Drop flex_arrays
All existing users have been converted to generic radix trees Link: http://lkml.kernel.org/r/20181217131929.11727-8-kent.overstreet@gmail.com Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@parisplace.org> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Paul Moore <paul@paul-moore.com> Cc: Pravin B Shelar <pshelar@ovn.org> Cc: Shaohua Li <shli@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
2075e50caf
commit
586187d7de
|
@ -1,130 +0,0 @@
|
|||
|
||||
===================================
|
||||
Using flexible arrays in the kernel
|
||||
===================================
|
||||
|
||||
Large contiguous memory allocations can be unreliable in the Linux kernel.
|
||||
Kernel programmers will sometimes respond to this problem by allocating
|
||||
pages with :c:func:`vmalloc()`. This solution not ideal, though. On 32-bit
|
||||
systems, memory from vmalloc() must be mapped into a relatively small address
|
||||
space; it's easy to run out. On SMP systems, the page table changes required
|
||||
by vmalloc() allocations can require expensive cross-processor interrupts on
|
||||
all CPUs. And, on all systems, use of space in the vmalloc() range increases
|
||||
pressure on the translation lookaside buffer (TLB), reducing the performance
|
||||
of the system.
|
||||
|
||||
In many cases, the need for memory from vmalloc() can be eliminated by piecing
|
||||
together an array from smaller parts; the flexible array library exists to make
|
||||
this task easier.
|
||||
|
||||
A flexible array holds an arbitrary (within limits) number of fixed-sized
|
||||
objects, accessed via an integer index. Sparse arrays are handled
|
||||
reasonably well. Only single-page allocations are made, so memory
|
||||
allocation failures should be relatively rare. The down sides are that the
|
||||
arrays cannot be indexed directly, individual object size cannot exceed the
|
||||
system page size, and putting data into a flexible array requires a copy
|
||||
operation. It's also worth noting that flexible arrays do no internal
|
||||
locking at all; if concurrent access to an array is possible, then the
|
||||
caller must arrange for appropriate mutual exclusion.
|
||||
|
||||
The creation of a flexible array is done with :c:func:`flex_array_alloc()`::
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
|
||||
struct flex_array *flex_array_alloc(int element_size,
|
||||
unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
The individual object size is provided by ``element_size``, while total is the
|
||||
maximum number of objects which can be stored in the array. The flags
|
||||
argument is passed directly to the internal memory allocation calls. With
|
||||
the current code, using flags to ask for high memory is likely to lead to
|
||||
notably unpleasant side effects.
|
||||
|
||||
It is also possible to define flexible arrays at compile time with::
|
||||
|
||||
DEFINE_FLEX_ARRAY(name, element_size, total);
|
||||
|
||||
This macro will result in a definition of an array with the given name; the
|
||||
element size and total will be checked for validity at compile time.
|
||||
|
||||
Storing data into a flexible array is accomplished with a call to
|
||||
:c:func:`flex_array_put()`::
|
||||
|
||||
int flex_array_put(struct flex_array *array, unsigned int element_nr,
|
||||
void *src, gfp_t flags);
|
||||
|
||||
This call will copy the data from src into the array, in the position
|
||||
indicated by ``element_nr`` (which must be less than the maximum specified when
|
||||
the array was created). If any memory allocations must be performed, flags
|
||||
will be used. The return value is zero on success, a negative error code
|
||||
otherwise.
|
||||
|
||||
There might possibly be a need to store data into a flexible array while
|
||||
running in some sort of atomic context; in this situation, sleeping in the
|
||||
memory allocator would be a bad thing. That can be avoided by using
|
||||
``GFP_ATOMIC`` for the flags value, but, often, there is a better way. The
|
||||
trick is to ensure that any needed memory allocations are done before
|
||||
entering atomic context, using :c:func:`flex_array_prealloc()`::
|
||||
|
||||
int flex_array_prealloc(struct flex_array *array, unsigned int start,
|
||||
unsigned int nr_elements, gfp_t flags);
|
||||
|
||||
This function will ensure that memory for the elements indexed in the range
|
||||
defined by ``start`` and ``nr_elements`` has been allocated. Thereafter, a
|
||||
``flex_array_put()`` call on an element in that range is guaranteed not to
|
||||
block.
|
||||
|
||||
Getting data back out of the array is done with :c:func:`flex_array_get()`::
|
||||
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
The return value is a pointer to the data element, or NULL if that
|
||||
particular element has never been allocated.
|
||||
|
||||
Note that it is possible to get back a valid pointer for an element which
|
||||
has never been stored in the array. Memory for array elements is allocated
|
||||
one page at a time; a single allocation could provide memory for several
|
||||
adjacent elements. Flexible array elements are normally initialized to the
|
||||
value ``FLEX_ARRAY_FREE`` (defined as 0x6c in <linux/poison.h>), so errors
|
||||
involving that number probably result from use of unstored array entries.
|
||||
Note that, if array elements are allocated with ``__GFP_ZERO``, they will be
|
||||
initialized to zero and this poisoning will not happen.
|
||||
|
||||
Individual elements in the array can be cleared with
|
||||
:c:func:`flex_array_clear()`::
|
||||
|
||||
int flex_array_clear(struct flex_array *array, unsigned int element_nr);
|
||||
|
||||
This function will set the given element to ``FLEX_ARRAY_FREE`` and return
|
||||
zero. If storage for the indicated element is not allocated for the array,
|
||||
``flex_array_clear()`` will return ``-EINVAL`` instead. Note that clearing an
|
||||
element does not release the storage associated with it; to reduce the
|
||||
allocated size of an array, call :c:func:`flex_array_shrink()`::
|
||||
|
||||
int flex_array_shrink(struct flex_array *array);
|
||||
|
||||
The return value will be the number of pages of memory actually freed.
|
||||
This function works by scanning the array for pages containing nothing but
|
||||
``FLEX_ARRAY_FREE`` bytes, so (1) it can be expensive, and (2) it will not work
|
||||
if the array's pages are allocated with ``__GFP_ZERO``.
|
||||
|
||||
It is possible to remove all elements of an array with a call to
|
||||
:c:func:`flex_array_free_parts()`::
|
||||
|
||||
void flex_array_free_parts(struct flex_array *array);
|
||||
|
||||
This call frees all elements, but leaves the array itself in place.
|
||||
Freeing the entire array is done with :c:func:`flex_array_free()`::
|
||||
|
||||
void flex_array_free(struct flex_array *array);
|
||||
|
||||
As of this writing, there are no users of flexible arrays in the mainline
|
||||
kernel. The functions described here are also not exported to modules;
|
||||
that will probably be fixed when somebody comes up with a need for it.
|
||||
|
||||
|
||||
Flexible array functions
|
||||
------------------------
|
||||
|
||||
.. kernel-doc:: include/linux/flex_array.h
|
|
@ -1,123 +0,0 @@
|
|||
===================================
|
||||
Using flexible arrays in the kernel
|
||||
===================================
|
||||
|
||||
:Updated: Last updated for 2.6.32
|
||||
:Author: Jonathan Corbet <corbet@lwn.net>
|
||||
|
||||
Large contiguous memory allocations can be unreliable in the Linux kernel.
|
||||
Kernel programmers will sometimes respond to this problem by allocating
|
||||
pages with vmalloc(). This solution not ideal, though. On 32-bit systems,
|
||||
memory from vmalloc() must be mapped into a relatively small address space;
|
||||
it's easy to run out. On SMP systems, the page table changes required by
|
||||
vmalloc() allocations can require expensive cross-processor interrupts on
|
||||
all CPUs. And, on all systems, use of space in the vmalloc() range
|
||||
increases pressure on the translation lookaside buffer (TLB), reducing the
|
||||
performance of the system.
|
||||
|
||||
In many cases, the need for memory from vmalloc() can be eliminated by
|
||||
piecing together an array from smaller parts; the flexible array library
|
||||
exists to make this task easier.
|
||||
|
||||
A flexible array holds an arbitrary (within limits) number of fixed-sized
|
||||
objects, accessed via an integer index. Sparse arrays are handled
|
||||
reasonably well. Only single-page allocations are made, so memory
|
||||
allocation failures should be relatively rare. The down sides are that the
|
||||
arrays cannot be indexed directly, individual object size cannot exceed the
|
||||
system page size, and putting data into a flexible array requires a copy
|
||||
operation. It's also worth noting that flexible arrays do no internal
|
||||
locking at all; if concurrent access to an array is possible, then the
|
||||
caller must arrange for appropriate mutual exclusion.
|
||||
|
||||
The creation of a flexible array is done with::
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
|
||||
struct flex_array *flex_array_alloc(int element_size,
|
||||
unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
The individual object size is provided by element_size, while total is the
|
||||
maximum number of objects which can be stored in the array. The flags
|
||||
argument is passed directly to the internal memory allocation calls. With
|
||||
the current code, using flags to ask for high memory is likely to lead to
|
||||
notably unpleasant side effects.
|
||||
|
||||
It is also possible to define flexible arrays at compile time with::
|
||||
|
||||
DEFINE_FLEX_ARRAY(name, element_size, total);
|
||||
|
||||
This macro will result in a definition of an array with the given name; the
|
||||
element size and total will be checked for validity at compile time.
|
||||
|
||||
Storing data into a flexible array is accomplished with a call to::
|
||||
|
||||
int flex_array_put(struct flex_array *array, unsigned int element_nr,
|
||||
void *src, gfp_t flags);
|
||||
|
||||
This call will copy the data from src into the array, in the position
|
||||
indicated by element_nr (which must be less than the maximum specified when
|
||||
the array was created). If any memory allocations must be performed, flags
|
||||
will be used. The return value is zero on success, a negative error code
|
||||
otherwise.
|
||||
|
||||
There might possibly be a need to store data into a flexible array while
|
||||
running in some sort of atomic context; in this situation, sleeping in the
|
||||
memory allocator would be a bad thing. That can be avoided by using
|
||||
GFP_ATOMIC for the flags value, but, often, there is a better way. The
|
||||
trick is to ensure that any needed memory allocations are done before
|
||||
entering atomic context, using::
|
||||
|
||||
int flex_array_prealloc(struct flex_array *array, unsigned int start,
|
||||
unsigned int nr_elements, gfp_t flags);
|
||||
|
||||
This function will ensure that memory for the elements indexed in the range
|
||||
defined by start and nr_elements has been allocated. Thereafter, a
|
||||
flex_array_put() call on an element in that range is guaranteed not to
|
||||
block.
|
||||
|
||||
Getting data back out of the array is done with::
|
||||
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
The return value is a pointer to the data element, or NULL if that
|
||||
particular element has never been allocated.
|
||||
|
||||
Note that it is possible to get back a valid pointer for an element which
|
||||
has never been stored in the array. Memory for array elements is allocated
|
||||
one page at a time; a single allocation could provide memory for several
|
||||
adjacent elements. Flexible array elements are normally initialized to the
|
||||
value FLEX_ARRAY_FREE (defined as 0x6c in <linux/poison.h>), so errors
|
||||
involving that number probably result from use of unstored array entries.
|
||||
Note that, if array elements are allocated with __GFP_ZERO, they will be
|
||||
initialized to zero and this poisoning will not happen.
|
||||
|
||||
Individual elements in the array can be cleared with::
|
||||
|
||||
int flex_array_clear(struct flex_array *array, unsigned int element_nr);
|
||||
|
||||
This function will set the given element to FLEX_ARRAY_FREE and return
|
||||
zero. If storage for the indicated element is not allocated for the array,
|
||||
flex_array_clear() will return -EINVAL instead. Note that clearing an
|
||||
element does not release the storage associated with it; to reduce the
|
||||
allocated size of an array, call::
|
||||
|
||||
int flex_array_shrink(struct flex_array *array);
|
||||
|
||||
The return value will be the number of pages of memory actually freed.
|
||||
This function works by scanning the array for pages containing nothing but
|
||||
FLEX_ARRAY_FREE bytes, so (1) it can be expensive, and (2) it will not work
|
||||
if the array's pages are allocated with __GFP_ZERO.
|
||||
|
||||
It is possible to remove all elements of an array with a call to::
|
||||
|
||||
void flex_array_free_parts(struct flex_array *array);
|
||||
|
||||
This call frees all elements, but leaves the array itself in place.
|
||||
Freeing the entire array is done with::
|
||||
|
||||
void flex_array_free(struct flex_array *array);
|
||||
|
||||
As of this writing, there are no users of flexible arrays in the mainline
|
||||
kernel. The functions described here are also not exported to modules;
|
||||
that will probably be fixed when somebody comes up with a need for it.
|
|
@ -1,149 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
#ifndef _FLEX_ARRAY_H
|
||||
#define _FLEX_ARRAY_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/reciprocal_div.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
#define FLEX_ARRAY_PART_SIZE PAGE_SIZE
|
||||
#define FLEX_ARRAY_BASE_SIZE PAGE_SIZE
|
||||
|
||||
struct flex_array_part;
|
||||
|
||||
/*
|
||||
* This is meant to replace cases where an array-like
|
||||
* structure has gotten too big to fit into kmalloc()
|
||||
* and the developer is getting tempted to use
|
||||
* vmalloc().
|
||||
*/
|
||||
|
||||
struct flex_array {
|
||||
union {
|
||||
struct {
|
||||
int element_size;
|
||||
int total_nr_elements;
|
||||
int elems_per_part;
|
||||
struct reciprocal_value reciprocal_elems;
|
||||
struct flex_array_part *parts[];
|
||||
};
|
||||
/*
|
||||
* This little trick makes sure that
|
||||
* sizeof(flex_array) == PAGE_SIZE
|
||||
*/
|
||||
char padding[FLEX_ARRAY_BASE_SIZE];
|
||||
};
|
||||
};
|
||||
|
||||
/* Number of bytes left in base struct flex_array, excluding metadata */
|
||||
#define FLEX_ARRAY_BASE_BYTES_LEFT \
|
||||
(FLEX_ARRAY_BASE_SIZE - offsetof(struct flex_array, parts))
|
||||
|
||||
/* Number of pointers in base to struct flex_array_part pages */
|
||||
#define FLEX_ARRAY_NR_BASE_PTRS \
|
||||
(FLEX_ARRAY_BASE_BYTES_LEFT / sizeof(struct flex_array_part *))
|
||||
|
||||
/* Number of elements of size that fit in struct flex_array_part */
|
||||
#define FLEX_ARRAY_ELEMENTS_PER_PART(size) \
|
||||
(FLEX_ARRAY_PART_SIZE / size)
|
||||
|
||||
/*
|
||||
* Defines a statically allocated flex array and ensures its parameters are
|
||||
* valid.
|
||||
*/
|
||||
#define DEFINE_FLEX_ARRAY(__arrayname, __element_size, __total) \
|
||||
struct flex_array __arrayname = { { { \
|
||||
.element_size = (__element_size), \
|
||||
.total_nr_elements = (__total), \
|
||||
} } }; \
|
||||
static inline void __arrayname##_invalid_parameter(void) \
|
||||
{ \
|
||||
BUILD_BUG_ON((__total) > FLEX_ARRAY_NR_BASE_PTRS * \
|
||||
FLEX_ARRAY_ELEMENTS_PER_PART(__element_size)); \
|
||||
}
|
||||
|
||||
/**
|
||||
* flex_array_alloc() - Creates a flexible array.
|
||||
* @element_size: individual object size.
|
||||
* @total: maximum number of objects which can be stored.
|
||||
* @flags: GFP flags
|
||||
*
|
||||
* Return: Returns an object of structure flex_array.
|
||||
*/
|
||||
struct flex_array *flex_array_alloc(int element_size, unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
/**
|
||||
* flex_array_prealloc() - Ensures that memory for the elements indexed in the
|
||||
* range defined by start and nr_elements has been allocated.
|
||||
* @fa: array to allocate memory to.
|
||||
* @start: start address
|
||||
* @nr_elements: number of elements to be allocated.
|
||||
* @flags: GFP flags
|
||||
*
|
||||
*/
|
||||
int flex_array_prealloc(struct flex_array *fa, unsigned int start,
|
||||
unsigned int nr_elements, gfp_t flags);
|
||||
|
||||
/**
|
||||
* flex_array_free() - Removes all elements of a flexible array.
|
||||
* @fa: array to be freed.
|
||||
*/
|
||||
void flex_array_free(struct flex_array *fa);
|
||||
|
||||
/**
|
||||
* flex_array_free_parts() - Removes all elements of a flexible array, but
|
||||
* leaves the array itself in place.
|
||||
* @fa: array to be emptied.
|
||||
*/
|
||||
void flex_array_free_parts(struct flex_array *fa);
|
||||
|
||||
/**
|
||||
* flex_array_put() - Stores data into a flexible array.
|
||||
* @fa: array where element is to be stored.
|
||||
* @element_nr: position to copy, must be less than the maximum specified when
|
||||
* the array was created.
|
||||
* @src: data source to be copied into the array.
|
||||
* @flags: GFP flags
|
||||
*
|
||||
* Return: Returns zero on success, a negative error code otherwise.
|
||||
*/
|
||||
int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
|
||||
gfp_t flags);
|
||||
|
||||
/**
|
||||
* flex_array_clear() - Clears an individual element in the array, sets the
|
||||
* given element to FLEX_ARRAY_FREE.
|
||||
* @element_nr: element position to clear.
|
||||
* @fa: array to which element to be cleared belongs.
|
||||
*
|
||||
* Return: Returns zero on success, -EINVAL otherwise.
|
||||
*/
|
||||
int flex_array_clear(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
/**
|
||||
* flex_array_get() - Retrieves data into a flexible array.
|
||||
*
|
||||
* @element_nr: Element position to retrieve data from.
|
||||
* @fa: array from which data is to be retrieved.
|
||||
*
|
||||
* Return: Returns a pointer to the data element, or NULL if that
|
||||
* particular element has never been allocated.
|
||||
*/
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
/**
|
||||
* flex_array_shrink() - Reduces the allocated size of an array.
|
||||
* @fa: array to shrink.
|
||||
*
|
||||
* Return: Returns number of pages of memory actually freed.
|
||||
*
|
||||
*/
|
||||
int flex_array_shrink(struct flex_array *fa);
|
||||
|
||||
#define flex_array_put_ptr(fa, nr, src, gfp) \
|
||||
flex_array_put(fa, nr, (void *)&(src), gfp)
|
||||
|
||||
void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
#endif /* _FLEX_ARRAY_H */
|
|
@ -83,9 +83,6 @@
|
|||
#define MUTEX_DEBUG_FREE 0x22
|
||||
#define MUTEX_POISON_WW_CTX ((void *) 0x500 + POISON_POINTER_DELTA)
|
||||
|
||||
/********** lib/flex_array.c **********/
|
||||
#define FLEX_ARRAY_FREE 0x6c /* for use-after-free poisoning */
|
||||
|
||||
/********** security/ **********/
|
||||
#define KEY_DESTROY 0xbd
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ obj-y += lockref.o
|
|||
|
||||
obj-y += bcd.o div64.o sort.o parser.o debug_locks.o random32.o \
|
||||
bust_spinlocks.o kasprintf.o bitmap.o scatterlist.o \
|
||||
gcd.o lcm.o list_sort.o uuid.o flex_array.o iov_iter.o clz_ctz.o \
|
||||
gcd.o lcm.o list_sort.o uuid.o iov_iter.o clz_ctz.o \
|
||||
bsearch.o find_bit.o llist.o memweight.o kfifo.o \
|
||||
percpu-refcount.o rhashtable.o reciprocal_div.o \
|
||||
once.o refcount.o usercopy.o errseq.o bucket_locks.o \
|
||||
|
|
398
lib/flex_array.c
398
lib/flex_array.c
|
@ -1,398 +0,0 @@
|
|||
/*
|
||||
* Flexible array managed in PAGE_SIZE parts
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* Copyright IBM Corporation, 2009
|
||||
*
|
||||
* Author: Dave Hansen <dave@linux.vnet.ibm.com>
|
||||
*/
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/stddef.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/reciprocal_div.h>
|
||||
|
||||
struct flex_array_part {
|
||||
char elements[FLEX_ARRAY_PART_SIZE];
|
||||
};
|
||||
|
||||
/*
|
||||
* If a user requests an allocation which is small
|
||||
* enough, we may simply use the space in the
|
||||
* flex_array->parts[] array to store the user
|
||||
* data.
|
||||
*/
|
||||
static inline int elements_fit_in_base(struct flex_array *fa)
|
||||
{
|
||||
int data_size = fa->element_size * fa->total_nr_elements;
|
||||
if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* flex_array_alloc - allocate a new flexible array
|
||||
* @element_size: the size of individual elements in the array
|
||||
* @total: total number of elements that this should hold
|
||||
* @flags: page allocation flags to use for base array
|
||||
*
|
||||
* Note: all locking must be provided by the caller.
|
||||
*
|
||||
* @total is used to size internal structures. If the user ever
|
||||
* accesses any array indexes >=@total, it will produce errors.
|
||||
*
|
||||
* The maximum number of elements is defined as: the number of
|
||||
* elements that can be stored in a page times the number of
|
||||
* page pointers that we can fit in the base structure or (using
|
||||
* integer math):
|
||||
*
|
||||
* (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
|
||||
*
|
||||
* Here's a table showing example capacities. Note that the maximum
|
||||
* index that the get/put() functions is just nr_objects-1. This
|
||||
* basically means that you get 4MB of storage on 32-bit and 2MB on
|
||||
* 64-bit.
|
||||
*
|
||||
*
|
||||
* Element size | Objects | Objects |
|
||||
* PAGE_SIZE=4k | 32-bit | 64-bit |
|
||||
* ---------------------------------|
|
||||
* 1 bytes | 4177920 | 2088960 |
|
||||
* 2 bytes | 2088960 | 1044480 |
|
||||
* 3 bytes | 1392300 | 696150 |
|
||||
* 4 bytes | 1044480 | 522240 |
|
||||
* 32 bytes | 130560 | 65408 |
|
||||
* 33 bytes | 126480 | 63240 |
|
||||
* 2048 bytes | 2040 | 1020 |
|
||||
* 2049 bytes | 1020 | 510 |
|
||||
* void * | 1044480 | 261120 |
|
||||
*
|
||||
* Since 64-bit pointers are twice the size, we lose half the
|
||||
* capacity in the base structure. Also note that no effort is made
|
||||
* to efficiently pack objects across page boundaries.
|
||||
*/
|
||||
struct flex_array *flex_array_alloc(int element_size, unsigned int total,
|
||||
gfp_t flags)
|
||||
{
|
||||
struct flex_array *ret;
|
||||
int elems_per_part = 0;
|
||||
int max_size = 0;
|
||||
struct reciprocal_value reciprocal_elems = { 0 };
|
||||
|
||||
if (element_size) {
|
||||
elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
|
||||
reciprocal_elems = reciprocal_value(elems_per_part);
|
||||
max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
|
||||
}
|
||||
|
||||
/* max_size will end up 0 if element_size > PAGE_SIZE */
|
||||
if (total > max_size)
|
||||
return NULL;
|
||||
ret = kzalloc(sizeof(struct flex_array), flags);
|
||||
if (!ret)
|
||||
return NULL;
|
||||
ret->element_size = element_size;
|
||||
ret->total_nr_elements = total;
|
||||
ret->elems_per_part = elems_per_part;
|
||||
ret->reciprocal_elems = reciprocal_elems;
|
||||
if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
|
||||
memset(&ret->parts[0], FLEX_ARRAY_FREE,
|
||||
FLEX_ARRAY_BASE_BYTES_LEFT);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_alloc);
|
||||
|
||||
static int fa_element_to_part_nr(struct flex_array *fa,
|
||||
unsigned int element_nr)
|
||||
{
|
||||
/*
|
||||
* if element_size == 0 we don't get here, so we never touch
|
||||
* the zeroed fa->reciprocal_elems, which would yield invalid
|
||||
* results
|
||||
*/
|
||||
return reciprocal_divide(element_nr, fa->reciprocal_elems);
|
||||
}
|
||||
|
||||
/**
|
||||
* flex_array_free_parts - just free the second-level pages
|
||||
* @fa: the flex array from which to free parts
|
||||
*
|
||||
* This is to be used in cases where the base 'struct flex_array'
|
||||
* has been statically allocated and should not be free.
|
||||
*/
|
||||
void flex_array_free_parts(struct flex_array *fa)
|
||||
{
|
||||
int part_nr;
|
||||
|
||||
if (elements_fit_in_base(fa))
|
||||
return;
|
||||
for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
|
||||
kfree(fa->parts[part_nr]);
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_free_parts);
|
||||
|
||||
void flex_array_free(struct flex_array *fa)
|
||||
{
|
||||
flex_array_free_parts(fa);
|
||||
kfree(fa);
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_free);
|
||||
|
||||
static unsigned int index_inside_part(struct flex_array *fa,
|
||||
unsigned int element_nr,
|
||||
unsigned int part_nr)
|
||||
{
|
||||
unsigned int part_offset;
|
||||
|
||||
part_offset = element_nr - part_nr * fa->elems_per_part;
|
||||
return part_offset * fa->element_size;
|
||||
}
|
||||
|
||||
static struct flex_array_part *
|
||||
__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
|
||||
{
|
||||
struct flex_array_part *part = fa->parts[part_nr];
|
||||
if (!part) {
|
||||
part = kmalloc(sizeof(struct flex_array_part), flags);
|
||||
if (!part)
|
||||
return NULL;
|
||||
if (!(flags & __GFP_ZERO))
|
||||
memset(part, FLEX_ARRAY_FREE,
|
||||
sizeof(struct flex_array_part));
|
||||
fa->parts[part_nr] = part;
|
||||
}
|
||||
return part;
|
||||
}
|
||||
|
||||
/**
|
||||
* flex_array_put - copy data into the array at @element_nr
|
||||
* @fa: the flex array to copy data into
|
||||
* @element_nr: index of the position in which to insert
|
||||
* the new element.
|
||||
* @src: address of data to copy into the array
|
||||
* @flags: page allocation flags to use for array expansion
|
||||
*
|
||||
*
|
||||
* Note that this *copies* the contents of @src into
|
||||
* the array. If you are trying to store an array of
|
||||
* pointers, make sure to pass in &ptr instead of ptr.
|
||||
* You may instead wish to use the flex_array_put_ptr()
|
||||
* helper function.
|
||||
*
|
||||
* Locking must be provided by the caller.
|
||||
*/
|
||||
int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
|
||||
gfp_t flags)
|
||||
{
|
||||
int part_nr = 0;
|
||||
struct flex_array_part *part;
|
||||
void *dst;
|
||||
|
||||
if (element_nr >= fa->total_nr_elements)
|
||||
return -ENOSPC;
|
||||
if (!fa->element_size)
|
||||
return 0;
|
||||
if (elements_fit_in_base(fa))
|
||||
part = (struct flex_array_part *)&fa->parts[0];
|
||||
else {
|
||||
part_nr = fa_element_to_part_nr(fa, element_nr);
|
||||
part = __fa_get_part(fa, part_nr, flags);
|
||||
if (!part)
|
||||
return -ENOMEM;
|
||||
}
|
||||
dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
|
||||
memcpy(dst, src, fa->element_size);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_put);
|
||||
|
||||
/**
|
||||
* flex_array_clear - clear element in array at @element_nr
|
||||
* @fa: the flex array of the element.
|
||||
* @element_nr: index of the position to clear.
|
||||
*
|
||||
* Locking must be provided by the caller.
|
||||
*/
|
||||
int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
|
||||
{
|
||||
int part_nr = 0;
|
||||
struct flex_array_part *part;
|
||||
void *dst;
|
||||
|
||||
if (element_nr >= fa->total_nr_elements)
|
||||
return -ENOSPC;
|
||||
if (!fa->element_size)
|
||||
return 0;
|
||||
if (elements_fit_in_base(fa))
|
||||
part = (struct flex_array_part *)&fa->parts[0];
|
||||
else {
|
||||
part_nr = fa_element_to_part_nr(fa, element_nr);
|
||||
part = fa->parts[part_nr];
|
||||
if (!part)
|
||||
return -EINVAL;
|
||||
}
|
||||
dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
|
||||
memset(dst, FLEX_ARRAY_FREE, fa->element_size);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_clear);
|
||||
|
||||
/**
|
||||
* flex_array_prealloc - guarantee that array space exists
|
||||
* @fa: the flex array for which to preallocate parts
|
||||
* @start: index of first array element for which space is allocated
|
||||
* @nr_elements: number of elements for which space is allocated
|
||||
* @flags: page allocation flags
|
||||
*
|
||||
* This will guarantee that no future calls to flex_array_put()
|
||||
* will allocate memory. It can be used if you are expecting to
|
||||
* be holding a lock or in some atomic context while writing
|
||||
* data into the array.
|
||||
*
|
||||
* Locking must be provided by the caller.
|
||||
*/
|
||||
int flex_array_prealloc(struct flex_array *fa, unsigned int start,
|
||||
unsigned int nr_elements, gfp_t flags)
|
||||
{
|
||||
int start_part;
|
||||
int end_part;
|
||||
int part_nr;
|
||||
unsigned int end;
|
||||
struct flex_array_part *part;
|
||||
|
||||
if (!start && !nr_elements)
|
||||
return 0;
|
||||
if (start >= fa->total_nr_elements)
|
||||
return -ENOSPC;
|
||||
if (!nr_elements)
|
||||
return 0;
|
||||
|
||||
end = start + nr_elements - 1;
|
||||
|
||||
if (end >= fa->total_nr_elements)
|
||||
return -ENOSPC;
|
||||
if (!fa->element_size)
|
||||
return 0;
|
||||
if (elements_fit_in_base(fa))
|
||||
return 0;
|
||||
start_part = fa_element_to_part_nr(fa, start);
|
||||
end_part = fa_element_to_part_nr(fa, end);
|
||||
for (part_nr = start_part; part_nr <= end_part; part_nr++) {
|
||||
part = __fa_get_part(fa, part_nr, flags);
|
||||
if (!part)
|
||||
return -ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_prealloc);
|
||||
|
||||
/**
|
||||
* flex_array_get - pull data back out of the array
|
||||
* @fa: the flex array from which to extract data
|
||||
* @element_nr: index of the element to fetch from the array
|
||||
*
|
||||
* Returns a pointer to the data at index @element_nr. Note
|
||||
* that this is a copy of the data that was passed in. If you
|
||||
* are using this to store pointers, you'll get back &ptr. You
|
||||
* may instead wish to use the flex_array_get_ptr helper.
|
||||
*
|
||||
* Locking must be provided by the caller.
|
||||
*/
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
|
||||
{
|
||||
int part_nr = 0;
|
||||
struct flex_array_part *part;
|
||||
|
||||
if (!fa->element_size)
|
||||
return NULL;
|
||||
if (element_nr >= fa->total_nr_elements)
|
||||
return NULL;
|
||||
if (elements_fit_in_base(fa))
|
||||
part = (struct flex_array_part *)&fa->parts[0];
|
||||
else {
|
||||
part_nr = fa_element_to_part_nr(fa, element_nr);
|
||||
part = fa->parts[part_nr];
|
||||
if (!part)
|
||||
return NULL;
|
||||
}
|
||||
return &part->elements[index_inside_part(fa, element_nr, part_nr)];
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_get);
|
||||
|
||||
/**
|
||||
* flex_array_get_ptr - pull a ptr back out of the array
|
||||
* @fa: the flex array from which to extract data
|
||||
* @element_nr: index of the element to fetch from the array
|
||||
*
|
||||
* Returns the pointer placed in the flex array at element_nr using
|
||||
* flex_array_put_ptr(). This function should not be called if the
|
||||
* element in question was not set using the _put_ptr() helper.
|
||||
*/
|
||||
void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
|
||||
{
|
||||
void **tmp;
|
||||
|
||||
tmp = flex_array_get(fa, element_nr);
|
||||
if (!tmp)
|
||||
return NULL;
|
||||
|
||||
return *tmp;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_get_ptr);
|
||||
|
||||
static int part_is_free(struct flex_array_part *part)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < sizeof(struct flex_array_part); i++)
|
||||
if (part->elements[i] != FLEX_ARRAY_FREE)
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* flex_array_shrink - free unused second-level pages
|
||||
* @fa: the flex array to shrink
|
||||
*
|
||||
* Frees all second-level pages that consist solely of unused
|
||||
* elements. Returns the number of pages freed.
|
||||
*
|
||||
* Locking must be provided by the caller.
|
||||
*/
|
||||
int flex_array_shrink(struct flex_array *fa)
|
||||
{
|
||||
struct flex_array_part *part;
|
||||
int part_nr;
|
||||
int ret = 0;
|
||||
|
||||
if (!fa->total_nr_elements || !fa->element_size)
|
||||
return 0;
|
||||
if (elements_fit_in_base(fa))
|
||||
return ret;
|
||||
for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
|
||||
part = fa->parts[part_nr];
|
||||
if (!part)
|
||||
continue;
|
||||
if (part_is_free(part)) {
|
||||
fa->parts[part_nr] = NULL;
|
||||
kfree(part);
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(flex_array_shrink);
|
|
@ -87,9 +87,6 @@
|
|||
#define MUTEX_DEBUG_INIT 0x11
|
||||
#define MUTEX_DEBUG_FREE 0x22
|
||||
|
||||
/********** lib/flex_array.c **********/
|
||||
#define FLEX_ARRAY_FREE 0x6c /* for use-after-free poisoning */
|
||||
|
||||
/********** security/ **********/
|
||||
#define KEY_DESTROY 0xbd
|
||||
|
||||
|
|
Loading…
Reference in New Issue