ -1020,6 +1020,8 @@ struct kvm_x86_ops {
void (*enable_log_dirty_pt_masked)(struct kvm *kvm, void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
struct kvm_memory_slot *slot, struct kvm_memory_slot *slot,
gfn_t offset, unsigned long mask); gfn_t offset, unsigned long mask);
int (*write_log_dirty)(struct kvm_vcpu *vcpu);
/* pmu operations of sub-arch */ /* pmu operations of sub-arch */
const struct kvm_pmu_ops *pmu_ops; const struct kvm_pmu_ops *pmu_ops;

View File

@ -1498,6 +1498,21 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
} }
/**
* kvm_arch_write_log_dirty - emulate dirty page logging
* @vcpu: Guest mode vcpu
*
* Emulate arch specific page modification logging for the
* nested hypervisor
*/
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->write_log_dirty)
return kvm_x86_ops->write_log_dirty(vcpu);
return 0;
}
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn) struct kvm_memory_slot *slot, u64 gfn)
{ {

View File

@ -202,4 +202,5 @@ void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn); struct kvm_memory_slot *slot, u64 gfn);
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
#endif #endif

View File

@ -226,6 +226,10 @@ static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
if (level == walker->level && write_fault && if (level == walker->level && write_fault &&
!(pte & PT_GUEST_DIRTY_MASK)) { !(pte & PT_GUEST_DIRTY_MASK)) {
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
#if PTTYPE == PTTYPE_EPT
if (kvm_arch_write_log_dirty(vcpu))
return -EINVAL;
#endif
pte |= PT_GUEST_DIRTY_MASK; pte |= PT_GUEST_DIRTY_MASK;
} }
if (pte == orig_pte) if (pte == orig_pte)

View File

@ -248,6 +248,7 @@ struct __packed vmcs12 {
u64 xss_exit_bitmap; u64 xss_exit_bitmap;
u64 guest_physical_address; u64 guest_physical_address;
u64 vmcs_link_pointer; u64 vmcs_link_pointer;
u64 pml_address;
u64 guest_ia32_debugctl; u64 guest_ia32_debugctl;
u64 guest_ia32_pat; u64 guest_ia32_pat;
u64 guest_ia32_efer; u64 guest_ia32_efer;
@ -369,6 +370,7 @@ struct __packed vmcs12 {
u16 guest_ldtr_selector; u16 guest_ldtr_selector;
u16 guest_tr_selector; u16 guest_tr_selector;
u16 guest_intr_status; u16 guest_intr_status;
u16 guest_pml_index;
u16 host_es_selector; u16 host_es_selector;
u16 host_cs_selector; u16 host_cs_selector;
u16 host_ss_selector; u16 host_ss_selector;
@ -407,6 +409,7 @@ struct nested_vmx {
/* Has the level1 guest done vmxon? */ /* Has the level1 guest done vmxon? */
bool vmxon; bool vmxon;
gpa_t vmxon_ptr; gpa_t vmxon_ptr;
bool pml_full;
/* The guest-physical address of the current VMCS L1 keeps for L2 */ /* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr; gpa_t current_vmptr;
@ -742,6 +745,7 @@ static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
FIELD(GUEST_TR_SELECTOR, guest_tr_selector), FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
FIELD(GUEST_INTR_STATUS, guest_intr_status), FIELD(GUEST_INTR_STATUS, guest_intr_status),
FIELD(GUEST_PML_INDEX, guest_pml_index),
FIELD(HOST_ES_SELECTOR, host_es_selector), FIELD(HOST_ES_SELECTOR, host_es_selector),
FIELD(HOST_CS_SELECTOR, host_cs_selector), FIELD(HOST_CS_SELECTOR, host_cs_selector),
FIELD(HOST_SS_SELECTOR, host_ss_selector), FIELD(HOST_SS_SELECTOR, host_ss_selector),
@ -767,6 +771,7 @@ static const unsigned short vmcs_field_to_offset_table[] = {
FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
FIELD64(PML_ADDRESS, pml_address),
FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
FIELD64(GUEST_IA32_PAT, guest_ia32_pat), FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
FIELD64(GUEST_IA32_EFER, guest_ia32_efer), FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
@ -1314,6 +1319,11 @@ static inline bool report_flexpriority(void)
return flexpriority_enabled; return flexpriority_enabled;
} }
static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
{
return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
}
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{ {
return vmcs12->cpu_based_vm_exec_control & bit; return vmcs12->cpu_based_vm_exec_control & bit;
@ -1348,6 +1358,11 @@ static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
vmx_xsaves_supported(); vmx_xsaves_supported();
} }
static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
}
static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
{ {
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
@ -2751,8 +2766,11 @@ static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
VMX_EPT_1GB_PAGE_BIT; VMX_EPT_1GB_PAGE_BIT;
if (enable_ept_ad_bits) if (enable_ept_ad_bits) {
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_PML;
vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT; vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
}
} else } else
vmx->nested.nested_vmx_ept_caps = 0; vmx->nested.nested_vmx_ept_caps = 0;
@ -8114,7 +8132,7 @@ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
case EXIT_REASON_PREEMPTION_TIMER: case EXIT_REASON_PREEMPTION_TIMER:
return false; return false;
case EXIT_REASON_PML_FULL: case EXIT_REASON_PML_FULL:
/* We don't expose PML support to L1. */ /* We emulate PML support to L1. */
return false; return false;
default: default:
return true; return true;
@ -9364,13 +9382,20 @@ static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault) struct x86_exception *fault)
{ {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason; u32 exit_reason;
unsigned long exit_qualification = vcpu->arch.exit_qualification;
if (fault->error_code & PFERR_RSVD_MASK) if (vmx->nested.pml_full) {
exit_reason = EXIT_REASON_PML_FULL;
vmx->nested.pml_full = false;
exit_qualification &= INTR_INFO_UNBLOCK_NMI;
} else if (fault->error_code & PFERR_RSVD_MASK)
exit_reason = EXIT_REASON_EPT_MISCONFIG; exit_reason = EXIT_REASON_EPT_MISCONFIG;
else else
exit_reason = EXIT_REASON_EPT_VIOLATION; exit_reason = EXIT_REASON_EPT_VIOLATION;
nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
vmcs12->guest_physical_address = fault->address; vmcs12->guest_physical_address = fault->address;
} }
@ -9713,6 +9738,22 @@ static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
return 0; return 0;
} }
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u64 address = vmcs12->pml_address;
int maxphyaddr = cpuid_maxphyaddr(vcpu);
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
if (!nested_cpu_has_ept(vmcs12) ||
!IS_ALIGNED(address, 4096) ||
address >> maxphyaddr)
return -EINVAL;
}
return 0;
}
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e) struct vmx_msr_entry *e)
{ {
@ -9886,7 +9927,7 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
bool from_vmentry, u32 *entry_failure_code) bool from_vmentry, u32 *entry_failure_code)
{ {
struct vcpu_vmx *vmx = to_vmx(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control; u32 exec_control, vmcs12_exec_ctrl;
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
@ -10017,8 +10058,11 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT); SECONDARY_EXEC_APIC_REGISTER_VIRT);
if (nested_cpu_has(vmcs12, if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
exec_control |= vmcs12->secondary_vm_exec_control; vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
~SECONDARY_EXEC_ENABLE_PML;
exec_control |= vmcs12_exec_ctrl;
}
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
vmcs_write64(EOI_EXIT_BITMAP0, vmcs_write64(EOI_EXIT_BITMAP0,
@ -10248,6 +10292,9 @@ static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD; return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_pml_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.nested_vmx_procbased_ctls_low, vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high) || vmx->nested.nested_vmx_procbased_ctls_high) ||
@ -10266,6 +10313,9 @@ static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
vmx->nested.nested_vmx_entry_ctls_high)) vmx->nested.nested_vmx_entry_ctls_high))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD; return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
!nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
!nested_cr3_valid(vcpu, vmcs12->host_cr3)) !nested_cr3_valid(vcpu, vmcs12->host_cr3))
@ -11143,6 +11193,46 @@ static void vmx_flush_log_dirty(struct kvm *kvm)
kvm_flush_pml_buffers(kvm); kvm_flush_pml_buffers(kvm);
} }
static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t gpa;
struct page *page = NULL;
u64 *pml_address;
if (is_guest_mode(vcpu)) {
WARN_ON_ONCE(vmx->nested.pml_full);
/*
* Check if PML is enabled for the nested guest.
* Whether eptp bit 6 is set is already checked
* as part of A/D emulation.
*/
vmcs12 = get_vmcs12(vcpu);
if (!nested_cpu_has_pml(vmcs12))
return 0;
if (vmcs12->guest_pml_index > PML_ENTITY_NUM) {
vmx->nested.pml_full = true;
return 1;
}
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
page = nested_get_page(vcpu, vmcs12->pml_address);
if (!page)
return 0;
pml_address = kmap(page);
pml_address[vmcs12->guest_pml_index--] = gpa;
kunmap(page);
nested_release_page_clean(page);
}
return 0;
}
static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *memslot, struct kvm_memory_slot *memslot,
gfn_t offset, unsigned long mask) gfn_t offset, unsigned long mask)
@ -11502,6 +11592,7 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.slot_disable_log_dirty = vmx_slot_disable_log_dirty, .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
.flush_log_dirty = vmx_flush_log_dirty, .flush_log_dirty = vmx_flush_log_dirty,
.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
.write_log_dirty = vmx_write_pml_buffer,
.pre_block = vmx_pre_block, .pre_block = vmx_pre_block,
.post_block = vmx_post_block, .post_block = vmx_post_block,

View File

@ -148,7 +148,6 @@ struct vgic_its {
gpa_t vgic_its_base; gpa_t vgic_its_base;
bool enabled; bool enabled;
bool initialized;
struct vgic_io_device iodev; struct vgic_io_device iodev;
struct kvm_device *dev; struct kvm_device *dev;
@ -162,6 +161,9 @@ struct vgic_its {
u32 creadr; u32 creadr;
u32 cwriter; u32 cwriter;
/* migration ABI revision in use */
u32 abi_rev;
/* Protects the device and collection lists */ /* Protects the device and collection lists */
struct mutex its_lock; struct mutex its_lock;
struct list_head device_list; struct list_head device_list;
@ -283,6 +285,7 @@ extern struct static_key_false vgic_v2_cpuif_trap;
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write); int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
void kvm_vgic_early_init(struct kvm *kvm); void kvm_vgic_early_init(struct kvm *kvm);
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu);
int kvm_vgic_create(struct kvm *kvm, u32 type); int kvm_vgic_create(struct kvm *kvm, u32 type);
void kvm_vgic_destroy(struct kvm *kvm); void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu); void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu);

View File

@ -132,6 +132,9 @@
#define GIC_BASER_SHAREABILITY(reg, type) \ #define GIC_BASER_SHAREABILITY(reg, type) \
(GIC_BASER_##type << reg##_SHAREABILITY_SHIFT) (GIC_BASER_##type << reg##_SHAREABILITY_SHIFT)
/* encode a size field of width @w containing @n - 1 units */
#define GIC_ENCODE_SZ(n, w) (((unsigned long)(n) - 1) & GENMASK_ULL(((w) - 1), 0))
#define GICR_PROPBASER_SHAREABILITY_SHIFT (10) #define GICR_PROPBASER_SHAREABILITY_SHIFT (10)
#define GICR_PROPBASER_INNER_CACHEABILITY_SHIFT (7) #define GICR_PROPBASER_INNER_CACHEABILITY_SHIFT (7)
#define GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT (56) #define GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT (56)
@ -156,6 +159,8 @@
#define GICR_PROPBASER_RaWaWb GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWaWb) #define GICR_PROPBASER_RaWaWb GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWaWb)
#define GICR_PROPBASER_IDBITS_MASK (0x1f) #define GICR_PROPBASER_IDBITS_MASK (0x1f)
#define GICR_PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(51, 12))
#define GICR_PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(51, 16))
#define GICR_PENDBASER_SHAREABILITY_SHIFT (10) #define GICR_PENDBASER_SHAREABILITY_SHIFT (10)
#define GICR_PENDBASER_INNER_CACHEABILITY_SHIFT (7) #define GICR_PENDBASER_INNER_CACHEABILITY_SHIFT (7)
@ -232,12 +237,18 @@
#define GITS_CTLR_QUIESCENT (1U << 31) #define GITS_CTLR_QUIESCENT (1U << 31)
#define GITS_TYPER_PLPIS (1UL << 0) #define GITS_TYPER_PLPIS (1UL << 0)
#define GITS_TYPER_ITT_ENTRY_SIZE_SHIFT 4
#define GITS_TYPER_IDBITS_SHIFT 8 #define GITS_TYPER_IDBITS_SHIFT 8
#define GITS_TYPER_DEVBITS_SHIFT 13 #define GITS_TYPER_DEVBITS_SHIFT 13
#define GITS_TYPER_DEVBITS(r) ((((r) >> GITS_TYPER_DEVBITS_SHIFT) & 0x1f) + 1) #define GITS_TYPER_DEVBITS(r) ((((r) >> GITS_TYPER_DEVBITS_SHIFT) & 0x1f) + 1)
#define GITS_TYPER_PTA (1UL << 19) #define GITS_TYPER_PTA (1UL << 19)
#define GITS_TYPER_HWCOLLCNT_SHIFT 24 #define GITS_TYPER_HWCOLLCNT_SHIFT 24
#define GITS_IIDR_REV_SHIFT 12
#define GITS_IIDR_REV_MASK (0xf << GITS_IIDR_REV_SHIFT)
#define GITS_IIDR_REV(r) (((r) >> GITS_IIDR_REV_SHIFT) & 0xf)
#define GITS_IIDR_PRODUCTID_SHIFT 24
#define GITS_CBASER_VALID (1ULL << 63) #define GITS_CBASER_VALID (1ULL << 63)
#define GITS_CBASER_SHAREABILITY_SHIFT (10) #define GITS_CBASER_SHAREABILITY_SHIFT (10)
#define GITS_CBASER_INNER_CACHEABILITY_SHIFT (59) #define GITS_CBASER_INNER_CACHEABILITY_SHIFT (59)
@ -290,6 +301,7 @@
#define GITS_BASER_TYPE(r) (((r) >> GITS_BASER_TYPE_SHIFT) & 7) #define GITS_BASER_TYPE(r) (((r) >> GITS_BASER_TYPE_SHIFT) & 7)
#define GITS_BASER_ENTRY_SIZE_SHIFT (48) #define GITS_BASER_ENTRY_SIZE_SHIFT (48)
#define GITS_BASER_ENTRY_SIZE(r) ((((r) >> GITS_BASER_ENTRY_SIZE_SHIFT) & 0x1f) + 1) #define GITS_BASER_ENTRY_SIZE(r) ((((r) >> GITS_BASER_ENTRY_SIZE_SHIFT) & 0x1f) + 1)
#define GITS_BASER_ENTRY_SIZE_MASK GENMASK_ULL(52, 48)
#define GITS_BASER_SHAREABILITY_SHIFT (10) #define GITS_BASER_SHAREABILITY_SHIFT (10)
#define GITS_BASER_InnerShareable \ #define GITS_BASER_InnerShareable \
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)
@ -337,9 +349,11 @@
#define E_ITS_INT_UNMAPPED_INTERRUPT 0x010307 #define E_ITS_INT_UNMAPPED_INTERRUPT 0x010307
#define E_ITS_CLEAR_UNMAPPED_INTERRUPT 0x010507 #define E_ITS_CLEAR_UNMAPPED_INTERRUPT 0x010507
#define E_ITS_MAPD_DEVICE_OOR 0x010801 #define E_ITS_MAPD_DEVICE_OOR 0x010801
#define E_ITS_MAPD_ITTSIZE_OOR 0x010802
#define E_ITS_MAPC_PROCNUM_OOR 0x010902 #define E_ITS_MAPC_PROCNUM_OOR 0x010902
#define E_ITS_MAPC_COLLECTION_OOR 0x010903 #define E_ITS_MAPC_COLLECTION_OOR 0x010903
#define E_ITS_MAPTI_UNMAPPED_DEVICE 0x010a04 #define E_ITS_MAPTI_UNMAPPED_DEVICE 0x010a04
#define E_ITS_MAPTI_ID_OOR 0x010a05
#define E_ITS_MAPTI_PHYSICALID_OOR 0x010a06 #define E_ITS_MAPTI_PHYSICALID_OOR 0x010a06
#define E_ITS_INV_UNMAPPED_INTERRUPT 0x010c07 #define E_ITS_INV_UNMAPPED_INTERRUPT 0x010c07
#define E_ITS_INVALL_UNMAPPED_COLLECTION 0x010d09 #define E_ITS_INVALL_UNMAPPED_COLLECTION 0x010d09

View File

@ -499,6 +499,17 @@ static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
return NULL; return NULL;
} }
static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu *tmp;
int idx;
kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
if (tmp == vcpu)
return idx;
BUG();
}
#define kvm_for_each_memslot(memslot, slots) \ #define kvm_for_each_memslot(memslot, slots) \
for (memslot = &slots->memslots[0]; \ for (memslot = &slots->memslots[0]; \
memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
@ -1167,7 +1178,6 @@ int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
void kvm_unregister_device_ops(u32 type); void kvm_unregister_device_ops(u32 type);
extern struct kvm_device_ops kvm_mpic_ops; extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_xics_ops;
extern struct kvm_device_ops kvm_arm_vgic_v2_ops; extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
extern struct kvm_device_ops kvm_arm_vgic_v3_ops; extern struct kvm_device_ops kvm_arm_vgic_v3_ops;

View File

@ -332,7 +332,7 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
kvm_arm_reset_debug_ptr(vcpu); kvm_arm_reset_debug_ptr(vcpu);
return 0; return kvm_vgic_vcpu_init(vcpu);
} }
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)

View File

@ -7,26 +7,250 @@
#define TRACE_SYSTEM kvm #define TRACE_SYSTEM kvm
/* /*
* Tracepoints for vgic * Tracepoints for entry/exit to guest
*/ */
TRACE_EVENT(vgic_update_irq_pending, TRACE_EVENT(kvm_entry,
TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level), TP_PROTO(unsigned long vcpu_pc),
TP_ARGS(vcpu_id, irq, level), TP_ARGS(vcpu_pc),
TP_STRUCT__entry( TP_STRUCT__entry(
__field( unsigned long, vcpu_id ) __field( unsigned long, vcpu_pc )
__field( __u32, irq )
__field( bool, level )
), ),
TP_fast_assign( TP_fast_assign(
__entry->vcpu_id = vcpu_id; __entry->vcpu_pc = vcpu_pc;
__entry->irq = irq; ),
TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
);
TRACE_EVENT(kvm_exit,
TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc),
TP_ARGS(idx, exit_reason, vcpu_pc),
TP_STRUCT__entry(
__field( int, idx )
__field( unsigned int, exit_reason )
__field( unsigned long, vcpu_pc )
),
TP_fast_assign(
__entry->idx = idx;
__entry->exit_reason = exit_reason;
__entry->vcpu_pc = vcpu_pc;
),
TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx",
__print_symbolic(__entry->idx, kvm_arm_exception_type),
__entry->exit_reason,
__print_symbolic(__entry->exit_reason, kvm_arm_exception_class),
__entry->vcpu_pc)
);
TRACE_EVENT(kvm_guest_fault,
TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
unsigned long hxfar,
unsigned long long ipa),
TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, hsr )
__field( unsigned long, hxfar )
__field( unsigned long long, ipa )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->hsr = hsr;
__entry->hxfar = hxfar;
__entry->ipa = ipa;
),
TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
__entry->ipa, __entry->hsr,
__entry->hxfar, __entry->vcpu_pc)
);
TRACE_EVENT(kvm_access_fault,
TP_PROTO(unsigned long ipa),
TP_ARGS(ipa),
TP_STRUCT__entry(
__field( unsigned long, ipa )
),
TP_fast_assign(
__entry->ipa = ipa;
),
TP_printk("IPA: %lx", __entry->ipa)
);
TRACE_EVENT(kvm_irq_line,
TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
TP_ARGS(type, vcpu_idx, irq_num, level),
TP_STRUCT__entry(
__field( unsigned int, type )
__field( int, vcpu_idx )
__field( int, irq_num )
__field( int, level )
),
TP_fast_assign(
__entry->type = type;
__entry->vcpu_idx = vcpu_idx;
__entry->irq_num = irq_num;
__entry->level = level; __entry->level = level;
), ),
TP_printk("VCPU: %ld, IRQ %d, level: %d", TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
__entry->vcpu_id, __entry->irq, __entry->level) (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
(__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
(__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
__entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
);
TRACE_EVENT(kvm_mmio_emulate,
TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
unsigned long cpsr),
TP_ARGS(vcpu_pc, instr, cpsr),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, instr )
__field( unsigned long, cpsr )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->instr = instr;
__entry->cpsr = cpsr;
),
TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
__entry->vcpu_pc, __entry->instr, __entry->cpsr)
);
TRACE_EVENT(kvm_unmap_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_unmap_hva_range,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_set_spte_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_age_hva,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_test_age_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_set_way_flush,
TP_PROTO(unsigned long vcpu_pc, bool cache),
TP_ARGS(vcpu_pc, cache),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, cache )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->cache = cache;
),
TP_printk("S/W flush at 0x%016lx (cache %s)",
__entry->vcpu_pc, __entry->cache ? "on" : "off")
);
TRACE_EVENT(kvm_toggle_cache,
TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
TP_ARGS(vcpu_pc, was, now),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, was )
__field( bool, now )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->was = was;
__entry->now = now;
),
TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
__entry->vcpu_pc, __entry->was ? "on" : "off",
__entry->now ? "on" : "off")
); );
/* /*

37
virt/kvm/arm/vgic/trace.h Normal file
View File

@ -0,0 +1,37 @@
#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_VGIC_H
#include <linux/tracepoint.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
TRACE_EVENT(vgic_update_irq_pending,
TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level),
TP_ARGS(vcpu_id, irq, level),
TP_STRUCT__entry(
__field( unsigned long, vcpu_id )
__field( __u32, irq )
__field( bool, level )
),
TP_fast_assign(
__entry->vcpu_id = vcpu_id;
__entry->irq = irq;
__entry->level = level;
),
TP_printk("VCPU: %ld, IRQ %d, level: %d",
__entry->vcpu_id, __entry->irq, __entry->level)
);
#endif /* _TRACE_VGIC_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH ../../../virt/kvm/arm/vgic
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -227,10 +227,27 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
} }
/** /**
* kvm_vgic_vcpu_init() - Enable the VCPU interface * kvm_vgic_vcpu_init() - Register VCPU-specific KVM iodevs
* @vcpu: the VCPU which's VGIC should be enabled * @vcpu: pointer to the VCPU being created and initialized
*/ */
static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
int ret = 0;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return 0;
/*
* If we are creating a VCPU with a GICv3 we must also register the
* KVM io device for the redistributor that belongs to this VCPU.
*/
if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
ret = vgic_register_redist_iodev(vcpu);
return ret;
}
static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
{ {
if (kvm_vgic_global_state.type == VGIC_V2) if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_enable(vcpu); vgic_v2_enable(vcpu);
@ -269,7 +286,7 @@ int vgic_init(struct kvm *kvm)
dist->msis_require_devid = true; dist->msis_require_devid = true;
kvm_for_each_vcpu(i, vcpu, kvm) kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vgic_vcpu_init(vcpu); kvm_vgic_vcpu_enable(vcpu);
ret = kvm_vgic_setup_default_irq_routing(kvm); ret = kvm_vgic_setup_default_irq_routing(kvm);
if (ret) if (ret)

File diff suppressed because it is too large Load Diff

View File

@ -37,6 +37,14 @@ int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
return 0; return 0;
} }
static int vgic_check_type(struct kvm *kvm, int type_needed)
{
if (kvm->arch.vgic.vgic_model != type_needed)
return -ENODEV;
else
return 0;
}
/** /**
* kvm_vgic_addr - set or get vgic VM base addresses * kvm_vgic_addr - set or get vgic VM base addresses
* @kvm: pointer to the vm struct * @kvm: pointer to the vm struct
@ -57,40 +65,41 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{ {
int r = 0; int r = 0;
struct vgic_dist *vgic = &kvm->arch.vgic; struct vgic_dist *vgic = &kvm->arch.vgic;
int type_needed;
phys_addr_t *addr_ptr, alignment; phys_addr_t *addr_ptr, alignment;
mutex_lock(&kvm->lock); mutex_lock(&kvm->lock);
switch (type) { switch (type) {
case KVM_VGIC_V2_ADDR_TYPE_DIST: case KVM_VGIC_V2_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
addr_ptr = &vgic->vgic_dist_base; addr_ptr = &vgic->vgic_dist_base;
alignment = SZ_4K; alignment = SZ_4K;
break; break;
case KVM_VGIC_V2_ADDR_TYPE_CPU: case KVM_VGIC_V2_ADDR_TYPE_CPU:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
addr_ptr = &vgic->vgic_cpu_base; addr_ptr = &vgic->vgic_cpu_base;
alignment = SZ_4K; alignment = SZ_4K;
break; break;
case KVM_VGIC_V3_ADDR_TYPE_DIST: case KVM_VGIC_V3_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
addr_ptr = &vgic->vgic_dist_base; addr_ptr = &vgic->vgic_dist_base;
alignment = SZ_64K; alignment = SZ_64K;
break; break;
case KVM_VGIC_V3_ADDR_TYPE_REDIST: case KVM_VGIC_V3_ADDR_TYPE_REDIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
if (r)
break;
if (write) {
r = vgic_v3_set_redist_base(kvm, *addr);
goto out;
}
addr_ptr = &vgic->vgic_redist_base; addr_ptr = &vgic->vgic_redist_base;
alignment = SZ_64K;
break; break;
default: default:
r = -ENODEV; r = -ENODEV;
goto out;
} }
if (vgic->vgic_model != type_needed) { if (r)
r = -ENODEV;
goto out; goto out;
}
if (write) { if (write) {
r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment); r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment);
@ -259,13 +268,13 @@ static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
} }
} }
static void unlock_all_vcpus(struct kvm *kvm) void unlock_all_vcpus(struct kvm *kvm)
{ {
unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
} }
/* Returns true if all vcpus were locked, false otherwise */ /* Returns true if all vcpus were locked, false otherwise */
static bool lock_all_vcpus(struct kvm *kvm) bool lock_all_vcpus(struct kvm *kvm)
{ {
struct kvm_vcpu *tmp_vcpu; struct kvm_vcpu *tmp_vcpu;
int c; int c;
@ -580,6 +589,24 @@ static int vgic_v3_set_attr(struct kvm_device *dev,
reg = tmp32; reg = tmp32;
return vgic_v3_attr_regs_access(dev, attr, &reg, true); return vgic_v3_attr_regs_access(dev, attr, &reg, true);
} }
case KVM_DEV_ARM_VGIC_GRP_CTRL: {
int ret;
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
mutex_lock(&dev->kvm->lock);
if (!lock_all_vcpus(dev->kvm)) {
mutex_unlock(&dev->kvm->lock);
return -EBUSY;
}
ret = vgic_v3_save_pending_tables(dev->kvm);
unlock_all_vcpus(dev->kvm);
mutex_unlock(&dev->kvm->lock);
return ret;
}
break;
}
} }
return -ENXIO; return -ENXIO;
} }
@ -658,6 +685,8 @@ static int vgic_v3_has_attr(struct kvm_device *dev,
switch (attr->attr) { switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT: case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0; return 0;
case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
return 0;
} }
} }
return -ENXIO; return -ENXIO;

View File

@ -556,16 +556,38 @@ unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
return SZ_64K; return SZ_64K;
} }
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) /**
* vgic_register_redist_iodev - register a single redist iodev
* @vcpu: The VCPU to which the redistributor belongs
*
* Register a KVM iodev for this VCPU's redistributor using the address
* provided.
*
* Return 0 on success, -ERRNO otherwise.
*/
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
{ {
struct kvm_vcpu *vcpu; struct kvm *kvm = vcpu->kvm;
int c, ret = 0; struct vgic_dist *vgic = &kvm->arch.vgic;
kvm_for_each_vcpu(c, vcpu, kvm) {
gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
gpa_t sgi_base = rd_base + SZ_64K;
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev; struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
gpa_t rd_base, sgi_base;
int ret;
/*
* We may be creating VCPUs before having set the base address for the
* redistributor region, in which case we will come back to this
* function for all VCPUs when the base address is set. Just return
* without doing any work for now.
*/
if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
return 0;
if (!vgic_v3_check_base(kvm))
return -EINVAL;
rd_base = vgic->vgic_redist_base + kvm_vcpu_get_idx(vcpu) * SZ_64K * 2;
sgi_base = rd_base + SZ_64K;
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
rd_dev->base_addr = rd_base; rd_dev->base_addr = rd_base;
@ -580,7 +602,7 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
mutex_unlock(&kvm->slots_lock); mutex_unlock(&kvm->slots_lock);
if (ret) if (ret)
break; return ret;
kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops); kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
sgi_dev->base_addr = sgi_base; sgi_dev->base_addr = sgi_base;
@ -593,30 +615,71 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base, ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
SZ_64K, &sgi_dev->dev); SZ_64K, &sgi_dev->dev);
mutex_unlock(&kvm->slots_lock); mutex_unlock(&kvm->slots_lock);
if (ret) { if (ret)
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&rd_dev->dev); &rd_dev->dev);
return ret;
}
static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
{
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
}
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c, ret = 0;
kvm_for_each_vcpu(c, vcpu, kvm) {
ret = vgic_register_redist_iodev(vcpu);
if (ret)
break; break;
} }
}
if (ret) { if (ret) {
/* The current c failed, so we start with the previous one. */ /* The current c failed, so we start with the previous one. */
for (c--; c >= 0; c--) { for (c--; c >= 0; c--) {
struct vgic_cpu *vgic_cpu;
vcpu = kvm_get_vcpu(kvm, c); vcpu = kvm_get_vcpu(kvm, c);
vgic_cpu = &vcpu->arch.vgic_cpu; vgic_unregister_redist_iodev(vcpu);
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&vgic_cpu->rd_iodev.dev);
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&vgic_cpu->sgi_iodev.dev);
} }
} }
return ret; return ret;
} }
int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
{
struct vgic_dist *vgic = &kvm->arch.vgic;
int ret;
/* vgic_check_ioaddr makes sure we don't do this twice */
ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
if (ret)
return ret;
vgic->vgic_redist_base = addr;
if (!vgic_v3_check_base(kvm)) {
vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
return -EINVAL;
}
/*
* Register iodevs for each existing VCPU. Adding more VCPUs
* afterwards will register the iodevs when needed.
*/
ret = vgic_register_all_redist_iodevs(kvm);
if (ret)
return ret;
return 0;
}
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{ {
const struct vgic_register_region *region; const struct vgic_register_region *region;

View File

@ -446,13 +446,12 @@ static int match_region(const void *key, const void *elt)
return 0; return 0;
} }
/* Find the proper register handler entry given a certain address offset. */ const struct vgic_register_region *
static const struct vgic_register_region * vgic_find_mmio_region(const struct vgic_register_region *regions,
vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions, int nr_regions, unsigned int offset)
unsigned int offset)
{ {
return bsearch((void *)(uintptr_t)offset, region, nr_regions, return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
sizeof(region[0]), match_region); sizeof(regions[0]), match_region);
} }
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)

View File

@ -36,8 +36,13 @@ struct vgic_register_region {
}; };
unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr, unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len); unsigned int len);
union {
void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr, void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val); unsigned int len, unsigned long val);
int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val);
};
}; };
extern struct kvm_io_device_ops kvm_io_gic_ops; extern struct kvm_io_device_ops kvm_io_gic_ops;
@ -192,4 +197,9 @@ u64 vgic_sanitise_shareability(u64 reg);
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64)); u64 (*sanitise_fn)(u64));
/* Find the proper register handler entry given a certain address offset */
const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region *regions,
int nr_regions, unsigned int offset);
#endif #endif

View File

@ -234,19 +234,125 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu)
vgic_v3->vgic_hcr = ICH_HCR_EN; vgic_v3->vgic_hcr = ICH_HCR_EN;
} }
/* check for overlapping regions and for regions crossing the end of memory */ int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
static bool vgic_v3_check_base(struct kvm *kvm) {
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
spin_lock(&irq->irq_lock);
if (irq->target_vcpu != vcpu) {
spin_unlock(&irq->irq_lock);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq);
if (status) {
/* clear consumed data */
val &= ~(1 << bit_nr);
ret = kvm_write_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_its_save_pending_tables - Save the pending tables into guest RAM
* kvm lock and all vcpu lock must be held
*/
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int last_byte_offset = -1;
struct vgic_irq *irq;
int ret;
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool stored;
u8 val;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (byte_offset != last_byte_offset) {
ret = kvm_read_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
last_byte_offset = byte_offset;
}
stored = val & (1U << bit_nr);
if (stored == irq->pending_latch)
continue;
if (irq->pending_latch)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = kvm_write_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/*
* Check for overlapping regions and for regions crossing the end of memory
* for base addresses which have already been set.
*/
bool vgic_v3_check_base(struct kvm *kvm)
{ {
struct vgic_dist *d = &kvm->arch.vgic; struct vgic_dist *d = &kvm->arch.vgic;
gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE; gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE;
redist_size *= atomic_read(&kvm->online_vcpus); redist_size *= atomic_read(&kvm->online_vcpus);
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false; return false;
if (d->vgic_redist_base + redist_size < d->vgic_redist_base)
if (!IS_VGIC_ADDR_UNDEF(d->vgic_redist_base) &&
d->vgic_redist_base + redist_size < d->vgic_redist_base)
return false; return false;
/* Both base addresses must be set to check if they overlap */
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(d->vgic_redist_base))
return true;
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base) if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base)
return true; return true;
if (d->vgic_redist_base + redist_size <= d->vgic_dist_base) if (d->vgic_redist_base + redist_size <= d->vgic_dist_base)
@ -291,20 +397,6 @@ int vgic_v3_map_resources(struct kvm *kvm)
goto out; goto out;
} }
ret = vgic_register_redist_iodevs(kvm, dist->vgic_redist_base);
if (ret) {
kvm_err("Unable to register VGICv3 redist MMIO regions\n");
goto out;
}
if (vgic_has_its(kvm)) {
ret = vgic_register_its_iodevs(kvm);
if (ret) {
kvm_err("Unable to register VGIC ITS MMIO regions\n");
goto out;
}
}
dist->ready = true; dist->ready = true;
out: out:

View File

@ -21,7 +21,7 @@
#include "vgic.h" #include "vgic.h"
#define CREATE_TRACE_POINTS #define CREATE_TRACE_POINTS
#include "../trace.h" #include "trace.h"
#ifdef CONFIG_DEBUG_SPINLOCK #ifdef CONFIG_DEBUG_SPINLOCK
#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p) #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)

View File

@ -73,6 +73,29 @@
KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \ KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \
KVM_REG_ARM_VGIC_SYSREG_OP2_MASK) KVM_REG_ARM_VGIC_SYSREG_OP2_MASK)
/*
* As per Documentation/virtual/kvm/devices/arm-vgic-its.txt,
* below macros are defined for ITS table entry encoding.
*/
#define KVM_ITS_CTE_VALID_SHIFT 63
#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63)
#define KVM_ITS_CTE_RDBASE_SHIFT 16
#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0)
#define KVM_ITS_ITE_NEXT_SHIFT 48
#define KVM_ITS_ITE_PINTID_SHIFT 16
#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16)
#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0)
#define KVM_ITS_DTE_VALID_SHIFT 63
#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63)
#define KVM_ITS_DTE_NEXT_SHIFT 49
#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49)
#define KVM_ITS_DTE_ITTADDR_SHIFT 5
#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5)
#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0)
#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63)
/* we only support 64 kB translation table page size */
#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16)
static inline bool irq_is_pending(struct vgic_irq *irq) static inline bool irq_is_pending(struct vgic_irq *irq)
{ {
if (irq->config == VGIC_CONFIG_EDGE) if (irq->config == VGIC_CONFIG_EDGE)
@ -157,12 +180,15 @@ void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void vgic_v3_enable(struct kvm_vcpu *vcpu); void vgic_v3_enable(struct kvm_vcpu *vcpu);
int vgic_v3_probe(const struct gic_kvm_info *info); int vgic_v3_probe(const struct gic_kvm_info *info);
int vgic_v3_map_resources(struct kvm *kvm); int vgic_v3_map_resources(struct kvm *kvm);
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address); int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq);
int vgic_v3_save_pending_tables(struct kvm *kvm);
int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr);
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu);
bool vgic_v3_check_base(struct kvm *kvm);
void vgic_v3_load(struct kvm_vcpu *vcpu); void vgic_v3_load(struct kvm_vcpu *vcpu);
void vgic_v3_put(struct kvm_vcpu *vcpu); void vgic_v3_put(struct kvm_vcpu *vcpu);
int vgic_register_its_iodevs(struct kvm *kvm);
bool vgic_has_its(struct kvm *kvm); bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void); int kvm_vgic_register_its_device(void);
void vgic_enable_lpis(struct kvm_vcpu *vcpu); void vgic_enable_lpis(struct kvm_vcpu *vcpu);
@ -187,4 +213,7 @@ int vgic_init(struct kvm *kvm);
int vgic_debug_init(struct kvm *kvm); int vgic_debug_init(struct kvm *kvm);
int vgic_debug_destroy(struct kvm *kvm); int vgic_debug_destroy(struct kvm *kvm);
bool lock_all_vcpus(struct kvm *kvm);
void unlock_all_vcpus(struct kvm *kvm);
#endif #endif

View File

@ -2836,10 +2836,6 @@ static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
#endif #endif
#ifdef CONFIG_KVM_XICS
[KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
#endif
}; };
int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
@ -3715,7 +3711,7 @@ static const struct file_operations vm_stat_get_per_vm_fops = {
.release = kvm_debugfs_release, .release = kvm_debugfs_release,
.read = simple_attr_read, .read = simple_attr_read,
.write = simple_attr_write, .write = simple_attr_write,
.llseek = generic_file_llseek, .llseek = no_llseek,
}; };
static int vcpu_stat_get_per_vm(void *data, u64 *val) static int vcpu_stat_get_per_vm(void *data, u64 *val)
@ -3760,7 +3756,7 @@ static const struct file_operations vcpu_stat_get_per_vm_fops = {
.release = kvm_debugfs_release, .release = kvm_debugfs_release,
.read = simple_attr_read, .read = simple_attr_read,
.write = simple_attr_write, .write = simple_attr_write,
.llseek = generic_file_llseek, .llseek = no_llseek,
}; };
static const struct file_operations *stat_fops_per_vm[] = { static const struct file_operations *stat_fops_per_vm[] = {