caif-driver: Add CAIF-SPI Protocol driver.
This patch introduces the CAIF SPI Protocol Driver for CAIF Link Layer. This driver implements a platform driver to accommodate for a platform specific SPI device. A general platform driver is not possible as there are no SPI Slave side Kernel API defined. A sample CAIF SPI Platform device can be found in .../Documentation/networking/caif/spi_porting.txt Signed-off-by: Sjur Braendeland <sjur.brandeland@stericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
01eebb53a6
commit
529d6dad5b
|
@ -0,0 +1,208 @@
|
|||
- CAIF SPI porting -
|
||||
|
||||
- CAIF SPI basics:
|
||||
|
||||
Running CAIF over SPI needs some extra setup, owing to the nature of SPI.
|
||||
Two extra GPIOs have been added in order to negotiate the transfers
|
||||
between the master and the slave. The minimum requirement for running
|
||||
CAIF over SPI is a SPI slave chip and two GPIOs (more details below).
|
||||
Please note that running as a slave implies that you need to keep up
|
||||
with the master clock. An overrun or underrun event is fatal.
|
||||
|
||||
- CAIF SPI framework:
|
||||
|
||||
To make porting as easy as possible, the CAIF SPI has been divided in
|
||||
two parts. The first part (called the interface part) deals with all
|
||||
generic functionality such as length framing, SPI frame negotiation
|
||||
and SPI frame delivery and transmission. The other part is the CAIF
|
||||
SPI slave device part, which is the module that you have to write if
|
||||
you want to run SPI CAIF on a new hardware. This part takes care of
|
||||
the physical hardware, both with regard to SPI and to GPIOs.
|
||||
|
||||
- Implementing a CAIF SPI device:
|
||||
|
||||
- Functionality provided by the CAIF SPI slave device:
|
||||
|
||||
In order to implement a SPI device you will, as a minimum,
|
||||
need to implement the following
|
||||
functions:
|
||||
|
||||
int (*init_xfer) (struct cfspi_xfer * xfer, struct cfspi_dev *dev):
|
||||
|
||||
This function is called by the CAIF SPI interface to give
|
||||
you a chance to set up your hardware to be ready to receive
|
||||
a stream of data from the master. The xfer structure contains
|
||||
both physical and logical adresses, as well as the total length
|
||||
of the transfer in both directions.The dev parameter can be used
|
||||
to map to different CAIF SPI slave devices.
|
||||
|
||||
void (*sig_xfer) (bool xfer, struct cfspi_dev *dev):
|
||||
|
||||
This function is called by the CAIF SPI interface when the output
|
||||
(SPI_INT) GPIO needs to change state. The boolean value of the xfer
|
||||
variable indicates whether the GPIO should be asserted (HIGH) or
|
||||
deasserted (LOW). The dev parameter can be used to map to different CAIF
|
||||
SPI slave devices.
|
||||
|
||||
- Functionality provided by the CAIF SPI interface:
|
||||
|
||||
void (*ss_cb) (bool assert, struct cfspi_ifc *ifc);
|
||||
|
||||
This function is called by the CAIF SPI slave device in order to
|
||||
signal a change of state of the input GPIO (SS) to the interface.
|
||||
Only active edges are mandatory to be reported.
|
||||
This function can be called from IRQ context (recommended in order
|
||||
not to introduce latency). The ifc parameter should be the pointer
|
||||
returned from the platform probe function in the SPI device structure.
|
||||
|
||||
void (*xfer_done_cb) (struct cfspi_ifc *ifc);
|
||||
|
||||
This function is called by the CAIF SPI slave device in order to
|
||||
report that a transfer is completed. This function should only be
|
||||
called once both the transmission and the reception are completed.
|
||||
This function can be called from IRQ context (recommended in order
|
||||
not to introduce latency). The ifc parameter should be the pointer
|
||||
returned from the platform probe function in the SPI device structure.
|
||||
|
||||
- Connecting the bits and pieces:
|
||||
|
||||
- Filling in the SPI slave device structure:
|
||||
|
||||
Connect the necessary callback functions.
|
||||
Indicate clock speed (used to calculate toggle delays).
|
||||
Chose a suitable name (helps debugging if you use several CAIF
|
||||
SPI slave devices).
|
||||
Assign your private data (can be used to map to your structure).
|
||||
|
||||
- Filling in the SPI slave platform device structure:
|
||||
Add name of driver to connect to ("cfspi_sspi").
|
||||
Assign the SPI slave device structure as platform data.
|
||||
|
||||
- Padding:
|
||||
|
||||
In order to optimize throughput, a number of SPI padding options are provided.
|
||||
Padding can be enabled independently for uplink and downlink transfers.
|
||||
Padding can be enabled for the head, the tail and for the total frame size.
|
||||
The padding needs to be correctly configured on both sides of the link.
|
||||
The padding can be changed via module parameters in cfspi_sspi.c or via
|
||||
the sysfs directory of the cfspi_sspi driver (before device registration).
|
||||
|
||||
- CAIF SPI device template:
|
||||
|
||||
/*
|
||||
* Copyright (C) ST-Ericsson AB 2010
|
||||
* Author: Daniel Martensson / Daniel.Martensson@stericsson.com
|
||||
* License terms: GNU General Public License (GPL), version 2.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <net/caif/caif_spi.h>
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
struct sspi_struct {
|
||||
struct cfspi_dev sdev;
|
||||
struct cfspi_xfer *xfer;
|
||||
};
|
||||
|
||||
static struct sspi_struct slave;
|
||||
static struct platform_device slave_device;
|
||||
|
||||
static irqreturn_t sspi_irq(int irq, void *arg)
|
||||
{
|
||||
/* You only need to trigger on an edge to the active state of the
|
||||
* SS signal. Once a edge is detected, the ss_cb() function should be
|
||||
* called with the parameter assert set to true. It is OK
|
||||
* (and even advised) to call the ss_cb() function in IRQ context in
|
||||
* order not to add any delay. */
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static void sspi_complete(void *context)
|
||||
{
|
||||
/* Normally the DMA or the SPI framework will call you back
|
||||
* in something similar to this. The only thing you need to
|
||||
* do is to call the xfer_done_cb() function, providing the pointer
|
||||
* to the CAIF SPI interface. It is OK to call this function
|
||||
* from IRQ context. */
|
||||
}
|
||||
|
||||
static int sspi_init_xfer(struct cfspi_xfer *xfer, struct cfspi_dev *dev)
|
||||
{
|
||||
/* Store transfer info. For a normal implementation you should
|
||||
* set up your DMA here and make sure that you are ready to
|
||||
* receive the data from the master SPI. */
|
||||
|
||||
struct sspi_struct *sspi = (struct sspi_struct *)dev->priv;
|
||||
|
||||
sspi->xfer = xfer;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void sspi_sig_xfer(bool xfer, struct cfspi_dev *dev)
|
||||
{
|
||||
/* If xfer is true then you should assert the SPI_INT to indicate to
|
||||
* the master that you are ready to recieve the data from the master
|
||||
* SPI. If xfer is false then you should de-assert SPI_INT to indicate
|
||||
* that the transfer is done.
|
||||
*/
|
||||
|
||||
struct sspi_struct *sspi = (struct sspi_struct *)dev->priv;
|
||||
}
|
||||
|
||||
static void sspi_release(struct device *dev)
|
||||
{
|
||||
/*
|
||||
* Here you should release your SPI device resources.
|
||||
*/
|
||||
}
|
||||
|
||||
static int __init sspi_init(void)
|
||||
{
|
||||
/* Here you should initialize your SPI device by providing the
|
||||
* necessary functions, clock speed, name and private data. Once
|
||||
* done, you can register your device with the
|
||||
* platform_device_register() function. This function will return
|
||||
* with the CAIF SPI interface initialized. This is probably also
|
||||
* the place where you should set up your GPIOs, interrupts and SPI
|
||||
* resources. */
|
||||
|
||||
int res = 0;
|
||||
|
||||
/* Initialize slave device. */
|
||||
slave.sdev.init_xfer = sspi_init_xfer;
|
||||
slave.sdev.sig_xfer = sspi_sig_xfer;
|
||||
slave.sdev.clk_mhz = 13;
|
||||
slave.sdev.priv = &slave;
|
||||
slave.sdev.name = "spi_sspi";
|
||||
slave_device.dev.release = sspi_release;
|
||||
|
||||
/* Initialize platform device. */
|
||||
slave_device.name = "cfspi_sspi";
|
||||
slave_device.dev.platform_data = &slave.sdev;
|
||||
|
||||
/* Register platform device. */
|
||||
res = platform_device_register(&slave_device);
|
||||
if (res) {
|
||||
printk(KERN_WARNING "sspi_init: failed to register dev.\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static void __exit sspi_exit(void)
|
||||
{
|
||||
platform_device_del(&slave_device);
|
||||
}
|
||||
|
||||
module_init(sspi_init);
|
||||
module_exit(sspi_exit);
|
|
@ -12,3 +12,22 @@ config CAIF_TTY
|
|||
The CAIF TTY transport driver is a Line Discipline (ldisc)
|
||||
identified as N_CAIF. When this ldisc is opened from user space
|
||||
it will redirect the TTY's traffic into the CAIF stack.
|
||||
|
||||
config CAIF_SPI_SLAVE
|
||||
tristate "CAIF SPI transport driver for slave interface"
|
||||
depends on CAIF
|
||||
default n
|
||||
---help---
|
||||
The CAIF Link layer SPI Protocol driver for Slave SPI interface.
|
||||
This driver implements a platform driver to accommodate for a
|
||||
platform specific SPI device. A sample CAIF SPI Platform device is
|
||||
provided in Documentation/networking/caif/spi_porting.txt
|
||||
|
||||
config CAIF_SPI_SYNC
|
||||
bool "Next command and length in start of frame"
|
||||
depends on CAIF_SPI_SLAVE
|
||||
default n
|
||||
---help---
|
||||
Putting the next command and length in the start of the frame can
|
||||
help to synchronize to the next transfer in case of over or under-runs.
|
||||
This option also needs to be enabled on the modem.
|
||||
|
|
|
@ -4,3 +4,7 @@ endif
|
|||
|
||||
# Serial interface
|
||||
obj-$(CONFIG_CAIF_TTY) += caif_serial.o
|
||||
|
||||
# SPI slave physical interfaces module
|
||||
cfspi_slave-objs := caif_spi.o caif_spi_slave.o
|
||||
obj-$(CONFIG_CAIF_SPI_SLAVE) += cfspi_slave.o
|
||||
|
|
|
@ -0,0 +1,847 @@
|
|||
/*
|
||||
* Copyright (C) ST-Ericsson AB 2010
|
||||
* Contact: Sjur Brendeland / sjur.brandeland@stericsson.com
|
||||
* Author: Daniel Martensson / Daniel.Martensson@stericsson.com
|
||||
* License terms: GNU General Public License (GPL) version 2.
|
||||
*/
|
||||
|
||||
#include <linux/version.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <linux/if_arp.h>
|
||||
#include <net/caif/caif_layer.h>
|
||||
#include <net/caif/caif_spi.h>
|
||||
|
||||
#ifndef CONFIG_CAIF_SPI_SYNC
|
||||
#define FLAVOR "Flavour: Vanilla.\n"
|
||||
#else
|
||||
#define FLAVOR "Flavour: Master CMD&LEN at start.\n"
|
||||
#endif /* CONFIG_CAIF_SPI_SYNC */
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Daniel Martensson<daniel.martensson@stericsson.com>");
|
||||
MODULE_DESCRIPTION("CAIF SPI driver");
|
||||
|
||||
static int spi_loop;
|
||||
module_param(spi_loop, bool, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_loop, "SPI running in loopback mode.");
|
||||
|
||||
/* SPI frame alignment. */
|
||||
module_param(spi_frm_align, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_frm_align, "SPI frame alignment.");
|
||||
|
||||
/* SPI padding options. */
|
||||
module_param(spi_up_head_align, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_up_head_align, "SPI uplink head alignment.");
|
||||
|
||||
module_param(spi_up_tail_align, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_up_tail_align, "SPI uplink tail alignment.");
|
||||
|
||||
module_param(spi_down_head_align, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_down_head_align, "SPI downlink head alignment.");
|
||||
|
||||
module_param(spi_down_tail_align, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(spi_down_tail_align, "SPI downlink tail alignment.");
|
||||
|
||||
#ifdef CONFIG_ARM
|
||||
#define BYTE_HEX_FMT "%02X"
|
||||
#else
|
||||
#define BYTE_HEX_FMT "%02hhX"
|
||||
#endif
|
||||
|
||||
#define SPI_MAX_PAYLOAD_SIZE 4096
|
||||
/*
|
||||
* Threshold values for the SPI packet queue. Flowcontrol will be asserted
|
||||
* when the number of packets exceeds HIGH_WATER_MARK. It will not be
|
||||
* deasserted before the number of packets drops below LOW_WATER_MARK.
|
||||
*/
|
||||
#define LOW_WATER_MARK 100
|
||||
#define HIGH_WATER_MARK (LOW_WATER_MARK*5)
|
||||
|
||||
#ifdef CONFIG_UML
|
||||
|
||||
/*
|
||||
* We sometimes use UML for debugging, but it cannot handle
|
||||
* dma_alloc_coherent so we have to wrap it.
|
||||
*/
|
||||
static inline void *dma_alloc(dma_addr_t *daddr)
|
||||
{
|
||||
return kmalloc(SPI_DMA_BUF_LEN, GFP_KERNEL);
|
||||
}
|
||||
|
||||
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
|
||||
{
|
||||
kfree(cpu_addr);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline void *dma_alloc(dma_addr_t *daddr)
|
||||
{
|
||||
return dma_alloc_coherent(NULL, SPI_DMA_BUF_LEN, daddr,
|
||||
GFP_KERNEL);
|
||||
}
|
||||
|
||||
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
|
||||
{
|
||||
dma_free_coherent(NULL, SPI_DMA_BUF_LEN, cpu_addr, handle);
|
||||
}
|
||||
#endif /* CONFIG_UML */
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
|
||||
#define DEBUGFS_BUF_SIZE 4096
|
||||
|
||||
static struct dentry *dbgfs_root;
|
||||
|
||||
static inline void driver_debugfs_create(void)
|
||||
{
|
||||
dbgfs_root = debugfs_create_dir(cfspi_spi_driver.driver.name, NULL);
|
||||
}
|
||||
|
||||
static inline void driver_debugfs_remove(void)
|
||||
{
|
||||
debugfs_remove(dbgfs_root);
|
||||
}
|
||||
|
||||
static inline void dev_debugfs_rem(struct cfspi *cfspi)
|
||||
{
|
||||
debugfs_remove(cfspi->dbgfs_frame);
|
||||
debugfs_remove(cfspi->dbgfs_state);
|
||||
debugfs_remove(cfspi->dbgfs_dir);
|
||||
}
|
||||
|
||||
static int dbgfs_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
file->private_data = inode->i_private;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static ssize_t dbgfs_state(struct file *file, char __user *user_buf,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
char *buf;
|
||||
int len = 0;
|
||||
ssize_t size;
|
||||
struct cfspi *cfspi = (struct cfspi *)file->private_data;
|
||||
|
||||
buf = kzalloc(DEBUGFS_BUF_SIZE, GFP_KERNEL);
|
||||
if (!buf)
|
||||
return 0;
|
||||
|
||||
/* Print out debug information. */
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"CAIF SPI debug information:\n");
|
||||
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len), FLAVOR);
|
||||
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"STATE: %d\n", cfspi->dbg_state);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Previous CMD: 0x%x\n", cfspi->pcmd);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Current CMD: 0x%x\n", cfspi->cmd);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Previous TX len: %d\n", cfspi->tx_ppck_len);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Previous RX len: %d\n", cfspi->rx_ppck_len);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Current TX len: %d\n", cfspi->tx_cpck_len);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Current RX len: %d\n", cfspi->rx_cpck_len);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Next TX len: %d\n", cfspi->tx_npck_len);
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Next RX len: %d\n", cfspi->rx_npck_len);
|
||||
|
||||
size = simple_read_from_buffer(user_buf, count, ppos, buf, len);
|
||||
kfree(buf);
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
static ssize_t print_frame(char *buf, size_t size, char *frm,
|
||||
size_t count, size_t cut)
|
||||
{
|
||||
int len = 0;
|
||||
int i;
|
||||
for (i = 0; i < count; i++) {
|
||||
len += snprintf((buf + len), (size - len),
|
||||
"[0x" BYTE_HEX_FMT "]",
|
||||
frm[i]);
|
||||
if ((i == cut) && (count > (cut * 2))) {
|
||||
/* Fast forward. */
|
||||
i = count - cut;
|
||||
len += snprintf((buf + len), (size - len),
|
||||
"--- %u bytes skipped ---\n",
|
||||
(int)(count - (cut * 2)));
|
||||
}
|
||||
|
||||
if ((!(i % 10)) && i) {
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"\n");
|
||||
}
|
||||
}
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len), "\n");
|
||||
return len;
|
||||
}
|
||||
|
||||
static ssize_t dbgfs_frame(struct file *file, char __user *user_buf,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
char *buf;
|
||||
int len = 0;
|
||||
ssize_t size;
|
||||
struct cfspi *cfspi;
|
||||
|
||||
cfspi = (struct cfspi *)file->private_data;
|
||||
buf = kzalloc(DEBUGFS_BUF_SIZE, GFP_KERNEL);
|
||||
if (!buf)
|
||||
return 0;
|
||||
|
||||
/* Print out debug information. */
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Current frame:\n");
|
||||
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Tx data (Len: %d):\n", cfspi->tx_cpck_len);
|
||||
|
||||
len += print_frame((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
cfspi->xfer.va_tx,
|
||||
(cfspi->tx_cpck_len + SPI_CMD_SZ), 100);
|
||||
|
||||
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
"Rx data (Len: %d):\n", cfspi->rx_cpck_len);
|
||||
|
||||
len += print_frame((buf + len), (DEBUGFS_BUF_SIZE - len),
|
||||
cfspi->xfer.va_rx,
|
||||
(cfspi->rx_cpck_len + SPI_CMD_SZ), 100);
|
||||
|
||||
size = simple_read_from_buffer(user_buf, count, ppos, buf, len);
|
||||
kfree(buf);
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
static const struct file_operations dbgfs_state_fops = {
|
||||
.open = dbgfs_open,
|
||||
.read = dbgfs_state,
|
||||
.owner = THIS_MODULE
|
||||
};
|
||||
|
||||
static const struct file_operations dbgfs_frame_fops = {
|
||||
.open = dbgfs_open,
|
||||
.read = dbgfs_frame,
|
||||
.owner = THIS_MODULE
|
||||
};
|
||||
|
||||
static inline void dev_debugfs_add(struct cfspi *cfspi)
|
||||
{
|
||||
cfspi->dbgfs_dir = debugfs_create_dir(cfspi->pdev->name, dbgfs_root);
|
||||
cfspi->dbgfs_state = debugfs_create_file("state", S_IRUGO,
|
||||
cfspi->dbgfs_dir, cfspi,
|
||||
&dbgfs_state_fops);
|
||||
cfspi->dbgfs_frame = debugfs_create_file("frame", S_IRUGO,
|
||||
cfspi->dbgfs_dir, cfspi,
|
||||
&dbgfs_frame_fops);
|
||||
}
|
||||
|
||||
inline void cfspi_dbg_state(struct cfspi *cfspi, int state)
|
||||
{
|
||||
cfspi->dbg_state = state;
|
||||
};
|
||||
#else
|
||||
|
||||
static inline void driver_debugfs_create(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void driver_debugfs_remove(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void dev_debugfs_add(struct cfspi *cfspi)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void dev_debugfs_rem(struct cfspi *cfspi)
|
||||
{
|
||||
}
|
||||
|
||||
inline void cfspi_dbg_state(struct cfspi *cfspi, int state)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_DEBUG_FS */
|
||||
|
||||
static LIST_HEAD(cfspi_list);
|
||||
static spinlock_t cfspi_list_lock;
|
||||
|
||||
/* SPI uplink head alignment. */
|
||||
static ssize_t show_up_head_align(struct device_driver *driver, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", spi_up_head_align);
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(up_head_align, S_IRUSR, show_up_head_align, NULL);
|
||||
|
||||
/* SPI uplink tail alignment. */
|
||||
static ssize_t show_up_tail_align(struct device_driver *driver, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", spi_up_tail_align);
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(up_tail_align, S_IRUSR, show_up_tail_align, NULL);
|
||||
|
||||
/* SPI downlink head alignment. */
|
||||
static ssize_t show_down_head_align(struct device_driver *driver, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", spi_down_head_align);
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(down_head_align, S_IRUSR, show_down_head_align, NULL);
|
||||
|
||||
/* SPI downlink tail alignment. */
|
||||
static ssize_t show_down_tail_align(struct device_driver *driver, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", spi_down_tail_align);
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(down_tail_align, S_IRUSR, show_down_tail_align, NULL);
|
||||
|
||||
/* SPI frame alignment. */
|
||||
static ssize_t show_frame_align(struct device_driver *driver, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", spi_frm_align);
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(frame_align, S_IRUSR, show_frame_align, NULL);
|
||||
|
||||
int cfspi_xmitfrm(struct cfspi *cfspi, u8 *buf, size_t len)
|
||||
{
|
||||
u8 *dst = buf;
|
||||
caif_assert(buf);
|
||||
|
||||
do {
|
||||
struct sk_buff *skb;
|
||||
struct caif_payload_info *info;
|
||||
int spad = 0;
|
||||
int epad;
|
||||
|
||||
skb = skb_dequeue(&cfspi->chead);
|
||||
if (!skb)
|
||||
break;
|
||||
|
||||
/*
|
||||
* Calculate length of frame including SPI padding.
|
||||
* The payload position is found in the control buffer.
|
||||
*/
|
||||
info = (struct caif_payload_info *)&skb->cb;
|
||||
|
||||
/*
|
||||
* Compute head offset i.e. number of bytes to add to
|
||||
* get the start of the payload aligned.
|
||||
*/
|
||||
if (spi_up_head_align) {
|
||||
spad = 1 + ((info->hdr_len + 1) & spi_up_head_align);
|
||||
*dst = (u8)(spad - 1);
|
||||
dst += spad;
|
||||
}
|
||||
|
||||
/* Copy in CAIF frame. */
|
||||
skb_copy_bits(skb, 0, dst, skb->len);
|
||||
dst += skb->len;
|
||||
cfspi->ndev->stats.tx_packets++;
|
||||
cfspi->ndev->stats.tx_bytes += skb->len;
|
||||
|
||||
/*
|
||||
* Compute tail offset i.e. number of bytes to add to
|
||||
* get the complete CAIF frame aligned.
|
||||
*/
|
||||
epad = (skb->len + spad) & spi_up_tail_align;
|
||||
dst += epad;
|
||||
|
||||
dev_kfree_skb(skb);
|
||||
|
||||
} while ((dst - buf) < len);
|
||||
|
||||
return dst - buf;
|
||||
}
|
||||
|
||||
int cfspi_xmitlen(struct cfspi *cfspi)
|
||||
{
|
||||
struct sk_buff *skb = NULL;
|
||||
int frm_len = 0;
|
||||
int pkts = 0;
|
||||
|
||||
/*
|
||||
* Decommit previously commited frames.
|
||||
* skb_queue_splice_tail(&cfspi->chead,&cfspi->qhead)
|
||||
*/
|
||||
while (skb_peek(&cfspi->chead)) {
|
||||
skb = skb_dequeue_tail(&cfspi->chead);
|
||||
skb_queue_head(&cfspi->qhead, skb);
|
||||
}
|
||||
|
||||
do {
|
||||
struct caif_payload_info *info = NULL;
|
||||
int spad = 0;
|
||||
int epad = 0;
|
||||
|
||||
skb = skb_dequeue(&cfspi->qhead);
|
||||
if (!skb)
|
||||
break;
|
||||
|
||||
/*
|
||||
* Calculate length of frame including SPI padding.
|
||||
* The payload position is found in the control buffer.
|
||||
*/
|
||||
info = (struct caif_payload_info *)&skb->cb;
|
||||
|
||||
/*
|
||||
* Compute head offset i.e. number of bytes to add to
|
||||
* get the start of the payload aligned.
|
||||
*/
|
||||
if (spi_up_head_align)
|
||||
spad = 1 + ((info->hdr_len + 1) & spi_up_head_align);
|
||||
|
||||
/*
|
||||
* Compute tail offset i.e. number of bytes to add to
|
||||
* get the complete CAIF frame aligned.
|
||||
*/
|
||||
epad = (skb->len + spad) & spi_up_tail_align;
|
||||
|
||||
if ((skb->len + spad + epad + frm_len) <= CAIF_MAX_SPI_FRAME) {
|
||||
skb_queue_tail(&cfspi->chead, skb);
|
||||
pkts++;
|
||||
frm_len += skb->len + spad + epad;
|
||||
} else {
|
||||
/* Put back packet. */
|
||||
skb_queue_head(&cfspi->qhead, skb);
|
||||
}
|
||||
} while (pkts <= CAIF_MAX_SPI_PKTS);
|
||||
|
||||
/*
|
||||
* Send flow on if previously sent flow off
|
||||
* and now go below the low water mark
|
||||
*/
|
||||
if (cfspi->flow_off_sent && cfspi->qhead.qlen < cfspi->qd_low_mark &&
|
||||
cfspi->cfdev.flowctrl) {
|
||||
cfspi->flow_off_sent = 0;
|
||||
cfspi->cfdev.flowctrl(cfspi->ndev, 1);
|
||||
}
|
||||
|
||||
return frm_len;
|
||||
}
|
||||
|
||||
static void cfspi_ss_cb(bool assert, struct cfspi_ifc *ifc)
|
||||
{
|
||||
struct cfspi *cfspi = (struct cfspi *)ifc->priv;
|
||||
|
||||
if (!in_interrupt())
|
||||
spin_lock(&cfspi->lock);
|
||||
if (assert) {
|
||||
set_bit(SPI_SS_ON, &cfspi->state);
|
||||
set_bit(SPI_XFER, &cfspi->state);
|
||||
} else {
|
||||
set_bit(SPI_SS_OFF, &cfspi->state);
|
||||
}
|
||||
if (!in_interrupt())
|
||||
spin_unlock(&cfspi->lock);
|
||||
|
||||
/* Wake up the xfer thread. */
|
||||
wake_up_interruptible(&cfspi->wait);
|
||||
}
|
||||
|
||||
static void cfspi_xfer_done_cb(struct cfspi_ifc *ifc)
|
||||
{
|
||||
struct cfspi *cfspi = (struct cfspi *)ifc->priv;
|
||||
|
||||
/* Transfer done, complete work queue */
|
||||
complete(&cfspi->comp);
|
||||
}
|
||||
|
||||
static int cfspi_xmit(struct sk_buff *skb, struct net_device *dev)
|
||||
{
|
||||
struct cfspi *cfspi = NULL;
|
||||
unsigned long flags;
|
||||
if (!dev)
|
||||
return -EINVAL;
|
||||
|
||||
cfspi = netdev_priv(dev);
|
||||
|
||||
skb_queue_tail(&cfspi->qhead, skb);
|
||||
|
||||
spin_lock_irqsave(&cfspi->lock, flags);
|
||||
if (!test_and_set_bit(SPI_XFER, &cfspi->state)) {
|
||||
/* Wake up xfer thread. */
|
||||
wake_up_interruptible(&cfspi->wait);
|
||||
}
|
||||
spin_unlock_irqrestore(&cfspi->lock, flags);
|
||||
|
||||
/* Send flow off if number of bytes is above high water mark */
|
||||
if (!cfspi->flow_off_sent &&
|
||||
cfspi->qhead.qlen > cfspi->qd_high_mark &&
|
||||
cfspi->cfdev.flowctrl) {
|
||||
cfspi->flow_off_sent = 1;
|
||||
cfspi->cfdev.flowctrl(cfspi->ndev, 0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cfspi_rxfrm(struct cfspi *cfspi, u8 *buf, size_t len)
|
||||
{
|
||||
u8 *src = buf;
|
||||
|
||||
caif_assert(buf != NULL);
|
||||
|
||||
do {
|
||||
int res;
|
||||
struct sk_buff *skb = NULL;
|
||||
int spad = 0;
|
||||
int epad = 0;
|
||||
u8 *dst = NULL;
|
||||
int pkt_len = 0;
|
||||
|
||||
/*
|
||||
* Compute head offset i.e. number of bytes added to
|
||||
* get the start of the payload aligned.
|
||||
*/
|
||||
if (spi_down_head_align) {
|
||||
spad = 1 + *src;
|
||||
src += spad;
|
||||
}
|
||||
|
||||
/* Read length of CAIF frame (little endian). */
|
||||
pkt_len = *src;
|
||||
pkt_len |= ((*(src+1)) << 8) & 0xFF00;
|
||||
pkt_len += 2; /* Add FCS fields. */
|
||||
|
||||
/* Get a suitable caif packet and copy in data. */
|
||||
|
||||
skb = netdev_alloc_skb(cfspi->ndev, pkt_len + 1);
|
||||
caif_assert(skb != NULL);
|
||||
|
||||
dst = skb_put(skb, pkt_len);
|
||||
memcpy(dst, src, pkt_len);
|
||||
src += pkt_len;
|
||||
|
||||
skb->protocol = htons(ETH_P_CAIF);
|
||||
skb_reset_mac_header(skb);
|
||||
skb->dev = cfspi->ndev;
|
||||
|
||||
/*
|
||||
* Push received packet up the stack.
|
||||
*/
|
||||
if (!spi_loop)
|
||||
res = netif_rx_ni(skb);
|
||||
else
|
||||
res = cfspi_xmit(skb, cfspi->ndev);
|
||||
|
||||
if (!res) {
|
||||
cfspi->ndev->stats.rx_packets++;
|
||||
cfspi->ndev->stats.rx_bytes += pkt_len;
|
||||
} else
|
||||
cfspi->ndev->stats.rx_dropped++;
|
||||
|
||||
/*
|
||||
* Compute tail offset i.e. number of bytes added to
|
||||
* get the complete CAIF frame aligned.
|
||||
*/
|
||||
epad = (pkt_len + spad) & spi_down_tail_align;
|
||||
src += epad;
|
||||
} while ((src - buf) < len);
|
||||
|
||||
return src - buf;
|
||||
}
|
||||
|
||||
static int cfspi_open(struct net_device *dev)
|
||||
{
|
||||
netif_wake_queue(dev);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cfspi_close(struct net_device *dev)
|
||||
{
|
||||
netif_stop_queue(dev);
|
||||
return 0;
|
||||
}
|
||||
static const struct net_device_ops cfspi_ops = {
|
||||
.ndo_open = cfspi_open,
|
||||
.ndo_stop = cfspi_close,
|
||||
.ndo_start_xmit = cfspi_xmit
|
||||
};
|
||||
|
||||
static void cfspi_setup(struct net_device *dev)
|
||||
{
|
||||
struct cfspi *cfspi = netdev_priv(dev);
|
||||
dev->features = 0;
|
||||
dev->netdev_ops = &cfspi_ops;
|
||||
dev->type = ARPHRD_CAIF;
|
||||
dev->flags = IFF_NOARP | IFF_POINTOPOINT;
|
||||
dev->tx_queue_len = 0;
|
||||
dev->mtu = SPI_MAX_PAYLOAD_SIZE;
|
||||
dev->destructor = free_netdev;
|
||||
skb_queue_head_init(&cfspi->qhead);
|
||||
skb_queue_head_init(&cfspi->chead);
|
||||
cfspi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
|
||||
cfspi->cfdev.use_frag = false;
|
||||
cfspi->cfdev.use_stx = false;
|
||||
cfspi->cfdev.use_fcs = false;
|
||||
cfspi->ndev = dev;
|
||||
}
|
||||
|
||||
int cfspi_spi_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct cfspi *cfspi = NULL;
|
||||
struct net_device *ndev;
|
||||
struct cfspi_dev *dev;
|
||||
int res;
|
||||
dev = (struct cfspi_dev *)pdev->dev.platform_data;
|
||||
|
||||
ndev = alloc_netdev(sizeof(struct cfspi),
|
||||
"cfspi%d", cfspi_setup);
|
||||
if (!dev)
|
||||
return -ENODEV;
|
||||
|
||||
cfspi = netdev_priv(ndev);
|
||||
netif_stop_queue(ndev);
|
||||
cfspi->ndev = ndev;
|
||||
cfspi->pdev = pdev;
|
||||
|
||||
/* Set flow info */
|
||||
cfspi->flow_off_sent = 0;
|
||||
cfspi->qd_low_mark = LOW_WATER_MARK;
|
||||
cfspi->qd_high_mark = HIGH_WATER_MARK;
|
||||
|
||||
/* Assign the SPI device. */
|
||||
cfspi->dev = dev;
|
||||
/* Assign the device ifc to this SPI interface. */
|
||||
dev->ifc = &cfspi->ifc;
|
||||
|
||||
/* Allocate DMA buffers. */
|
||||
cfspi->xfer.va_tx = dma_alloc(&cfspi->xfer.pa_tx);
|
||||
if (!cfspi->xfer.va_tx) {
|
||||
printk(KERN_WARNING
|
||||
"CFSPI: failed to allocate dma TX buffer.\n");
|
||||
res = -ENODEV;
|
||||
goto err_dma_alloc_tx;
|
||||
}
|
||||
|
||||
cfspi->xfer.va_rx = dma_alloc(&cfspi->xfer.pa_rx);
|
||||
|
||||
if (!cfspi->xfer.va_rx) {
|
||||
printk(KERN_WARNING
|
||||
"CFSPI: failed to allocate dma TX buffer.\n");
|
||||
res = -ENODEV;
|
||||
goto err_dma_alloc_rx;
|
||||
}
|
||||
|
||||
/* Initialize the work queue. */
|
||||
INIT_WORK(&cfspi->work, cfspi_xfer);
|
||||
|
||||
/* Initialize spin locks. */
|
||||
spin_lock_init(&cfspi->lock);
|
||||
|
||||
/* Initialize flow control state. */
|
||||
cfspi->flow_stop = false;
|
||||
|
||||
/* Initialize wait queue. */
|
||||
init_waitqueue_head(&cfspi->wait);
|
||||
|
||||
/* Create work thread. */
|
||||
cfspi->wq = create_singlethread_workqueue(dev->name);
|
||||
if (!cfspi->wq) {
|
||||
printk(KERN_WARNING "CFSPI: failed to create work queue.\n");
|
||||
res = -ENODEV;
|
||||
goto err_create_wq;
|
||||
}
|
||||
|
||||
/* Initialize work queue. */
|
||||
init_completion(&cfspi->comp);
|
||||
|
||||
/* Create debugfs entries. */
|
||||
dev_debugfs_add(cfspi);
|
||||
|
||||
/* Set up the ifc. */
|
||||
cfspi->ifc.ss_cb = cfspi_ss_cb;
|
||||
cfspi->ifc.xfer_done_cb = cfspi_xfer_done_cb;
|
||||
cfspi->ifc.priv = cfspi;
|
||||
|
||||
/* Add CAIF SPI device to list. */
|
||||
spin_lock(&cfspi_list_lock);
|
||||
list_add_tail(&cfspi->list, &cfspi_list);
|
||||
spin_unlock(&cfspi_list_lock);
|
||||
|
||||
/* Schedule the work queue. */
|
||||
queue_work(cfspi->wq, &cfspi->work);
|
||||
|
||||
/* Register network device. */
|
||||
res = register_netdev(ndev);
|
||||
if (res) {
|
||||
printk(KERN_ERR "CFSPI: Reg. error: %d.\n", res);
|
||||
goto err_net_reg;
|
||||
}
|
||||
return res;
|
||||
|
||||
err_net_reg:
|
||||
dev_debugfs_rem(cfspi);
|
||||
set_bit(SPI_TERMINATE, &cfspi->state);
|
||||
wake_up_interruptible(&cfspi->wait);
|
||||
destroy_workqueue(cfspi->wq);
|
||||
err_create_wq:
|
||||
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
|
||||
err_dma_alloc_rx:
|
||||
dma_free(cfspi->xfer.va_tx, cfspi->xfer.pa_tx);
|
||||
err_dma_alloc_tx:
|
||||
free_netdev(ndev);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int cfspi_spi_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct list_head *list_node;
|
||||
struct list_head *n;
|
||||
struct cfspi *cfspi = NULL;
|
||||
struct cfspi_dev *dev;
|
||||
|
||||
dev = (struct cfspi_dev *)pdev->dev.platform_data;
|
||||
spin_lock(&cfspi_list_lock);
|
||||
list_for_each_safe(list_node, n, &cfspi_list) {
|
||||
cfspi = list_entry(list_node, struct cfspi, list);
|
||||
/* Find the corresponding device. */
|
||||
if (cfspi->dev == dev) {
|
||||
/* Remove from list. */
|
||||
list_del(list_node);
|
||||
/* Free DMA buffers. */
|
||||
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
|
||||
dma_free(cfspi->xfer.va_tx, cfspi->xfer.pa_tx);
|
||||
set_bit(SPI_TERMINATE, &cfspi->state);
|
||||
wake_up_interruptible(&cfspi->wait);
|
||||
destroy_workqueue(cfspi->wq);
|
||||
/* Destroy debugfs directory and files. */
|
||||
dev_debugfs_rem(cfspi);
|
||||
unregister_netdev(cfspi->ndev);
|
||||
spin_unlock(&cfspi_list_lock);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
spin_unlock(&cfspi_list_lock);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static void __exit cfspi_exit_module(void)
|
||||
{
|
||||
struct list_head *list_node;
|
||||
struct list_head *n;
|
||||
struct cfspi *cfspi = NULL;
|
||||
|
||||
list_for_each_safe(list_node, n, &cfspi_list) {
|
||||
cfspi = list_entry(list_node, struct cfspi, list);
|
||||
platform_device_unregister(cfspi->pdev);
|
||||
}
|
||||
|
||||
/* Destroy sysfs files. */
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_head_align);
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_tail_align);
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_head_align);
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_tail_align);
|
||||
driver_remove_file(&cfspi_spi_driver.driver, &driver_attr_frame_align);
|
||||
/* Unregister platform driver. */
|
||||
platform_driver_unregister(&cfspi_spi_driver);
|
||||
/* Destroy debugfs root directory. */
|
||||
driver_debugfs_remove();
|
||||
}
|
||||
|
||||
static int __init cfspi_init_module(void)
|
||||
{
|
||||
int result;
|
||||
|
||||
/* Initialize spin lock. */
|
||||
spin_lock_init(&cfspi_list_lock);
|
||||
|
||||
/* Register platform driver. */
|
||||
result = platform_driver_register(&cfspi_spi_driver);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Could not register platform SPI driver.\n");
|
||||
goto err_dev_register;
|
||||
}
|
||||
|
||||
/* Create sysfs files. */
|
||||
result =
|
||||
driver_create_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_head_align);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Sysfs creation failed 1.\n");
|
||||
goto err_create_up_head_align;
|
||||
}
|
||||
|
||||
result =
|
||||
driver_create_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_tail_align);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Sysfs creation failed 2.\n");
|
||||
goto err_create_up_tail_align;
|
||||
}
|
||||
|
||||
result =
|
||||
driver_create_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_head_align);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Sysfs creation failed 3.\n");
|
||||
goto err_create_down_head_align;
|
||||
}
|
||||
|
||||
result =
|
||||
driver_create_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_tail_align);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Sysfs creation failed 4.\n");
|
||||
goto err_create_down_tail_align;
|
||||
}
|
||||
|
||||
result =
|
||||
driver_create_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_frame_align);
|
||||
if (result) {
|
||||
printk(KERN_ERR "Sysfs creation failed 5.\n");
|
||||
goto err_create_frame_align;
|
||||
}
|
||||
driver_debugfs_create();
|
||||
return result;
|
||||
|
||||
err_create_frame_align:
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_tail_align);
|
||||
err_create_down_tail_align:
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_down_head_align);
|
||||
err_create_down_head_align:
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_tail_align);
|
||||
err_create_up_tail_align:
|
||||
driver_remove_file(&cfspi_spi_driver.driver,
|
||||
&driver_attr_up_head_align);
|
||||
err_create_up_head_align:
|
||||
err_dev_register:
|
||||
return result;
|
||||
}
|
||||
|
||||
module_init(cfspi_init_module);
|
||||
module_exit(cfspi_exit_module);
|
|
@ -0,0 +1,252 @@
|
|||
/*
|
||||
* Copyright (C) ST-Ericsson AB 2010
|
||||
* Contact: Sjur Brendeland / sjur.brandeland@stericsson.com
|
||||
* Author: Daniel Martensson / Daniel.Martensson@stericsson.com
|
||||
* License terms: GNU General Public License (GPL) version 2.
|
||||
*/
|
||||
#include <linux/version.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/semaphore.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <net/caif/caif_spi.h>
|
||||
|
||||
#ifndef CONFIG_CAIF_SPI_SYNC
|
||||
#define SPI_DATA_POS SPI_CMD_SZ
|
||||
static inline int forward_to_spi_cmd(struct cfspi *cfspi)
|
||||
{
|
||||
return cfspi->rx_cpck_len;
|
||||
}
|
||||
#else
|
||||
#define SPI_DATA_POS 0
|
||||
static inline int forward_to_spi_cmd(struct cfspi *cfspi)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
int spi_frm_align = 2;
|
||||
int spi_up_head_align = 1;
|
||||
int spi_up_tail_align;
|
||||
int spi_down_head_align = 3;
|
||||
int spi_down_tail_align = 1;
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
static inline void debugfs_store_prev(struct cfspi *cfspi)
|
||||
{
|
||||
/* Store previous command for debugging reasons.*/
|
||||
cfspi->pcmd = cfspi->cmd;
|
||||
/* Store previous transfer. */
|
||||
cfspi->tx_ppck_len = cfspi->tx_cpck_len;
|
||||
cfspi->rx_ppck_len = cfspi->rx_cpck_len;
|
||||
}
|
||||
#else
|
||||
static inline void debugfs_store_prev(struct cfspi *cfspi)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
void cfspi_xfer(struct work_struct *work)
|
||||
{
|
||||
struct cfspi *cfspi;
|
||||
u8 *ptr = NULL;
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
cfspi = container_of(work, struct cfspi, work);
|
||||
|
||||
/* Initialize state. */
|
||||
cfspi->cmd = SPI_CMD_EOT;
|
||||
|
||||
for (;;) {
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_WAITING);
|
||||
|
||||
/* Wait for master talk or transmit event. */
|
||||
wait_event_interruptible(cfspi->wait,
|
||||
test_bit(SPI_XFER, &cfspi->state) ||
|
||||
test_bit(SPI_TERMINATE, &cfspi->state));
|
||||
|
||||
if (test_bit(SPI_TERMINATE, &cfspi->state))
|
||||
return;
|
||||
|
||||
#if CFSPI_DBG_PREFILL
|
||||
/* Prefill buffers for easier debugging. */
|
||||
memset(cfspi->xfer.va_tx, 0xFF, SPI_DMA_BUF_LEN);
|
||||
memset(cfspi->xfer.va_rx, 0xFF, SPI_DMA_BUF_LEN);
|
||||
#endif /* CFSPI_DBG_PREFILL */
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_AWAKE);
|
||||
|
||||
/* Check whether we have a committed frame. */
|
||||
if (cfspi->tx_cpck_len) {
|
||||
int len;
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_FETCH_PKT);
|
||||
|
||||
/* Copy commited SPI frames after the SPI indication. */
|
||||
ptr = (u8 *) cfspi->xfer.va_tx;
|
||||
ptr += SPI_IND_SZ;
|
||||
len = cfspi_xmitfrm(cfspi, ptr, cfspi->tx_cpck_len);
|
||||
WARN_ON(len != cfspi->tx_cpck_len);
|
||||
}
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_GET_NEXT);
|
||||
|
||||
/* Get length of next frame to commit. */
|
||||
cfspi->tx_npck_len = cfspi_xmitlen(cfspi);
|
||||
|
||||
WARN_ON(cfspi->tx_npck_len > SPI_DMA_BUF_LEN);
|
||||
|
||||
/*
|
||||
* Add indication and length at the beginning of the frame,
|
||||
* using little endian.
|
||||
*/
|
||||
ptr = (u8 *) cfspi->xfer.va_tx;
|
||||
*ptr++ = SPI_CMD_IND;
|
||||
*ptr++ = (SPI_CMD_IND & 0xFF00) >> 8;
|
||||
*ptr++ = cfspi->tx_npck_len & 0x00FF;
|
||||
*ptr++ = (cfspi->tx_npck_len & 0xFF00) >> 8;
|
||||
|
||||
/* Calculate length of DMAs. */
|
||||
cfspi->xfer.tx_dma_len = cfspi->tx_cpck_len + SPI_IND_SZ;
|
||||
cfspi->xfer.rx_dma_len = cfspi->rx_cpck_len + SPI_CMD_SZ;
|
||||
|
||||
/* Add SPI TX frame alignment padding, if necessary. */
|
||||
if (cfspi->tx_cpck_len &&
|
||||
(cfspi->xfer.tx_dma_len % spi_frm_align)) {
|
||||
|
||||
cfspi->xfer.tx_dma_len += spi_frm_align -
|
||||
(cfspi->xfer.tx_dma_len % spi_frm_align);
|
||||
}
|
||||
|
||||
/* Add SPI RX frame alignment padding, if necessary. */
|
||||
if (cfspi->rx_cpck_len &&
|
||||
(cfspi->xfer.rx_dma_len % spi_frm_align)) {
|
||||
|
||||
cfspi->xfer.rx_dma_len += spi_frm_align -
|
||||
(cfspi->xfer.rx_dma_len % spi_frm_align);
|
||||
}
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_INIT_XFER);
|
||||
|
||||
/* Start transfer. */
|
||||
ret = cfspi->dev->init_xfer(&cfspi->xfer, cfspi->dev);
|
||||
WARN_ON(ret);
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_WAIT_ACTIVE);
|
||||
|
||||
/*
|
||||
* TODO: We might be able to make an assumption if this is the
|
||||
* first loop. Make sure that minimum toggle time is respected.
|
||||
*/
|
||||
udelay(MIN_TRANSITION_TIME_USEC);
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_SIG_ACTIVE);
|
||||
|
||||
/* Signal that we are ready to recieve data. */
|
||||
cfspi->dev->sig_xfer(true, cfspi->dev);
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_WAIT_XFER_DONE);
|
||||
|
||||
/* Wait for transfer completion. */
|
||||
wait_for_completion(&cfspi->comp);
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_XFER_DONE);
|
||||
|
||||
if (cfspi->cmd == SPI_CMD_EOT) {
|
||||
/*
|
||||
* Clear the master talk bit. A xfer is always at
|
||||
* least two bursts.
|
||||
*/
|
||||
clear_bit(SPI_SS_ON, &cfspi->state);
|
||||
}
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_WAIT_INACTIVE);
|
||||
|
||||
/* Make sure that the minimum toggle time is respected. */
|
||||
if (SPI_XFER_TIME_USEC(cfspi->xfer.tx_dma_len,
|
||||
cfspi->dev->clk_mhz) <
|
||||
MIN_TRANSITION_TIME_USEC) {
|
||||
|
||||
udelay(MIN_TRANSITION_TIME_USEC -
|
||||
SPI_XFER_TIME_USEC
|
||||
(cfspi->xfer.tx_dma_len, cfspi->dev->clk_mhz));
|
||||
}
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_SIG_INACTIVE);
|
||||
|
||||
/* De-assert transfer signal. */
|
||||
cfspi->dev->sig_xfer(false, cfspi->dev);
|
||||
|
||||
/* Check whether we received a CAIF packet. */
|
||||
if (cfspi->rx_cpck_len) {
|
||||
int len;
|
||||
|
||||
cfspi_dbg_state(cfspi, CFSPI_STATE_DELIVER_PKT);
|
||||
|
||||
/* Parse SPI frame. */
|
||||
ptr = ((u8 *)(cfspi->xfer.va_rx + SPI_DATA_POS));
|
||||
|
||||
len = cfspi_rxfrm(cfspi, ptr, cfspi->rx_cpck_len);
|
||||
WARN_ON(len != cfspi->rx_cpck_len);
|
||||
}
|
||||
|
||||
/* Check the next SPI command and length. */
|
||||
ptr = (u8 *) cfspi->xfer.va_rx;
|
||||
|
||||
ptr += forward_to_spi_cmd(cfspi);
|
||||
|
||||
cfspi->cmd = *ptr++;
|
||||
cfspi->cmd |= ((*ptr++) << 8) & 0xFF00;
|
||||
cfspi->rx_npck_len = *ptr++;
|
||||
cfspi->rx_npck_len |= ((*ptr++) << 8) & 0xFF00;
|
||||
|
||||
WARN_ON(cfspi->rx_npck_len > SPI_DMA_BUF_LEN);
|
||||
WARN_ON(cfspi->cmd > SPI_CMD_EOT);
|
||||
|
||||
debugfs_store_prev(cfspi);
|
||||
|
||||
/* Check whether the master issued an EOT command. */
|
||||
if (cfspi->cmd == SPI_CMD_EOT) {
|
||||
/* Reset state. */
|
||||
cfspi->tx_cpck_len = 0;
|
||||
cfspi->rx_cpck_len = 0;
|
||||
} else {
|
||||
/* Update state. */
|
||||
cfspi->tx_cpck_len = cfspi->tx_npck_len;
|
||||
cfspi->rx_cpck_len = cfspi->rx_npck_len;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check whether we need to clear the xfer bit.
|
||||
* Spin lock needed for packet insertion.
|
||||
* Test and clear of different bits
|
||||
* are not supported.
|
||||
*/
|
||||
spin_lock_irqsave(&cfspi->lock, flags);
|
||||
if (cfspi->cmd == SPI_CMD_EOT && !cfspi_xmitlen(cfspi)
|
||||
&& !test_bit(SPI_SS_ON, &cfspi->state))
|
||||
clear_bit(SPI_XFER, &cfspi->state);
|
||||
|
||||
spin_unlock_irqrestore(&cfspi->lock, flags);
|
||||
}
|
||||
}
|
||||
|
||||
struct platform_driver cfspi_spi_driver = {
|
||||
.probe = cfspi_spi_probe,
|
||||
.remove = cfspi_spi_remove,
|
||||
.driver = {
|
||||
.name = "cfspi_sspi",
|
||||
.owner = THIS_MODULE,
|
||||
},
|
||||
};
|
|
@ -0,0 +1,153 @@
|
|||
/*
|
||||
* Copyright (C) ST-Ericsson AB 2010
|
||||
* Author: Daniel Martensson / Daniel.Martensson@stericsson.com
|
||||
* License terms: GNU General Public License (GPL) version 2
|
||||
*/
|
||||
|
||||
#ifndef CAIF_SPI_H_
|
||||
#define CAIF_SPI_H_
|
||||
|
||||
#include <net/caif/caif_device.h>
|
||||
|
||||
#define SPI_CMD_WR 0x00
|
||||
#define SPI_CMD_RD 0x01
|
||||
#define SPI_CMD_EOT 0x02
|
||||
#define SPI_CMD_IND 0x04
|
||||
|
||||
#define SPI_DMA_BUF_LEN 8192
|
||||
|
||||
#define WL_SZ 2 /* 16 bits. */
|
||||
#define SPI_CMD_SZ 4 /* 32 bits. */
|
||||
#define SPI_IND_SZ 4 /* 32 bits. */
|
||||
|
||||
#define SPI_XFER 0
|
||||
#define SPI_SS_ON 1
|
||||
#define SPI_SS_OFF 2
|
||||
#define SPI_TERMINATE 3
|
||||
|
||||
/* Minimum time between different levels is 50 microseconds. */
|
||||
#define MIN_TRANSITION_TIME_USEC 50
|
||||
|
||||
/* Defines for calculating duration of SPI transfers for a particular
|
||||
* number of bytes.
|
||||
*/
|
||||
#define SPI_MASTER_CLK_MHZ 13
|
||||
#define SPI_XFER_TIME_USEC(bytes, clk) (((bytes) * 8) / clk)
|
||||
|
||||
/* Normally this should be aligned on the modem in order to benefit from full
|
||||
* duplex transfers. However a size of 8188 provokes errors when running with
|
||||
* the modem. These errors occur when packet sizes approaches 4 kB of data.
|
||||
*/
|
||||
#define CAIF_MAX_SPI_FRAME 4092
|
||||
|
||||
/* Maximum number of uplink CAIF frames that can reside in the same SPI frame.
|
||||
* This number should correspond with the modem setting. The application side
|
||||
* CAIF accepts any number of embedded downlink CAIF frames.
|
||||
*/
|
||||
#define CAIF_MAX_SPI_PKTS 9
|
||||
|
||||
/* Decides if SPI buffers should be prefilled with 0xFF pattern for easier
|
||||
* debugging. Both TX and RX buffers will be filled before the transfer.
|
||||
*/
|
||||
#define CFSPI_DBG_PREFILL 0
|
||||
|
||||
/* Structure describing a SPI transfer. */
|
||||
struct cfspi_xfer {
|
||||
u16 tx_dma_len;
|
||||
u16 rx_dma_len;
|
||||
void *va_tx;
|
||||
dma_addr_t pa_tx;
|
||||
void *va_rx;
|
||||
dma_addr_t pa_rx;
|
||||
};
|
||||
|
||||
/* Structure implemented by the SPI interface. */
|
||||
struct cfspi_ifc {
|
||||
void (*ss_cb) (bool assert, struct cfspi_ifc *ifc);
|
||||
void (*xfer_done_cb) (struct cfspi_ifc *ifc);
|
||||
void *priv;
|
||||
};
|
||||
|
||||
/* Structure implemented by SPI clients. */
|
||||
struct cfspi_dev {
|
||||
int (*init_xfer) (struct cfspi_xfer *xfer, struct cfspi_dev *dev);
|
||||
void (*sig_xfer) (bool xfer, struct cfspi_dev *dev);
|
||||
struct cfspi_ifc *ifc;
|
||||
char *name;
|
||||
u32 clk_mhz;
|
||||
void *priv;
|
||||
};
|
||||
|
||||
/* Enumeration describing the CAIF SPI state. */
|
||||
enum cfspi_state {
|
||||
CFSPI_STATE_WAITING = 0,
|
||||
CFSPI_STATE_AWAKE,
|
||||
CFSPI_STATE_FETCH_PKT,
|
||||
CFSPI_STATE_GET_NEXT,
|
||||
CFSPI_STATE_INIT_XFER,
|
||||
CFSPI_STATE_WAIT_ACTIVE,
|
||||
CFSPI_STATE_SIG_ACTIVE,
|
||||
CFSPI_STATE_WAIT_XFER_DONE,
|
||||
CFSPI_STATE_XFER_DONE,
|
||||
CFSPI_STATE_WAIT_INACTIVE,
|
||||
CFSPI_STATE_SIG_INACTIVE,
|
||||
CFSPI_STATE_DELIVER_PKT,
|
||||
CFSPI_STATE_MAX,
|
||||
};
|
||||
|
||||
/* Structure implemented by SPI physical interfaces. */
|
||||
struct cfspi {
|
||||
struct caif_dev_common cfdev;
|
||||
struct net_device *ndev;
|
||||
struct platform_device *pdev;
|
||||
struct sk_buff_head qhead;
|
||||
struct sk_buff_head chead;
|
||||
u16 cmd;
|
||||
u16 tx_cpck_len;
|
||||
u16 tx_npck_len;
|
||||
u16 rx_cpck_len;
|
||||
u16 rx_npck_len;
|
||||
struct cfspi_ifc ifc;
|
||||
struct cfspi_xfer xfer;
|
||||
struct cfspi_dev *dev;
|
||||
unsigned long state;
|
||||
struct work_struct work;
|
||||
struct workqueue_struct *wq;
|
||||
struct list_head list;
|
||||
int flow_off_sent;
|
||||
u32 qd_low_mark;
|
||||
u32 qd_high_mark;
|
||||
struct completion comp;
|
||||
wait_queue_head_t wait;
|
||||
spinlock_t lock;
|
||||
bool flow_stop;
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
enum cfspi_state dbg_state;
|
||||
u16 pcmd;
|
||||
u16 tx_ppck_len;
|
||||
u16 rx_ppck_len;
|
||||
struct dentry *dbgfs_dir;
|
||||
struct dentry *dbgfs_state;
|
||||
struct dentry *dbgfs_frame;
|
||||
#endif /* CONFIG_DEBUG_FS */
|
||||
};
|
||||
|
||||
extern int spi_frm_align;
|
||||
extern int spi_up_head_align;
|
||||
extern int spi_up_tail_align;
|
||||
extern int spi_down_head_align;
|
||||
extern int spi_down_tail_align;
|
||||
extern struct platform_driver cfspi_spi_driver;
|
||||
|
||||
void cfspi_dbg_state(struct cfspi *cfspi, int state);
|
||||
int cfspi_xmitfrm(struct cfspi *cfspi, u8 *buf, size_t len);
|
||||
int cfspi_xmitlen(struct cfspi *cfspi);
|
||||
int cfspi_rxfrm(struct cfspi *cfspi, u8 *buf, size_t len);
|
||||
int cfspi_spi_remove(struct platform_device *pdev);
|
||||
int cfspi_spi_probe(struct platform_device *pdev);
|
||||
int cfspi_xmitfrm(struct cfspi *cfspi, u8 *buf, size_t len);
|
||||
int cfspi_xmitlen(struct cfspi *cfspi);
|
||||
int cfspi_rxfrm(struct cfspi *cfspi, u8 *buf, size_t len);
|
||||
void cfspi_xfer(struct work_struct *work);
|
||||
|
||||
#endif /* CAIF_SPI_H_ */
|
Loading…
Reference in New Issue