powerpc/crypto: SHA256 hash routines for nx encryption
These routines add support for SHA-256 hashing on the Power7+ CPU's in-Nest accelerator driver. Signed-off-by: Kent Yoder <key@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This commit is contained in:
parent
6148c1ad6d
commit
528e396231
|
@ -0,0 +1,246 @@
|
|||
/**
|
||||
* SHA-256 routines supporting the Power 7+ Nest Accelerators driver
|
||||
*
|
||||
* Copyright (C) 2011-2012 International Business Machines Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; version 2 only.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*
|
||||
* Author: Kent Yoder <yoder1@us.ibm.com>
|
||||
*/
|
||||
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/vio.h>
|
||||
|
||||
#include "nx_csbcpb.h"
|
||||
#include "nx.h"
|
||||
|
||||
|
||||
static int nx_sha256_init(struct shash_desc *desc)
|
||||
{
|
||||
struct sha256_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_sg *out_sg;
|
||||
|
||||
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
|
||||
|
||||
memset(sctx, 0, sizeof *sctx);
|
||||
|
||||
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
|
||||
|
||||
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
|
||||
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
|
||||
SHA256_DIGEST_SIZE, nx_ctx->ap->sglen);
|
||||
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
|
||||
unsigned int len)
|
||||
{
|
||||
struct sha256_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg;
|
||||
u64 to_process, leftover;
|
||||
int rc = 0;
|
||||
|
||||
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
||||
/* we've hit the nx chip previously and we're updating again,
|
||||
* so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha256.input_partial_digest,
|
||||
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
/* 2 cases for total data len:
|
||||
* 1: <= SHA256_BLOCK_SIZE: copy into state, return 0
|
||||
* 2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover
|
||||
*/
|
||||
if (len + sctx->count <= SHA256_BLOCK_SIZE) {
|
||||
memcpy(sctx->buf + sctx->count, data, len);
|
||||
sctx->count += len;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* to_process: the SHA256_BLOCK_SIZE data chunk to process in this
|
||||
* update */
|
||||
to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1);
|
||||
leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1);
|
||||
|
||||
if (sctx->count) {
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
|
||||
sctx->count, nx_ctx->ap->sglen);
|
||||
in_sg = nx_build_sg_list(in_sg, (u8 *)data,
|
||||
to_process - sctx->count,
|
||||
nx_ctx->ap->sglen);
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
||||
sizeof(struct nx_sg);
|
||||
} else {
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data,
|
||||
to_process, nx_ctx->ap->sglen);
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
||||
sizeof(struct nx_sg);
|
||||
}
|
||||
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
|
||||
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
||||
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
||||
if (rc)
|
||||
goto out;
|
||||
|
||||
atomic_inc(&(nx_ctx->stats->sha256_ops));
|
||||
|
||||
/* copy the leftover back into the state struct */
|
||||
memcpy(sctx->buf, data + len - leftover, leftover);
|
||||
sctx->count = leftover;
|
||||
|
||||
csbcpb->cpb.sha256.message_bit_length += (u64)
|
||||
(csbcpb->cpb.sha256.spbc * 8);
|
||||
|
||||
/* everything after the first update is continuation */
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_sha256_final(struct shash_desc *desc, u8 *out)
|
||||
{
|
||||
struct sha256_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg, *out_sg;
|
||||
int rc;
|
||||
|
||||
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
||||
/* we've hit the nx chip previously, now we're finalizing,
|
||||
* so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha256.input_partial_digest,
|
||||
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
/* final is represented by continuing the operation and indicating that
|
||||
* this is not an intermediate operation */
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
|
||||
csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8);
|
||||
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
|
||||
sctx->count, nx_ctx->ap->sglen);
|
||||
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
|
||||
nx_ctx->ap->sglen);
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
||||
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
||||
|
||||
if (!nx_ctx->op.outlen) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
||||
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
||||
if (rc)
|
||||
goto out;
|
||||
|
||||
atomic_inc(&(nx_ctx->stats->sha256_ops));
|
||||
|
||||
atomic64_add(csbcpb->cpb.sha256.message_bit_length,
|
||||
&(nx_ctx->stats->sha256_bytes));
|
||||
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
|
||||
out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_sha256_export(struct shash_desc *desc, void *out)
|
||||
{
|
||||
struct sha256_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
struct sha256_state *octx = out;
|
||||
|
||||
octx->count = sctx->count +
|
||||
(csbcpb->cpb.sha256.message_bit_length / 8);
|
||||
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
|
||||
|
||||
/* if no data has been processed yet, we need to export SHA256's
|
||||
* initial data, in case this context gets imported into a software
|
||||
* context */
|
||||
if (csbcpb->cpb.sha256.message_bit_length)
|
||||
memcpy(octx->state, csbcpb->cpb.sha256.message_digest,
|
||||
SHA256_DIGEST_SIZE);
|
||||
else {
|
||||
octx->state[0] = SHA256_H0;
|
||||
octx->state[1] = SHA256_H1;
|
||||
octx->state[2] = SHA256_H2;
|
||||
octx->state[3] = SHA256_H3;
|
||||
octx->state[4] = SHA256_H4;
|
||||
octx->state[5] = SHA256_H5;
|
||||
octx->state[6] = SHA256_H6;
|
||||
octx->state[7] = SHA256_H7;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nx_sha256_import(struct shash_desc *desc, const void *in)
|
||||
{
|
||||
struct sha256_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
const struct sha256_state *ictx = in;
|
||||
|
||||
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
|
||||
|
||||
sctx->count = ictx->count & 0x3f;
|
||||
csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8;
|
||||
|
||||
if (csbcpb->cpb.sha256.message_bit_length) {
|
||||
memcpy(csbcpb->cpb.sha256.message_digest, ictx->state,
|
||||
SHA256_DIGEST_SIZE);
|
||||
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct shash_alg nx_shash_sha256_alg = {
|
||||
.digestsize = SHA256_DIGEST_SIZE,
|
||||
.init = nx_sha256_init,
|
||||
.update = nx_sha256_update,
|
||||
.final = nx_sha256_final,
|
||||
.export = nx_sha256_export,
|
||||
.import = nx_sha256_import,
|
||||
.descsize = sizeof(struct sha256_state),
|
||||
.statesize = sizeof(struct sha256_state),
|
||||
.base = {
|
||||
.cra_name = "sha256",
|
||||
.cra_driver_name = "sha256-nx",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
|
||||
.cra_blocksize = SHA256_BLOCK_SIZE,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
|
||||
.cra_init = nx_crypto_ctx_sha_init,
|
||||
.cra_exit = nx_crypto_ctx_exit,
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue