locking: Remove ACCESS_ONCE() usage
With the new standardized functions, we can replace all ACCESS_ONCE() calls across relevant locking - this includes lockref and seqlock while at it. ACCESS_ONCE() does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145 Update the new calls regardless of if it is a scalar type, this is cleaner than having three alternatives. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1424662301.6539.18.camel@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
2ae7902681
commit
4d3199e4ca
|
@ -108,7 +108,7 @@ static inline unsigned __read_seqcount_begin(const seqcount_t *s)
|
|||
unsigned ret;
|
||||
|
||||
repeat:
|
||||
ret = ACCESS_ONCE(s->sequence);
|
||||
ret = READ_ONCE(s->sequence);
|
||||
if (unlikely(ret & 1)) {
|
||||
cpu_relax();
|
||||
goto repeat;
|
||||
|
@ -127,7 +127,7 @@ repeat:
|
|||
*/
|
||||
static inline unsigned raw_read_seqcount(const seqcount_t *s)
|
||||
{
|
||||
unsigned ret = ACCESS_ONCE(s->sequence);
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
return ret;
|
||||
}
|
||||
|
@ -179,7 +179,7 @@ static inline unsigned read_seqcount_begin(const seqcount_t *s)
|
|||
*/
|
||||
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
|
||||
{
|
||||
unsigned ret = ACCESS_ONCE(s->sequence);
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
return ret & ~1;
|
||||
}
|
||||
|
|
|
@ -78,7 +78,7 @@ void mcs_spin_lock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
|
|||
*/
|
||||
return;
|
||||
}
|
||||
ACCESS_ONCE(prev->next) = node;
|
||||
WRITE_ONCE(prev->next, node);
|
||||
|
||||
/* Wait until the lock holder passes the lock down. */
|
||||
arch_mcs_spin_lock_contended(&node->locked);
|
||||
|
@ -91,7 +91,7 @@ void mcs_spin_lock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
|
|||
static inline
|
||||
void mcs_spin_unlock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
|
||||
{
|
||||
struct mcs_spinlock *next = ACCESS_ONCE(node->next);
|
||||
struct mcs_spinlock *next = READ_ONCE(node->next);
|
||||
|
||||
if (likely(!next)) {
|
||||
/*
|
||||
|
@ -100,7 +100,7 @@ void mcs_spin_unlock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
|
|||
if (likely(cmpxchg(lock, node, NULL) == node))
|
||||
return;
|
||||
/* Wait until the next pointer is set */
|
||||
while (!(next = ACCESS_ONCE(node->next)))
|
||||
while (!(next = READ_ONCE(node->next)))
|
||||
cpu_relax_lowlatency();
|
||||
}
|
||||
|
||||
|
|
|
@ -266,7 +266,7 @@ static inline int mutex_can_spin_on_owner(struct mutex *lock)
|
|||
return 0;
|
||||
|
||||
rcu_read_lock();
|
||||
owner = ACCESS_ONCE(lock->owner);
|
||||
owner = READ_ONCE(lock->owner);
|
||||
if (owner)
|
||||
retval = owner->on_cpu;
|
||||
rcu_read_unlock();
|
||||
|
@ -340,7 +340,7 @@ static bool mutex_optimistic_spin(struct mutex *lock,
|
|||
* As such, when deadlock detection needs to be
|
||||
* performed the optimistic spinning cannot be done.
|
||||
*/
|
||||
if (ACCESS_ONCE(ww->ctx))
|
||||
if (READ_ONCE(ww->ctx))
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -348,7 +348,7 @@ static bool mutex_optimistic_spin(struct mutex *lock,
|
|||
* If there's an owner, wait for it to either
|
||||
* release the lock or go to sleep.
|
||||
*/
|
||||
owner = ACCESS_ONCE(lock->owner);
|
||||
owner = READ_ONCE(lock->owner);
|
||||
if (owner && !mutex_spin_on_owner(lock, owner))
|
||||
break;
|
||||
|
||||
|
@ -487,7 +487,7 @@ static inline int __sched
|
|||
__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
|
||||
{
|
||||
struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
|
||||
struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
|
||||
struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
|
||||
|
||||
if (!hold_ctx)
|
||||
return 0;
|
||||
|
|
|
@ -98,7 +98,7 @@ bool osq_lock(struct optimistic_spin_queue *lock)
|
|||
|
||||
prev = decode_cpu(old);
|
||||
node->prev = prev;
|
||||
ACCESS_ONCE(prev->next) = node;
|
||||
WRITE_ONCE(prev->next, node);
|
||||
|
||||
/*
|
||||
* Normally @prev is untouchable after the above store; because at that
|
||||
|
@ -109,7 +109,7 @@ bool osq_lock(struct optimistic_spin_queue *lock)
|
|||
* cmpxchg in an attempt to undo our queueing.
|
||||
*/
|
||||
|
||||
while (!ACCESS_ONCE(node->locked)) {
|
||||
while (!READ_ONCE(node->locked)) {
|
||||
/*
|
||||
* If we need to reschedule bail... so we can block.
|
||||
*/
|
||||
|
@ -148,7 +148,7 @@ unqueue:
|
|||
* Or we race against a concurrent unqueue()'s step-B, in which
|
||||
* case its step-C will write us a new @node->prev pointer.
|
||||
*/
|
||||
prev = ACCESS_ONCE(node->prev);
|
||||
prev = READ_ONCE(node->prev);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -170,8 +170,8 @@ unqueue:
|
|||
* it will wait in Step-A.
|
||||
*/
|
||||
|
||||
ACCESS_ONCE(next->prev) = prev;
|
||||
ACCESS_ONCE(prev->next) = next;
|
||||
WRITE_ONCE(next->prev, prev);
|
||||
WRITE_ONCE(prev->next, next);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -193,11 +193,11 @@ void osq_unlock(struct optimistic_spin_queue *lock)
|
|||
node = this_cpu_ptr(&osq_node);
|
||||
next = xchg(&node->next, NULL);
|
||||
if (next) {
|
||||
ACCESS_ONCE(next->locked) = 1;
|
||||
WRITE_ONCE(next->locked, 1);
|
||||
return;
|
||||
}
|
||||
|
||||
next = osq_wait_next(lock, node, NULL);
|
||||
if (next)
|
||||
ACCESS_ONCE(next->locked) = 1;
|
||||
WRITE_ONCE(next->locked, 1);
|
||||
}
|
||||
|
|
|
@ -279,7 +279,7 @@ static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
|
|||
*/
|
||||
static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
|
||||
{
|
||||
long old, count = ACCESS_ONCE(sem->count);
|
||||
long old, count = READ_ONCE(sem->count);
|
||||
|
||||
while (true) {
|
||||
if (!(count == 0 || count == RWSEM_WAITING_BIAS))
|
||||
|
@ -304,9 +304,9 @@ static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
|
|||
return false;
|
||||
|
||||
rcu_read_lock();
|
||||
owner = ACCESS_ONCE(sem->owner);
|
||||
owner = READ_ONCE(sem->owner);
|
||||
if (!owner) {
|
||||
long count = ACCESS_ONCE(sem->count);
|
||||
long count = READ_ONCE(sem->count);
|
||||
/*
|
||||
* If sem->owner is not set, yet we have just recently entered the
|
||||
* slowpath with the lock being active, then there is a possibility
|
||||
|
@ -385,7 +385,7 @@ static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
|
|||
goto done;
|
||||
|
||||
while (true) {
|
||||
owner = ACCESS_ONCE(sem->owner);
|
||||
owner = READ_ONCE(sem->owner);
|
||||
if (owner && !rwsem_spin_on_owner(sem, owner))
|
||||
break;
|
||||
|
||||
|
@ -459,7 +459,7 @@ struct rw_semaphore __sched *rwsem_down_write_failed(struct rw_semaphore *sem)
|
|||
|
||||
/* we're now waiting on the lock, but no longer actively locking */
|
||||
if (waiting) {
|
||||
count = ACCESS_ONCE(sem->count);
|
||||
count = READ_ONCE(sem->count);
|
||||
|
||||
/*
|
||||
* If there were already threads queued before us and there are
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#define CMPXCHG_LOOP(CODE, SUCCESS) do { \
|
||||
struct lockref old; \
|
||||
BUILD_BUG_ON(sizeof(old) != 8); \
|
||||
old.lock_count = ACCESS_ONCE(lockref->lock_count); \
|
||||
old.lock_count = READ_ONCE(lockref->lock_count); \
|
||||
while (likely(arch_spin_value_unlocked(old.lock.rlock.raw_lock))) { \
|
||||
struct lockref new = old, prev = old; \
|
||||
CODE \
|
||||
|
|
Loading…
Reference in New Issue