context_tracking: Add comments on interface and internals
This subsystem lacks many explanations on its purpose and design. Add these missing comments. v4: Document function parameter to be more kernel-doc friendly, as per Namhyung suggestion. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
parent
90f45e4e72
commit
4eacdf1837
|
@ -1,3 +1,19 @@
|
|||
/*
|
||||
* Context tracking: Probe on high level context boundaries such as kernel
|
||||
* and userspace. This includes syscalls and exceptions entry/exit.
|
||||
*
|
||||
* This is used by RCU to remove its dependency on the timer tick while a CPU
|
||||
* runs in userspace.
|
||||
*
|
||||
* Started by Frederic Weisbecker:
|
||||
*
|
||||
* Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker <fweisbec@redhat.com>
|
||||
*
|
||||
* Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
|
||||
* Steven Rostedt, Peter Zijlstra for suggestions and improvements.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/context_tracking.h>
|
||||
#include <linux/rcupdate.h>
|
||||
#include <linux/sched.h>
|
||||
|
@ -6,8 +22,8 @@
|
|||
|
||||
struct context_tracking {
|
||||
/*
|
||||
* When active is false, hooks are not set to
|
||||
* minimize overhead: TIF flags are cleared
|
||||
* When active is false, probes are unset in order
|
||||
* to minimize overhead: TIF flags are cleared
|
||||
* and calls to user_enter/exit are ignored. This
|
||||
* may be further optimized using static keys.
|
||||
*/
|
||||
|
@ -24,6 +40,15 @@ static DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
|
|||
#endif
|
||||
};
|
||||
|
||||
/**
|
||||
* user_enter - Inform the context tracking that the CPU is going to
|
||||
* enter userspace mode.
|
||||
*
|
||||
* This function must be called right before we switch from the kernel
|
||||
* to userspace, when it's guaranteed the remaining kernel instructions
|
||||
* to execute won't use any RCU read side critical section because this
|
||||
* function sets RCU in extended quiescent state.
|
||||
*/
|
||||
void user_enter(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
@ -39,40 +64,70 @@ void user_enter(void)
|
|||
if (in_interrupt())
|
||||
return;
|
||||
|
||||
/* Kernel threads aren't supposed to go to userspace */
|
||||
WARN_ON_ONCE(!current->mm);
|
||||
|
||||
local_irq_save(flags);
|
||||
if (__this_cpu_read(context_tracking.active) &&
|
||||
__this_cpu_read(context_tracking.state) != IN_USER) {
|
||||
__this_cpu_write(context_tracking.state, IN_USER);
|
||||
/*
|
||||
* At this stage, only low level arch entry code remains and
|
||||
* then we'll run in userspace. We can assume there won't be
|
||||
* any RCU read-side critical section until the next call to
|
||||
* user_exit() or rcu_irq_enter(). Let's remove RCU's dependency
|
||||
* on the tick.
|
||||
*/
|
||||
rcu_user_enter();
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* user_exit - Inform the context tracking that the CPU is
|
||||
* exiting userspace mode and entering the kernel.
|
||||
*
|
||||
* This function must be called after we entered the kernel from userspace
|
||||
* before any use of RCU read side critical section. This potentially include
|
||||
* any high level kernel code like syscalls, exceptions, signal handling, etc...
|
||||
*
|
||||
* This call supports re-entrancy. This way it can be called from any exception
|
||||
* handler without needing to know if we came from userspace or not.
|
||||
*/
|
||||
void user_exit(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* Some contexts may involve an exception occuring in an irq,
|
||||
* leading to that nesting:
|
||||
* rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
|
||||
* This would mess up the dyntick_nesting count though. And rcu_irq_*()
|
||||
* helpers are enough to protect RCU uses inside the exception. So
|
||||
* just return immediately if we detect we are in an IRQ.
|
||||
*/
|
||||
if (in_interrupt())
|
||||
return;
|
||||
|
||||
local_irq_save(flags);
|
||||
if (__this_cpu_read(context_tracking.state) == IN_USER) {
|
||||
__this_cpu_write(context_tracking.state, IN_KERNEL);
|
||||
/*
|
||||
* We are going to run code that may use RCU. Inform
|
||||
* RCU core about that (ie: we may need the tick again).
|
||||
*/
|
||||
rcu_user_exit();
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* context_tracking_task_switch - context switch the syscall callbacks
|
||||
* @prev: the task that is being switched out
|
||||
* @next: the task that is being switched in
|
||||
*
|
||||
* The context tracking uses the syscall slow path to implement its user-kernel
|
||||
* boundaries probes on syscalls. This way it doesn't impact the syscall fast
|
||||
* path on CPUs that don't do context tracking.
|
||||
*
|
||||
* But we need to clear the flag on the previous task because it may later
|
||||
* migrate to some CPU that doesn't do the context tracking. As such the TIF
|
||||
* flag may not be desired there.
|
||||
*/
|
||||
void context_tracking_task_switch(struct task_struct *prev,
|
||||
struct task_struct *next)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue