i40e/i40evf: Allow up to 12K bytes of data per Tx descriptor instead of 8K
From what I can tell the practical limitation on the size of the Tx data buffer is the fact that the Tx descriptor is limited to 14 bits. As such we cannot use 16K as is typically used on the other Intel drivers. However artificially limiting ourselves to 8K can be expensive as this means that we will consume up to 10 descriptors (1 context, 1 for header, and 9 for payload, non-8K aligned) in a single send. I propose that we can reduce this by increasing the maximum data for a 4K aligned block to 12K. We can reduce the descriptors used for a 32K aligned block by 1 by increasing the size like this. In addition we still have the 4K - 1 of space that is still unused. We can use this as a bit of extra padding when dealing with data that is not aligned to 4K. By aligning the descriptors after the first to 4K we can improve the efficiency of PCIe accesses as we can avoid using byte enables and can fetch full TLP transactions after the first fetch of the buffer. This helps to improve PCIe efficiency. Below is the results of testing before and after with this patch: Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote bytes bytes bytes secs. 10^6bits/s % S % U us/KB us/KB Before: 87380 16384 16384 10.00 33682.24 20.27 -1.00 0.592 -1.00 After: 87380 16384 16384 10.00 34204.08 20.54 -1.00 0.590 -1.00 So the net result of this patch is that we have a small gain in throughput due to a reduction in overhead for putting together the frame. Signed-off-by: Alexander Duyck <aduyck@mirantis.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This commit is contained in:
parent
08ca38742b
commit
5c4654daf2
|
@ -1371,7 +1371,7 @@ static netdev_tx_t i40e_fcoe_xmit_frame(struct sk_buff *skb,
|
|||
if (i40e_chk_linearize(skb, count)) {
|
||||
if (__skb_linearize(skb))
|
||||
goto out_drop;
|
||||
count = TXD_USE_COUNT(skb->len);
|
||||
count = i40e_txd_use_count(skb->len);
|
||||
tx_ring->tx_stats.tx_linearize++;
|
||||
}
|
||||
|
||||
|
|
|
@ -2717,6 +2717,8 @@ static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
tx_bi = first;
|
||||
|
||||
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
||||
unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
|
||||
if (dma_mapping_error(tx_ring->dev, dma))
|
||||
goto dma_error;
|
||||
|
||||
|
@ -2724,12 +2726,14 @@ static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
dma_unmap_len_set(tx_bi, len, size);
|
||||
dma_unmap_addr_set(tx_bi, dma, dma);
|
||||
|
||||
/* align size to end of page */
|
||||
max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
|
||||
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||||
|
||||
while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
|
||||
tx_desc->cmd_type_offset_bsz =
|
||||
build_ctob(td_cmd, td_offset,
|
||||
I40E_MAX_DATA_PER_TXD, td_tag);
|
||||
max_data, td_tag);
|
||||
|
||||
tx_desc++;
|
||||
i++;
|
||||
|
@ -2740,9 +2744,10 @@ static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
i = 0;
|
||||
}
|
||||
|
||||
dma += I40E_MAX_DATA_PER_TXD;
|
||||
size -= I40E_MAX_DATA_PER_TXD;
|
||||
dma += max_data;
|
||||
size -= max_data;
|
||||
|
||||
max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||||
}
|
||||
|
||||
|
@ -2892,7 +2897,7 @@ static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
|
|||
if (i40e_chk_linearize(skb, count)) {
|
||||
if (__skb_linearize(skb))
|
||||
goto out_drop;
|
||||
count = TXD_USE_COUNT(skb->len);
|
||||
count = i40e_txd_use_count(skb->len);
|
||||
tx_ring->tx_stats.tx_linearize++;
|
||||
}
|
||||
|
||||
|
|
|
@ -146,10 +146,39 @@ enum i40e_dyn_idx_t {
|
|||
|
||||
#define I40E_MAX_BUFFER_TXD 8
|
||||
#define I40E_MIN_TX_LEN 17
|
||||
#define I40E_MAX_DATA_PER_TXD 8192
|
||||
|
||||
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
|
||||
* In order to align with the read requests we will align the value to
|
||||
* the nearest 4K which represents our maximum read request size.
|
||||
*/
|
||||
#define I40E_MAX_READ_REQ_SIZE 4096
|
||||
#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
|
||||
#define I40E_MAX_DATA_PER_TXD_ALIGNED \
|
||||
(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
|
||||
|
||||
/* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is
|
||||
* the value I40E_MAX_DATA_PER_TXD_ALIGNED. It is needed due to the fact
|
||||
* that 12K is not a power of 2 and division is expensive. It is used to
|
||||
* approximate the number of descriptors used per linear buffer. Note
|
||||
* that this will overestimate in some cases as it doesn't account for the
|
||||
* fact that we will add up to 4K - 1 in aligning the 12K buffer, however
|
||||
* the error should not impact things much as large buffers usually mean
|
||||
* we will use fewer descriptors then there are frags in an skb.
|
||||
*/
|
||||
static inline unsigned int i40e_txd_use_count(unsigned int size)
|
||||
{
|
||||
const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max;
|
||||
unsigned int adjust = ~(u32)0;
|
||||
|
||||
/* if we rounded up on the reciprocal pull down the adjustment */
|
||||
if ((max * reciprocal) > adjust)
|
||||
adjust = ~(u32)(reciprocal - 1);
|
||||
|
||||
return (u32)((((u64)size * reciprocal) + adjust) >> 32);
|
||||
}
|
||||
|
||||
/* Tx Descriptors needed, worst case */
|
||||
#define TXD_USE_COUNT(S) DIV_ROUND_UP((S), I40E_MAX_DATA_PER_TXD)
|
||||
#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
|
||||
#define I40E_MIN_DESC_PENDING 4
|
||||
|
||||
|
@ -377,7 +406,7 @@ static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
|
|||
int count = 0, size = skb_headlen(skb);
|
||||
|
||||
for (;;) {
|
||||
count += TXD_USE_COUNT(size);
|
||||
count += i40e_txd_use_count(size);
|
||||
|
||||
if (!nr_frags--)
|
||||
break;
|
||||
|
|
|
@ -1936,6 +1936,8 @@ static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
tx_bi = first;
|
||||
|
||||
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
||||
unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
|
||||
if (dma_mapping_error(tx_ring->dev, dma))
|
||||
goto dma_error;
|
||||
|
||||
|
@ -1943,12 +1945,14 @@ static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
dma_unmap_len_set(tx_bi, len, size);
|
||||
dma_unmap_addr_set(tx_bi, dma, dma);
|
||||
|
||||
/* align size to end of page */
|
||||
max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
|
||||
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||||
|
||||
while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
|
||||
tx_desc->cmd_type_offset_bsz =
|
||||
build_ctob(td_cmd, td_offset,
|
||||
I40E_MAX_DATA_PER_TXD, td_tag);
|
||||
max_data, td_tag);
|
||||
|
||||
tx_desc++;
|
||||
i++;
|
||||
|
@ -1959,9 +1963,10 @@ static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|||
i = 0;
|
||||
}
|
||||
|
||||
dma += I40E_MAX_DATA_PER_TXD;
|
||||
size -= I40E_MAX_DATA_PER_TXD;
|
||||
dma += max_data;
|
||||
size -= max_data;
|
||||
|
||||
max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||||
}
|
||||
|
||||
|
@ -2110,7 +2115,7 @@ static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
|
|||
if (i40e_chk_linearize(skb, count)) {
|
||||
if (__skb_linearize(skb))
|
||||
goto out_drop;
|
||||
count = TXD_USE_COUNT(skb->len);
|
||||
count = i40e_txd_use_count(skb->len);
|
||||
tx_ring->tx_stats.tx_linearize++;
|
||||
}
|
||||
|
||||
|
|
|
@ -146,10 +146,39 @@ enum i40e_dyn_idx_t {
|
|||
|
||||
#define I40E_MAX_BUFFER_TXD 8
|
||||
#define I40E_MIN_TX_LEN 17
|
||||
#define I40E_MAX_DATA_PER_TXD 8192
|
||||
|
||||
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
|
||||
* In order to align with the read requests we will align the value to
|
||||
* the nearest 4K which represents our maximum read request size.
|
||||
*/
|
||||
#define I40E_MAX_READ_REQ_SIZE 4096
|
||||
#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
|
||||
#define I40E_MAX_DATA_PER_TXD_ALIGNED \
|
||||
(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
|
||||
|
||||
/* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is
|
||||
* the value I40E_MAX_DATA_PER_TXD_ALIGNED. It is needed due to the fact
|
||||
* that 12K is not a power of 2 and division is expensive. It is used to
|
||||
* approximate the number of descriptors used per linear buffer. Note
|
||||
* that this will overestimate in some cases as it doesn't account for the
|
||||
* fact that we will add up to 4K - 1 in aligning the 12K buffer, however
|
||||
* the error should not impact things much as large buffers usually mean
|
||||
* we will use fewer descriptors then there are frags in an skb.
|
||||
*/
|
||||
static inline unsigned int i40e_txd_use_count(unsigned int size)
|
||||
{
|
||||
const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
||||
const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max;
|
||||
unsigned int adjust = ~(u32)0;
|
||||
|
||||
/* if we rounded up on the reciprocal pull down the adjustment */
|
||||
if ((max * reciprocal) > adjust)
|
||||
adjust = ~(u32)(reciprocal - 1);
|
||||
|
||||
return (u32)((((u64)size * reciprocal) + adjust) >> 32);
|
||||
}
|
||||
|
||||
/* Tx Descriptors needed, worst case */
|
||||
#define TXD_USE_COUNT(S) DIV_ROUND_UP((S), I40E_MAX_DATA_PER_TXD)
|
||||
#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
|
||||
#define I40E_MIN_DESC_PENDING 4
|
||||
|
||||
|
@ -359,7 +388,7 @@ static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
|
|||
int count = 0, size = skb_headlen(skb);
|
||||
|
||||
for (;;) {
|
||||
count += TXD_USE_COUNT(size);
|
||||
count += i40e_txd_use_count(size);
|
||||
|
||||
if (!nr_frags--)
|
||||
break;
|
||||
|
|
Loading…
Reference in New Issue