diff --git a/Documentation/RCU/index.rst b/Documentation/RCU/index.rst index c81d0e4fd999..81a0a1e5f767 100644 --- a/Documentation/RCU/index.rst +++ b/Documentation/RCU/index.rst @@ -8,6 +8,7 @@ RCU concepts :maxdepth: 3 arrayRCU + rcubarrier rcu_dereference whatisRCU rcu diff --git a/Documentation/RCU/rcubarrier.txt b/Documentation/RCU/rcubarrier.rst similarity index 72% rename from Documentation/RCU/rcubarrier.txt rename to Documentation/RCU/rcubarrier.rst index a2782df69732..f64f4413a47c 100644 --- a/Documentation/RCU/rcubarrier.txt +++ b/Documentation/RCU/rcubarrier.rst @@ -1,4 +1,7 @@ +.. _rcu_barrier: + RCU and Unloadable Modules +========================== [Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/] @@ -21,7 +24,7 @@ given that readers might well leave absolutely no trace of their presence? There is a synchronize_rcu() primitive that blocks until all pre-existing readers have completed. An updater wishing to delete an element p from a linked list might do the following, while holding an -appropriate lock, of course: +appropriate lock, of course:: list_del_rcu(p); synchronize_rcu(); @@ -32,13 +35,13 @@ primitive must be used instead. This primitive takes a pointer to an rcu_head struct placed within the RCU-protected data structure and another pointer to a function that may be invoked later to free that structure. Code to delete an element p from the linked list from IRQ -context might then be as follows: +context might then be as follows:: list_del_rcu(p); call_rcu(&p->rcu, p_callback); Since call_rcu() never blocks, this code can safely be used from within -IRQ context. The function p_callback() might be defined as follows: +IRQ context. The function p_callback() might be defined as follows:: static void p_callback(struct rcu_head *rp) { @@ -49,6 +52,7 @@ IRQ context. The function p_callback() might be defined as follows: Unloading Modules That Use call_rcu() +------------------------------------- But what if p_callback is defined in an unloadable module? @@ -69,10 +73,11 @@ in realtime kernels in order to avoid excessive scheduling latencies. rcu_barrier() +------------- We instead need the rcu_barrier() primitive. Rather than waiting for a grace period to elapse, rcu_barrier() waits for all outstanding RCU -callbacks to complete. Please note that rcu_barrier() does -not- imply +callbacks to complete. Please note that rcu_barrier() does **not** imply synchronize_rcu(), in particular, if there are no RCU callbacks queued anywhere, rcu_barrier() is within its rights to return immediately, without waiting for a grace period to elapse. @@ -88,79 +93,79 @@ must match the flavor of rcu_barrier() with that of call_rcu(). If your module uses multiple flavors of call_rcu(), then it must also use multiple flavors of rcu_barrier() when unloading that module. For example, if it uses call_rcu(), call_srcu() on srcu_struct_1, and call_srcu() on -srcu_struct_2(), then the following three lines of code will be required -when unloading: +srcu_struct_2, then the following three lines of code will be required +when unloading:: 1 rcu_barrier(); 2 srcu_barrier(&srcu_struct_1); 3 srcu_barrier(&srcu_struct_2); The rcutorture module makes use of rcu_barrier() in its exit function -as follows: +as follows:: - 1 static void - 2 rcu_torture_cleanup(void) - 3 { - 4 int i; + 1 static void + 2 rcu_torture_cleanup(void) + 3 { + 4 int i; 5 - 6 fullstop = 1; - 7 if (shuffler_task != NULL) { + 6 fullstop = 1; + 7 if (shuffler_task != NULL) { 8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); 9 kthread_stop(shuffler_task); -10 } -11 shuffler_task = NULL; -12 -13 if (writer_task != NULL) { -14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task"); -15 kthread_stop(writer_task); -16 } -17 writer_task = NULL; -18 -19 if (reader_tasks != NULL) { -20 for (i = 0; i < nrealreaders; i++) { -21 if (reader_tasks[i] != NULL) { -22 VERBOSE_PRINTK_STRING( -23 "Stopping rcu_torture_reader task"); -24 kthread_stop(reader_tasks[i]); -25 } -26 reader_tasks[i] = NULL; -27 } -28 kfree(reader_tasks); -29 reader_tasks = NULL; -30 } -31 rcu_torture_current = NULL; -32 -33 if (fakewriter_tasks != NULL) { -34 for (i = 0; i < nfakewriters; i++) { -35 if (fakewriter_tasks[i] != NULL) { -36 VERBOSE_PRINTK_STRING( -37 "Stopping rcu_torture_fakewriter task"); -38 kthread_stop(fakewriter_tasks[i]); -39 } -40 fakewriter_tasks[i] = NULL; -41 } -42 kfree(fakewriter_tasks); -43 fakewriter_tasks = NULL; -44 } -45 -46 if (stats_task != NULL) { -47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task"); -48 kthread_stop(stats_task); -49 } -50 stats_task = NULL; -51 -52 /* Wait for all RCU callbacks to fire. */ -53 rcu_barrier(); -54 -55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ -56 -57 if (cur_ops->cleanup != NULL) -58 cur_ops->cleanup(); -59 if (atomic_read(&n_rcu_torture_error)) -60 rcu_torture_print_module_parms("End of test: FAILURE"); -61 else -62 rcu_torture_print_module_parms("End of test: SUCCESS"); -63 } + 10 } + 11 shuffler_task = NULL; + 12 + 13 if (writer_task != NULL) { + 14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task"); + 15 kthread_stop(writer_task); + 16 } + 17 writer_task = NULL; + 18 + 19 if (reader_tasks != NULL) { + 20 for (i = 0; i < nrealreaders; i++) { + 21 if (reader_tasks[i] != NULL) { + 22 VERBOSE_PRINTK_STRING( + 23 "Stopping rcu_torture_reader task"); + 24 kthread_stop(reader_tasks[i]); + 25 } + 26 reader_tasks[i] = NULL; + 27 } + 28 kfree(reader_tasks); + 29 reader_tasks = NULL; + 30 } + 31 rcu_torture_current = NULL; + 32 + 33 if (fakewriter_tasks != NULL) { + 34 for (i = 0; i < nfakewriters; i++) { + 35 if (fakewriter_tasks[i] != NULL) { + 36 VERBOSE_PRINTK_STRING( + 37 "Stopping rcu_torture_fakewriter task"); + 38 kthread_stop(fakewriter_tasks[i]); + 39 } + 40 fakewriter_tasks[i] = NULL; + 41 } + 42 kfree(fakewriter_tasks); + 43 fakewriter_tasks = NULL; + 44 } + 45 + 46 if (stats_task != NULL) { + 47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task"); + 48 kthread_stop(stats_task); + 49 } + 50 stats_task = NULL; + 51 + 52 /* Wait for all RCU callbacks to fire. */ + 53 rcu_barrier(); + 54 + 55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ + 56 + 57 if (cur_ops->cleanup != NULL) + 58 cur_ops->cleanup(); + 59 if (atomic_read(&n_rcu_torture_error)) + 60 rcu_torture_print_module_parms("End of test: FAILURE"); + 61 else + 62 rcu_torture_print_module_parms("End of test: SUCCESS"); + 63 } Line 6 sets a global variable that prevents any RCU callbacks from re-posting themselves. This will not be necessary in most cases, since @@ -176,9 +181,14 @@ for any pre-existing callbacks to complete. Then lines 55-62 print status and do operation-specific cleanup, and then return, permitting the module-unload operation to be completed. -Quick Quiz #1: Is there any other situation where rcu_barrier() might +.. _rcubarrier_quiz_1: + +Quick Quiz #1: + Is there any other situation where rcu_barrier() might be required? +:ref:`Answer to Quick Quiz #1 ` + Your module might have additional complications. For example, if your module invokes call_rcu() from timers, you will need to first cancel all the timers, and only then invoke rcu_barrier() to wait for any remaining @@ -188,11 +198,12 @@ Of course, if you module uses call_rcu(), you will need to invoke rcu_barrier() before unloading. Similarly, if your module uses call_srcu(), you will need to invoke srcu_barrier() before unloading, and on the same srcu_struct structure. If your module uses call_rcu() --and- call_srcu(), then you will need to invoke rcu_barrier() -and- +**and** call_srcu(), then you will need to invoke rcu_barrier() **and** srcu_barrier(). Implementing rcu_barrier() +-------------------------- Dipankar Sarma's implementation of rcu_barrier() makes use of the fact that RCU callbacks are never reordered once queued on one of the per-CPU @@ -200,19 +211,19 @@ queues. His implementation queues an RCU callback on each of the per-CPU callback queues, and then waits until they have all started executing, at which point, all earlier RCU callbacks are guaranteed to have completed. -The original code for rcu_barrier() was as follows: +The original code for rcu_barrier() was as follows:: - 1 void rcu_barrier(void) - 2 { - 3 BUG_ON(in_interrupt()); - 4 /* Take cpucontrol mutex to protect against CPU hotplug */ - 5 mutex_lock(&rcu_barrier_mutex); - 6 init_completion(&rcu_barrier_completion); - 7 atomic_set(&rcu_barrier_cpu_count, 0); - 8 on_each_cpu(rcu_barrier_func, NULL, 0, 1); - 9 wait_for_completion(&rcu_barrier_completion); -10 mutex_unlock(&rcu_barrier_mutex); -11 } + 1 void rcu_barrier(void) + 2 { + 3 BUG_ON(in_interrupt()); + 4 /* Take cpucontrol mutex to protect against CPU hotplug */ + 5 mutex_lock(&rcu_barrier_mutex); + 6 init_completion(&rcu_barrier_completion); + 7 atomic_set(&rcu_barrier_cpu_count, 0); + 8 on_each_cpu(rcu_barrier_func, NULL, 0, 1); + 9 wait_for_completion(&rcu_barrier_completion); + 10 mutex_unlock(&rcu_barrier_mutex); + 11 } Line 3 verifies that the caller is in process context, and lines 5 and 10 use rcu_barrier_mutex to ensure that only one rcu_barrier() is using the @@ -226,18 +237,18 @@ This code was rewritten in 2008 and several times thereafter, but this still gives the general idea. The rcu_barrier_func() runs on each CPU, where it invokes call_rcu() -to post an RCU callback, as follows: +to post an RCU callback, as follows:: - 1 static void rcu_barrier_func(void *notused) - 2 { - 3 int cpu = smp_processor_id(); - 4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); - 5 struct rcu_head *head; + 1 static void rcu_barrier_func(void *notused) + 2 { + 3 int cpu = smp_processor_id(); + 4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); + 5 struct rcu_head *head; 6 - 7 head = &rdp->barrier; - 8 atomic_inc(&rcu_barrier_cpu_count); - 9 call_rcu(head, rcu_barrier_callback); -10 } + 7 head = &rdp->barrier; + 8 atomic_inc(&rcu_barrier_cpu_count); + 9 call_rcu(head, rcu_barrier_callback); + 10 } Lines 3 and 4 locate RCU's internal per-CPU rcu_data structure, which contains the struct rcu_head that needed for the later call to @@ -248,20 +259,25 @@ the current CPU's queue. The rcu_barrier_callback() function simply atomically decrements the rcu_barrier_cpu_count variable and finalizes the completion when it -reaches zero, as follows: +reaches zero, as follows:: 1 static void rcu_barrier_callback(struct rcu_head *notused) 2 { - 3 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) - 4 complete(&rcu_barrier_completion); + 3 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) + 4 complete(&rcu_barrier_completion); 5 } -Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes +.. _rcubarrier_quiz_2: + +Quick Quiz #2: + What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in rcu_barrier() returning prematurely? +:ref:`Answer to Quick Quiz #2 ` + The current rcu_barrier() implementation is more complex, due to the need to avoid disturbing idle CPUs (especially on battery-powered systems) and the need to minimally disturb non-idle CPUs in real-time systems. @@ -269,6 +285,7 @@ However, the code above illustrates the concepts. rcu_barrier() Summary +--------------------- The rcu_barrier() primitive has seen relatively little use, since most code using RCU is in the core kernel rather than in modules. However, if @@ -277,8 +294,12 @@ so that your module may be safely unloaded. Answers to Quick Quizzes +------------------------ -Quick Quiz #1: Is there any other situation where rcu_barrier() might +.. _answer_rcubarrier_quiz_1: + +Quick Quiz #1: + Is there any other situation where rcu_barrier() might be required? Answer: Interestingly enough, rcu_barrier() was not originally @@ -292,7 +313,12 @@ Answer: Interestingly enough, rcu_barrier() was not originally implementing rcutorture, and found that rcu_barrier() solves this problem as well. -Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes +:ref:`Back to Quick Quiz #1 ` + +.. _answer_rcubarrier_quiz_2: + +Quick Quiz #2: + What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in @@ -323,3 +349,5 @@ Answer: This cannot happen. The reason is that on_each_cpu() has its last is to add an rcu_read_lock() before line 8 of rcu_barrier() and an rcu_read_unlock() after line 8 of this same function. If you can think of a better change, please let me know! + +:ref:`Back to Quick Quiz #2 `