[PATCH] NTP: Move all the NTP related code to ntp.c
Move all the NTP related code to ntp.c [akpm@osdl.org: cleanups, build fix] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
c902e0a010
commit
4c7ee8de95
|
@ -294,11 +294,15 @@ extern void register_time_interpolator(struct time_interpolator *);
|
|||
extern void unregister_time_interpolator(struct time_interpolator *);
|
||||
extern void time_interpolator_reset(void);
|
||||
extern unsigned long time_interpolator_get_offset(void);
|
||||
extern void time_interpolator_update(long delta_nsec);
|
||||
|
||||
#else /* !CONFIG_TIME_INTERPOLATION */
|
||||
|
||||
static inline void
|
||||
time_interpolator_reset(void)
|
||||
static inline void time_interpolator_reset(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void time_interpolator_update(long delta_nsec)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -309,6 +313,8 @@ time_interpolator_reset(void)
|
|||
/* Returns how long ticks are at present, in ns / 2^(SHIFT_SCALE-10). */
|
||||
extern u64 current_tick_length(void);
|
||||
|
||||
extern void second_overflow(void);
|
||||
extern void update_ntp_one_tick(void);
|
||||
extern int do_adjtimex(struct timex *);
|
||||
|
||||
#endif /* KERNEL */
|
||||
|
|
173
kernel/time.c
173
kernel/time.c
|
@ -202,179 +202,6 @@ asmlinkage long sys_settimeofday(struct timeval __user *tv,
|
|||
return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
||||
}
|
||||
|
||||
/* we call this to notify the arch when the clock is being
|
||||
* controlled. If no such arch routine, do nothing.
|
||||
*/
|
||||
void __attribute__ ((weak)) notify_arch_cmos_timer(void)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/* adjtimex mainly allows reading (and writing, if superuser) of
|
||||
* kernel time-keeping variables. used by xntpd.
|
||||
*/
|
||||
int do_adjtimex(struct timex *txc)
|
||||
{
|
||||
long ltemp, mtemp, save_adjust;
|
||||
int result;
|
||||
|
||||
/* In order to modify anything, you gotta be super-user! */
|
||||
if (txc->modes && !capable(CAP_SYS_TIME))
|
||||
return -EPERM;
|
||||
|
||||
/* Now we validate the data before disabling interrupts */
|
||||
|
||||
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
||||
/* singleshot must not be used with any other mode bits */
|
||||
if (txc->modes != ADJ_OFFSET_SINGLESHOT)
|
||||
return -EINVAL;
|
||||
|
||||
if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
|
||||
/* adjustment Offset limited to +- .512 seconds */
|
||||
if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
|
||||
return -EINVAL;
|
||||
|
||||
/* if the quartz is off by more than 10% something is VERY wrong ! */
|
||||
if (txc->modes & ADJ_TICK)
|
||||
if (txc->tick < 900000/USER_HZ ||
|
||||
txc->tick > 1100000/USER_HZ)
|
||||
return -EINVAL;
|
||||
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
result = time_state; /* mostly `TIME_OK' */
|
||||
|
||||
/* Save for later - semantics of adjtime is to return old value */
|
||||
save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
|
||||
|
||||
#if 0 /* STA_CLOCKERR is never set yet */
|
||||
time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
|
||||
#endif
|
||||
/* If there are input parameters, then process them */
|
||||
if (txc->modes)
|
||||
{
|
||||
if (txc->modes & ADJ_STATUS) /* only set allowed bits */
|
||||
time_status = (txc->status & ~STA_RONLY) |
|
||||
(time_status & STA_RONLY);
|
||||
|
||||
if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
|
||||
if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_freq = txc->freq;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_MAXERROR) {
|
||||
if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_maxerror = txc->maxerror;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_ESTERROR) {
|
||||
if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_esterror = txc->esterror;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
|
||||
if (txc->constant < 0) { /* NTP v4 uses values > 6 */
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_constant = txc->constant;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
|
||||
if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
|
||||
/* adjtime() is independent from ntp_adjtime() */
|
||||
if ((time_next_adjust = txc->offset) == 0)
|
||||
time_adjust = 0;
|
||||
}
|
||||
else if (time_status & STA_PLL) {
|
||||
ltemp = txc->offset;
|
||||
|
||||
/*
|
||||
* Scale the phase adjustment and
|
||||
* clamp to the operating range.
|
||||
*/
|
||||
if (ltemp > MAXPHASE)
|
||||
time_offset = MAXPHASE << SHIFT_UPDATE;
|
||||
else if (ltemp < -MAXPHASE)
|
||||
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
||||
else
|
||||
time_offset = ltemp << SHIFT_UPDATE;
|
||||
|
||||
/*
|
||||
* Select whether the frequency is to be controlled
|
||||
* and in which mode (PLL or FLL). Clamp to the operating
|
||||
* range. Ugly multiply/divide should be replaced someday.
|
||||
*/
|
||||
|
||||
if (time_status & STA_FREQHOLD || time_reftime == 0)
|
||||
time_reftime = xtime.tv_sec;
|
||||
mtemp = xtime.tv_sec - time_reftime;
|
||||
time_reftime = xtime.tv_sec;
|
||||
if (time_status & STA_FLL) {
|
||||
if (mtemp >= MINSEC) {
|
||||
ltemp = (time_offset / mtemp) << (SHIFT_USEC -
|
||||
SHIFT_UPDATE);
|
||||
time_freq += shift_right(ltemp, SHIFT_KH);
|
||||
} else /* calibration interval too short (p. 12) */
|
||||
result = TIME_ERROR;
|
||||
} else { /* PLL mode */
|
||||
if (mtemp < MAXSEC) {
|
||||
ltemp *= mtemp;
|
||||
time_freq += shift_right(ltemp,(time_constant +
|
||||
time_constant +
|
||||
SHIFT_KF - SHIFT_USEC));
|
||||
} else /* calibration interval too long (p. 12) */
|
||||
result = TIME_ERROR;
|
||||
}
|
||||
time_freq = min(time_freq, time_tolerance);
|
||||
time_freq = max(time_freq, -time_tolerance);
|
||||
} /* STA_PLL */
|
||||
} /* txc->modes & ADJ_OFFSET */
|
||||
if (txc->modes & ADJ_TICK) {
|
||||
tick_usec = txc->tick;
|
||||
tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
|
||||
}
|
||||
} /* txc->modes */
|
||||
leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
|
||||
result = TIME_ERROR;
|
||||
|
||||
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
||||
txc->offset = save_adjust;
|
||||
else {
|
||||
txc->offset = shift_right(time_offset, SHIFT_UPDATE);
|
||||
}
|
||||
txc->freq = time_freq;
|
||||
txc->maxerror = time_maxerror;
|
||||
txc->esterror = time_esterror;
|
||||
txc->status = time_status;
|
||||
txc->constant = time_constant;
|
||||
txc->precision = time_precision;
|
||||
txc->tolerance = time_tolerance;
|
||||
txc->tick = tick_usec;
|
||||
|
||||
/* PPS is not implemented, so these are zero */
|
||||
txc->ppsfreq = 0;
|
||||
txc->jitter = 0;
|
||||
txc->shift = 0;
|
||||
txc->stabil = 0;
|
||||
txc->jitcnt = 0;
|
||||
txc->calcnt = 0;
|
||||
txc->errcnt = 0;
|
||||
txc->stbcnt = 0;
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
do_gettimeofday(&txc->time);
|
||||
notify_arch_cmos_timer();
|
||||
return(result);
|
||||
}
|
||||
|
||||
asmlinkage long sys_adjtimex(struct timex __user *txc_p)
|
||||
{
|
||||
struct timex txc; /* Local copy of parameter */
|
||||
|
|
|
@ -1 +1 @@
|
|||
obj-y += clocksource.o jiffies.o
|
||||
obj-y += ntp.o clocksource.o jiffies.o
|
||||
|
|
|
@ -0,0 +1,389 @@
|
|||
/*
|
||||
* linux/kernel/time/ntp.c
|
||||
*
|
||||
* NTP state machine interfaces and logic.
|
||||
*
|
||||
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
||||
* Please see those files for relevant copyright info and historical
|
||||
* changelogs.
|
||||
*/
|
||||
|
||||
#include <linux/mm.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/timex.h>
|
||||
|
||||
#include <asm/div64.h>
|
||||
#include <asm/timex.h>
|
||||
|
||||
/* Don't completely fail for HZ > 500. */
|
||||
int tickadj = 500/HZ ? : 1; /* microsecs */
|
||||
|
||||
/*
|
||||
* phase-lock loop variables
|
||||
*/
|
||||
/* TIME_ERROR prevents overwriting the CMOS clock */
|
||||
int time_state = TIME_OK; /* clock synchronization status */
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
long time_offset; /* time adjustment (us) */
|
||||
long time_constant = 2; /* pll time constant */
|
||||
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
|
||||
long time_precision = 1; /* clock precision (us) */
|
||||
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
|
||||
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
|
||||
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
|
||||
/* frequency offset (scaled ppm)*/
|
||||
static long time_adj; /* tick adjust (scaled 1 / HZ) */
|
||||
long time_reftime; /* time at last adjustment (s) */
|
||||
long time_adjust;
|
||||
long time_next_adjust;
|
||||
|
||||
/*
|
||||
* this routine handles the overflow of the microsecond field
|
||||
*
|
||||
* The tricky bits of code to handle the accurate clock support
|
||||
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
||||
* They were originally developed for SUN and DEC kernels.
|
||||
* All the kudos should go to Dave for this stuff.
|
||||
*/
|
||||
void second_overflow(void)
|
||||
{
|
||||
long ltemp;
|
||||
|
||||
/* Bump the maxerror field */
|
||||
time_maxerror += time_tolerance >> SHIFT_USEC;
|
||||
if (time_maxerror > NTP_PHASE_LIMIT) {
|
||||
time_maxerror = NTP_PHASE_LIMIT;
|
||||
time_status |= STA_UNSYNC;
|
||||
}
|
||||
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at the end of the
|
||||
* day, the system clock is set back one second; if in leap-delete
|
||||
* state, the system clock is set ahead one second. The microtime()
|
||||
* routine or external clock driver will insure that reported time is
|
||||
* always monotonic. The ugly divides should be replaced.
|
||||
*/
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
if (time_status & STA_INS)
|
||||
time_state = TIME_INS;
|
||||
else if (time_status & STA_DEL)
|
||||
time_state = TIME_DEL;
|
||||
break;
|
||||
case TIME_INS:
|
||||
if (xtime.tv_sec % 86400 == 0) {
|
||||
xtime.tv_sec--;
|
||||
wall_to_monotonic.tv_sec++;
|
||||
/*
|
||||
* The timer interpolator will make time change
|
||||
* gradually instead of an immediate jump by one second
|
||||
*/
|
||||
time_interpolator_update(-NSEC_PER_SEC);
|
||||
time_state = TIME_OOP;
|
||||
clock_was_set();
|
||||
printk(KERN_NOTICE "Clock: inserting leap second "
|
||||
"23:59:60 UTC\n");
|
||||
}
|
||||
break;
|
||||
case TIME_DEL:
|
||||
if ((xtime.tv_sec + 1) % 86400 == 0) {
|
||||
xtime.tv_sec++;
|
||||
wall_to_monotonic.tv_sec--;
|
||||
/*
|
||||
* Use of time interpolator for a gradual change of
|
||||
* time
|
||||
*/
|
||||
time_interpolator_update(NSEC_PER_SEC);
|
||||
time_state = TIME_WAIT;
|
||||
clock_was_set();
|
||||
printk(KERN_NOTICE "Clock: deleting leap second "
|
||||
"23:59:59 UTC\n");
|
||||
}
|
||||
break;
|
||||
case TIME_OOP:
|
||||
time_state = TIME_WAIT;
|
||||
break;
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute the phase adjustment for the next second. In PLL mode, the
|
||||
* offset is reduced by a fixed factor times the time constant. In FLL
|
||||
* mode the offset is used directly. In either mode, the maximum phase
|
||||
* adjustment for each second is clamped so as to spread the adjustment
|
||||
* over not more than the number of seconds between updates.
|
||||
*/
|
||||
ltemp = time_offset;
|
||||
if (!(time_status & STA_FLL))
|
||||
ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
|
||||
ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
||||
ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
||||
time_offset -= ltemp;
|
||||
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
|
||||
/*
|
||||
* Compute the frequency estimate and additional phase adjustment due
|
||||
* to frequency error for the next second.
|
||||
*/
|
||||
ltemp = time_freq;
|
||||
time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
|
||||
|
||||
#if HZ == 100
|
||||
/*
|
||||
* Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
|
||||
* get 128.125; => only 0.125% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
|
||||
#endif
|
||||
#if HZ == 250
|
||||
/*
|
||||
* Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
|
||||
* 0.78125% to get 255.85938; => only 0.05% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
||||
#endif
|
||||
#if HZ == 1000
|
||||
/*
|
||||
* Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
|
||||
* 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns how many microseconds we need to add to xtime this tick
|
||||
* in doing an adjustment requested with adjtime.
|
||||
*/
|
||||
static long adjtime_adjustment(void)
|
||||
{
|
||||
long time_adjust_step;
|
||||
|
||||
time_adjust_step = time_adjust;
|
||||
if (time_adjust_step) {
|
||||
/*
|
||||
* We are doing an adjtime thing. Prepare time_adjust_step to
|
||||
* be within bounds. Note that a positive time_adjust means we
|
||||
* want the clock to run faster.
|
||||
*
|
||||
* Limit the amount of the step to be in the range
|
||||
* -tickadj .. +tickadj
|
||||
*/
|
||||
time_adjust_step = min(time_adjust_step, (long)tickadj);
|
||||
time_adjust_step = max(time_adjust_step, (long)-tickadj);
|
||||
}
|
||||
return time_adjust_step;
|
||||
}
|
||||
|
||||
/* in the NTP reference this is called "hardclock()" */
|
||||
void update_ntp_one_tick(void)
|
||||
{
|
||||
long time_adjust_step;
|
||||
|
||||
time_adjust_step = adjtime_adjustment();
|
||||
if (time_adjust_step)
|
||||
/* Reduce by this step the amount of time left */
|
||||
time_adjust -= time_adjust_step;
|
||||
|
||||
/* Changes by adjtime() do not take effect till next tick. */
|
||||
if (time_next_adjust != 0) {
|
||||
time_adjust = time_next_adjust;
|
||||
time_next_adjust = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return how long ticks are at the moment, that is, how much time
|
||||
* update_wall_time_one_tick will add to xtime next time we call it
|
||||
* (assuming no calls to do_adjtimex in the meantime).
|
||||
* The return value is in fixed-point nanoseconds shifted by the
|
||||
* specified number of bits to the right of the binary point.
|
||||
* This function has no side-effects.
|
||||
*/
|
||||
u64 current_tick_length(void)
|
||||
{
|
||||
long delta_nsec;
|
||||
u64 ret;
|
||||
|
||||
/* calculate the finest interval NTP will allow.
|
||||
* ie: nanosecond value shifted by (SHIFT_SCALE - 10)
|
||||
*/
|
||||
delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
|
||||
ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
|
||||
ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
void __attribute__ ((weak)) notify_arch_cmos_timer(void)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/* adjtimex mainly allows reading (and writing, if superuser) of
|
||||
* kernel time-keeping variables. used by xntpd.
|
||||
*/
|
||||
int do_adjtimex(struct timex *txc)
|
||||
{
|
||||
long ltemp, mtemp, save_adjust;
|
||||
int result;
|
||||
|
||||
/* In order to modify anything, you gotta be super-user! */
|
||||
if (txc->modes && !capable(CAP_SYS_TIME))
|
||||
return -EPERM;
|
||||
|
||||
/* Now we validate the data before disabling interrupts */
|
||||
|
||||
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
||||
/* singleshot must not be used with any other mode bits */
|
||||
if (txc->modes != ADJ_OFFSET_SINGLESHOT)
|
||||
return -EINVAL;
|
||||
|
||||
if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
|
||||
/* adjustment Offset limited to +- .512 seconds */
|
||||
if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
|
||||
return -EINVAL;
|
||||
|
||||
/* if the quartz is off by more than 10% something is VERY wrong ! */
|
||||
if (txc->modes & ADJ_TICK)
|
||||
if (txc->tick < 900000/USER_HZ ||
|
||||
txc->tick > 1100000/USER_HZ)
|
||||
return -EINVAL;
|
||||
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
result = time_state; /* mostly `TIME_OK' */
|
||||
|
||||
/* Save for later - semantics of adjtime is to return old value */
|
||||
save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
|
||||
|
||||
#if 0 /* STA_CLOCKERR is never set yet */
|
||||
time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
|
||||
#endif
|
||||
/* If there are input parameters, then process them */
|
||||
if (txc->modes)
|
||||
{
|
||||
if (txc->modes & ADJ_STATUS) /* only set allowed bits */
|
||||
time_status = (txc->status & ~STA_RONLY) |
|
||||
(time_status & STA_RONLY);
|
||||
|
||||
if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
|
||||
if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_freq = txc->freq;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_MAXERROR) {
|
||||
if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_maxerror = txc->maxerror;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_ESTERROR) {
|
||||
if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_esterror = txc->esterror;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
|
||||
if (txc->constant < 0) { /* NTP v4 uses values > 6 */
|
||||
result = -EINVAL;
|
||||
goto leave;
|
||||
}
|
||||
time_constant = txc->constant;
|
||||
}
|
||||
|
||||
if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
|
||||
if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
|
||||
/* adjtime() is independent from ntp_adjtime() */
|
||||
if ((time_next_adjust = txc->offset) == 0)
|
||||
time_adjust = 0;
|
||||
}
|
||||
else if (time_status & STA_PLL) {
|
||||
ltemp = txc->offset;
|
||||
|
||||
/*
|
||||
* Scale the phase adjustment and
|
||||
* clamp to the operating range.
|
||||
*/
|
||||
if (ltemp > MAXPHASE)
|
||||
time_offset = MAXPHASE << SHIFT_UPDATE;
|
||||
else if (ltemp < -MAXPHASE)
|
||||
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
||||
else
|
||||
time_offset = ltemp << SHIFT_UPDATE;
|
||||
|
||||
/*
|
||||
* Select whether the frequency is to be controlled
|
||||
* and in which mode (PLL or FLL). Clamp to the operating
|
||||
* range. Ugly multiply/divide should be replaced someday.
|
||||
*/
|
||||
|
||||
if (time_status & STA_FREQHOLD || time_reftime == 0)
|
||||
time_reftime = xtime.tv_sec;
|
||||
mtemp = xtime.tv_sec - time_reftime;
|
||||
time_reftime = xtime.tv_sec;
|
||||
if (time_status & STA_FLL) {
|
||||
if (mtemp >= MINSEC) {
|
||||
ltemp = (time_offset / mtemp) << (SHIFT_USEC -
|
||||
SHIFT_UPDATE);
|
||||
time_freq += shift_right(ltemp, SHIFT_KH);
|
||||
} else /* calibration interval too short (p. 12) */
|
||||
result = TIME_ERROR;
|
||||
} else { /* PLL mode */
|
||||
if (mtemp < MAXSEC) {
|
||||
ltemp *= mtemp;
|
||||
time_freq += shift_right(ltemp,(time_constant +
|
||||
time_constant +
|
||||
SHIFT_KF - SHIFT_USEC));
|
||||
} else /* calibration interval too long (p. 12) */
|
||||
result = TIME_ERROR;
|
||||
}
|
||||
time_freq = min(time_freq, time_tolerance);
|
||||
time_freq = max(time_freq, -time_tolerance);
|
||||
} /* STA_PLL */
|
||||
} /* txc->modes & ADJ_OFFSET */
|
||||
if (txc->modes & ADJ_TICK) {
|
||||
tick_usec = txc->tick;
|
||||
tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
|
||||
}
|
||||
} /* txc->modes */
|
||||
leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
|
||||
result = TIME_ERROR;
|
||||
|
||||
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
||||
txc->offset = save_adjust;
|
||||
else {
|
||||
txc->offset = shift_right(time_offset, SHIFT_UPDATE);
|
||||
}
|
||||
txc->freq = time_freq;
|
||||
txc->maxerror = time_maxerror;
|
||||
txc->esterror = time_esterror;
|
||||
txc->status = time_status;
|
||||
txc->constant = time_constant;
|
||||
txc->precision = time_precision;
|
||||
txc->tolerance = time_tolerance;
|
||||
txc->tick = tick_usec;
|
||||
|
||||
/* PPS is not implemented, so these are zero */
|
||||
txc->ppsfreq = 0;
|
||||
txc->jitter = 0;
|
||||
txc->shift = 0;
|
||||
txc->stabil = 0;
|
||||
txc->jitcnt = 0;
|
||||
txc->calcnt = 0;
|
||||
txc->errcnt = 0;
|
||||
txc->stbcnt = 0;
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
do_gettimeofday(&txc->time);
|
||||
notify_arch_cmos_timer();
|
||||
return(result);
|
||||
}
|
211
kernel/timer.c
211
kernel/timer.c
|
@ -41,12 +41,6 @@
|
|||
#include <asm/timex.h>
|
||||
#include <asm/io.h>
|
||||
|
||||
#ifdef CONFIG_TIME_INTERPOLATION
|
||||
static void time_interpolator_update(long delta_nsec);
|
||||
#else
|
||||
#define time_interpolator_update(x)
|
||||
#endif
|
||||
|
||||
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
|
||||
|
||||
EXPORT_SYMBOL(jiffies_64);
|
||||
|
@ -587,209 +581,6 @@ struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
|
|||
|
||||
EXPORT_SYMBOL(xtime);
|
||||
|
||||
/* Don't completely fail for HZ > 500. */
|
||||
int tickadj = 500/HZ ? : 1; /* microsecs */
|
||||
|
||||
|
||||
/*
|
||||
* phase-lock loop variables
|
||||
*/
|
||||
/* TIME_ERROR prevents overwriting the CMOS clock */
|
||||
int time_state = TIME_OK; /* clock synchronization status */
|
||||
int time_status = STA_UNSYNC; /* clock status bits */
|
||||
long time_offset; /* time adjustment (us) */
|
||||
long time_constant = 2; /* pll time constant */
|
||||
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
|
||||
long time_precision = 1; /* clock precision (us) */
|
||||
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
|
||||
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
|
||||
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
|
||||
/* frequency offset (scaled ppm)*/
|
||||
static long time_adj; /* tick adjust (scaled 1 / HZ) */
|
||||
long time_reftime; /* time at last adjustment (s) */
|
||||
long time_adjust;
|
||||
long time_next_adjust;
|
||||
|
||||
/*
|
||||
* this routine handles the overflow of the microsecond field
|
||||
*
|
||||
* The tricky bits of code to handle the accurate clock support
|
||||
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
||||
* They were originally developed for SUN and DEC kernels.
|
||||
* All the kudos should go to Dave for this stuff.
|
||||
*
|
||||
*/
|
||||
static void second_overflow(void)
|
||||
{
|
||||
long ltemp;
|
||||
|
||||
/* Bump the maxerror field */
|
||||
time_maxerror += time_tolerance >> SHIFT_USEC;
|
||||
if (time_maxerror > NTP_PHASE_LIMIT) {
|
||||
time_maxerror = NTP_PHASE_LIMIT;
|
||||
time_status |= STA_UNSYNC;
|
||||
}
|
||||
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at the end of the
|
||||
* day, the system clock is set back one second; if in leap-delete
|
||||
* state, the system clock is set ahead one second. The microtime()
|
||||
* routine or external clock driver will insure that reported time is
|
||||
* always monotonic. The ugly divides should be replaced.
|
||||
*/
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
if (time_status & STA_INS)
|
||||
time_state = TIME_INS;
|
||||
else if (time_status & STA_DEL)
|
||||
time_state = TIME_DEL;
|
||||
break;
|
||||
case TIME_INS:
|
||||
if (xtime.tv_sec % 86400 == 0) {
|
||||
xtime.tv_sec--;
|
||||
wall_to_monotonic.tv_sec++;
|
||||
/*
|
||||
* The timer interpolator will make time change
|
||||
* gradually instead of an immediate jump by one second
|
||||
*/
|
||||
time_interpolator_update(-NSEC_PER_SEC);
|
||||
time_state = TIME_OOP;
|
||||
clock_was_set();
|
||||
printk(KERN_NOTICE "Clock: inserting leap second "
|
||||
"23:59:60 UTC\n");
|
||||
}
|
||||
break;
|
||||
case TIME_DEL:
|
||||
if ((xtime.tv_sec + 1) % 86400 == 0) {
|
||||
xtime.tv_sec++;
|
||||
wall_to_monotonic.tv_sec--;
|
||||
/*
|
||||
* Use of time interpolator for a gradual change of
|
||||
* time
|
||||
*/
|
||||
time_interpolator_update(NSEC_PER_SEC);
|
||||
time_state = TIME_WAIT;
|
||||
clock_was_set();
|
||||
printk(KERN_NOTICE "Clock: deleting leap second "
|
||||
"23:59:59 UTC\n");
|
||||
}
|
||||
break;
|
||||
case TIME_OOP:
|
||||
time_state = TIME_WAIT;
|
||||
break;
|
||||
case TIME_WAIT:
|
||||
if (!(time_status & (STA_INS | STA_DEL)))
|
||||
time_state = TIME_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute the phase adjustment for the next second. In PLL mode, the
|
||||
* offset is reduced by a fixed factor times the time constant. In FLL
|
||||
* mode the offset is used directly. In either mode, the maximum phase
|
||||
* adjustment for each second is clamped so as to spread the adjustment
|
||||
* over not more than the number of seconds between updates.
|
||||
*/
|
||||
ltemp = time_offset;
|
||||
if (!(time_status & STA_FLL))
|
||||
ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
|
||||
ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
||||
ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
||||
time_offset -= ltemp;
|
||||
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
||||
|
||||
/*
|
||||
* Compute the frequency estimate and additional phase adjustment due
|
||||
* to frequency error for the next second.
|
||||
*/
|
||||
ltemp = time_freq;
|
||||
time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
|
||||
|
||||
#if HZ == 100
|
||||
/*
|
||||
* Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
|
||||
* get 128.125; => only 0.125% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
|
||||
#endif
|
||||
#if HZ == 250
|
||||
/*
|
||||
* Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
|
||||
* 0.78125% to get 255.85938; => only 0.05% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
||||
#endif
|
||||
#if HZ == 1000
|
||||
/*
|
||||
* Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
|
||||
* 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
|
||||
*/
|
||||
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns how many microseconds we need to add to xtime this tick
|
||||
* in doing an adjustment requested with adjtime.
|
||||
*/
|
||||
static long adjtime_adjustment(void)
|
||||
{
|
||||
long time_adjust_step;
|
||||
|
||||
time_adjust_step = time_adjust;
|
||||
if (time_adjust_step) {
|
||||
/*
|
||||
* We are doing an adjtime thing. Prepare time_adjust_step to
|
||||
* be within bounds. Note that a positive time_adjust means we
|
||||
* want the clock to run faster.
|
||||
*
|
||||
* Limit the amount of the step to be in the range
|
||||
* -tickadj .. +tickadj
|
||||
*/
|
||||
time_adjust_step = min(time_adjust_step, (long)tickadj);
|
||||
time_adjust_step = max(time_adjust_step, (long)-tickadj);
|
||||
}
|
||||
return time_adjust_step;
|
||||
}
|
||||
|
||||
/* in the NTP reference this is called "hardclock()" */
|
||||
static void update_ntp_one_tick(void)
|
||||
{
|
||||
long time_adjust_step;
|
||||
|
||||
time_adjust_step = adjtime_adjustment();
|
||||
if (time_adjust_step)
|
||||
/* Reduce by this step the amount of time left */
|
||||
time_adjust -= time_adjust_step;
|
||||
|
||||
/* Changes by adjtime() do not take effect till next tick. */
|
||||
if (time_next_adjust != 0) {
|
||||
time_adjust = time_next_adjust;
|
||||
time_next_adjust = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return how long ticks are at the moment, that is, how much time
|
||||
* update_wall_time_one_tick will add to xtime next time we call it
|
||||
* (assuming no calls to do_adjtimex in the meantime).
|
||||
* The return value is in fixed-point nanoseconds shifted by the
|
||||
* specified number of bits to the right of the binary point.
|
||||
* This function has no side-effects.
|
||||
*/
|
||||
u64 current_tick_length(void)
|
||||
{
|
||||
long delta_nsec;
|
||||
u64 ret;
|
||||
|
||||
/* calculate the finest interval NTP will allow.
|
||||
* ie: nanosecond value shifted by (SHIFT_SCALE - 10)
|
||||
*/
|
||||
delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
|
||||
ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
|
||||
ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* XXX - all of this timekeeping code should be later moved to time.c */
|
||||
#include <linux/clocksource.h>
|
||||
|
@ -1775,7 +1566,7 @@ unsigned long time_interpolator_get_offset(void)
|
|||
#define INTERPOLATOR_ADJUST 65536
|
||||
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
|
||||
|
||||
static void time_interpolator_update(long delta_nsec)
|
||||
void time_interpolator_update(long delta_nsec)
|
||||
{
|
||||
u64 counter;
|
||||
unsigned long offset;
|
||||
|
|
Loading…
Reference in New Issue