Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (43 commits) net: Fix 'Re: PACKET_TX_RING: packet size is too long' netdev: usb: dm9601.c can drive a device not supported yet, add support for it qlge: Fix firmware mailbox command timeout. qlge: Fix EEH handling. AF_RAW: Augment raw_send_hdrinc to expand skb to fit iphdr->ihl (v2) bonding: fix a race condition in calls to slave MII ioctls virtio-net: fix data corruption with OOM sfc: Set ip_summed correctly for page buffers passed to GRO cnic: Fix L2CTX_STATUSB_NUM offset in context memory. MAINTAINERS: rt2x00 list is moderated airo: Reorder tests, check bounds before element mac80211: fix for incorrect sequence number on hostapd injected frames libertas spi: fix sparse errors mac80211: trivial: fix spelling in mesh_hwmp cfg80211: sme: deauthenticate on assoc failure mac80211: keep auth state when assoc fails mac80211: fix ibss joining b43: add 'struct b43_wl' missing declaration b43: Fix Bugzilla #14181 and the bug from the previous 'fix' rt2x00: Fix crypto in TX frame for rt2800usb ...
This commit is contained in:
commit
49b2de8e6f
|
@ -83,19 +83,19 @@ static __inline__ isdn_net_local * isdn_net_get_locked_lp(isdn_net_dev *nd)
|
|||
|
||||
spin_lock_irqsave(&nd->queue_lock, flags);
|
||||
lp = nd->queue; /* get lp on top of queue */
|
||||
spin_lock(&nd->queue->xmit_lock);
|
||||
while (isdn_net_lp_busy(nd->queue)) {
|
||||
spin_unlock(&nd->queue->xmit_lock);
|
||||
nd->queue = nd->queue->next;
|
||||
if (nd->queue == lp) { /* not found -- should never happen */
|
||||
lp = NULL;
|
||||
goto errout;
|
||||
}
|
||||
spin_lock(&nd->queue->xmit_lock);
|
||||
}
|
||||
lp = nd->queue;
|
||||
nd->queue = nd->queue->next;
|
||||
spin_unlock_irqrestore(&nd->queue_lock, flags);
|
||||
spin_lock(&lp->xmit_lock);
|
||||
local_bh_disable();
|
||||
return lp;
|
||||
errout:
|
||||
spin_unlock_irqrestore(&nd->queue_lock, flags);
|
||||
return lp;
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
*
|
||||
*
|
||||
*/
|
||||
#include <linux/capability.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
|
|
|
@ -361,9 +361,12 @@ struct l2_fhdr {
|
|||
#define BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE (1<<28)
|
||||
|
||||
#define BNX2_L2CTX_HOST_BDIDX 0x00000004
|
||||
#define BNX2_L2CTX_STATUSB_NUM_SHIFT 16
|
||||
#define BNX2_L2CTX_STATUSB_NUM(sb_id) \
|
||||
(((sb_id) > 0) ? (((sb_id) + 7) << BNX2_L2CTX_STATUSB_NUM_SHIFT) : 0)
|
||||
#define BNX2_L2CTX_L5_STATUSB_NUM_SHIFT 16
|
||||
#define BNX2_L2CTX_L2_STATUSB_NUM_SHIFT 24
|
||||
#define BNX2_L2CTX_L5_STATUSB_NUM(sb_id) \
|
||||
(((sb_id) > 0) ? (((sb_id) + 7) << BNX2_L2CTX_L5_STATUSB_NUM_SHIFT) : 0)
|
||||
#define BNX2_L2CTX_L2_STATUSB_NUM(sb_id) \
|
||||
(((sb_id) > 0) ? (((sb_id) + 7) << BNX2_L2CTX_L2_STATUSB_NUM_SHIFT) : 0)
|
||||
#define BNX2_L2CTX_HOST_BSEQ 0x00000008
|
||||
#define BNX2_L2CTX_NX_BSEQ 0x0000000c
|
||||
#define BNX2_L2CTX_NX_BDHADDR_HI 0x00000010
|
||||
|
|
|
@ -691,7 +691,7 @@ static int bond_check_dev_link(struct bonding *bond,
|
|||
struct net_device *slave_dev, int reporting)
|
||||
{
|
||||
const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
|
||||
static int (*ioctl)(struct net_device *, struct ifreq *, int);
|
||||
int (*ioctl)(struct net_device *, struct ifreq *, int);
|
||||
struct ifreq ifr;
|
||||
struct mii_ioctl_data *mii;
|
||||
|
||||
|
@ -3665,10 +3665,10 @@ static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
|
|||
|
||||
if (skb->protocol == htons(ETH_P_IP)) {
|
||||
return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
|
||||
(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
|
||||
(data->h_dest[5] ^ data->h_source[5])) % count;
|
||||
}
|
||||
|
||||
return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -3695,7 +3695,7 @@ static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
|
|||
|
||||
}
|
||||
|
||||
return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -3706,7 +3706,7 @@ static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
|
|||
{
|
||||
struct ethhdr *data = (struct ethhdr *)skb->data;
|
||||
|
||||
return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
/*-------------------------- Device entry points ----------------------------*/
|
||||
|
|
|
@ -2264,9 +2264,9 @@ static void cnic_init_bnx2_rx_ring(struct cnic_dev *dev)
|
|||
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_CTX_TYPE, val);
|
||||
|
||||
if (sb_id == 0)
|
||||
val = 2 << BNX2_L2CTX_STATUSB_NUM_SHIFT;
|
||||
val = 2 << BNX2_L2CTX_L2_STATUSB_NUM_SHIFT;
|
||||
else
|
||||
val = BNX2_L2CTX_STATUSB_NUM(sb_id);
|
||||
val = BNX2_L2CTX_L2_STATUSB_NUM(sb_id);
|
||||
cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_HOST_BDIDX, val);
|
||||
|
||||
rxbd = (struct rx_bd *) (cp->l2_ring + BCM_PAGE_SIZE);
|
||||
|
@ -2423,7 +2423,7 @@ static int cnic_start_bnx2_hw(struct cnic_dev *dev)
|
|||
cp->int_num = 0;
|
||||
if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) {
|
||||
u32 sb_id = cp->status_blk_num;
|
||||
u32 sb = BNX2_L2CTX_STATUSB_NUM(sb_id);
|
||||
u32 sb = BNX2_L2CTX_L5_STATUSB_NUM(sb_id);
|
||||
|
||||
cp->int_num = sb_id << BNX2_PCICFG_INT_ACK_CMD_INT_NUM_SHIFT;
|
||||
cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_HOST_QIDX, sb);
|
||||
|
|
|
@ -50,7 +50,7 @@
|
|||
#define DM9000_RCSR 0x32
|
||||
|
||||
#define CHIPR_DM9000A 0x19
|
||||
#define CHIPR_DM9000B 0x1B
|
||||
#define CHIPR_DM9000B 0x1A
|
||||
|
||||
#define DM9000_MRCMDX 0xF0
|
||||
#define DM9000_MRCMD 0xF2
|
||||
|
|
|
@ -519,9 +519,13 @@ extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
|
|||
extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
|
||||
extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
|
||||
extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
|
||||
extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 *data);
|
||||
extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
|
||||
extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
|
||||
extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
|
||||
extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 data);
|
||||
extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
|
||||
extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
|
||||
extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
|
||||
|
@ -538,7 +542,11 @@ extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
|
|||
extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
|
||||
extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
|
||||
extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
|
||||
extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 data);
|
||||
extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
|
||||
extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 *data);
|
||||
extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
|
||||
u32 usec_interval, bool *success);
|
||||
extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
|
||||
|
@ -546,7 +554,11 @@ extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
|
|||
extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
|
||||
extern s32 e1000e_check_downshift(struct e1000_hw *hw);
|
||||
extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
|
||||
extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 *data);
|
||||
extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
|
||||
extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
|
||||
u16 data);
|
||||
extern s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw, bool slow);
|
||||
extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
|
||||
extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
|
||||
|
|
|
@ -764,11 +764,13 @@ struct e1000_phy_operations {
|
|||
s32 (*get_cable_length)(struct e1000_hw *);
|
||||
s32 (*get_phy_info)(struct e1000_hw *);
|
||||
s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
|
||||
s32 (*read_phy_reg_locked)(struct e1000_hw *, u32, u16 *);
|
||||
void (*release_phy)(struct e1000_hw *);
|
||||
s32 (*reset_phy)(struct e1000_hw *);
|
||||
s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
|
||||
s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
|
||||
s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
|
||||
s32 (*write_phy_reg_locked)(struct e1000_hw *, u32, u16);
|
||||
s32 (*cfg_on_link_up)(struct e1000_hw *);
|
||||
};
|
||||
|
||||
|
|
|
@ -122,6 +122,13 @@
|
|||
|
||||
#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
|
||||
|
||||
#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
|
||||
|
||||
/* OEM Bits Phy Register */
|
||||
#define HV_OEM_BITS PHY_REG(768, 25)
|
||||
#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
|
||||
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
|
||||
|
||||
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
|
||||
/* Offset 04h HSFSTS */
|
||||
union ich8_hws_flash_status {
|
||||
|
@ -200,6 +207,7 @@ static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
|
|||
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
|
||||
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
|
||||
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
|
||||
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
|
||||
|
||||
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
|
||||
{
|
||||
|
@ -242,7 +250,11 @@ static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
|
|||
|
||||
phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
|
||||
phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
|
||||
phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
|
||||
phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
|
||||
phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
|
||||
phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
|
||||
phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
|
||||
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
||||
|
||||
phy->id = e1000_phy_unknown;
|
||||
|
@ -303,6 +315,8 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
|
|||
case IGP03E1000_E_PHY_ID:
|
||||
phy->type = e1000_phy_igp_3;
|
||||
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
||||
phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
|
||||
phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
|
||||
break;
|
||||
case IFE_E_PHY_ID:
|
||||
case IFE_PLUS_E_PHY_ID:
|
||||
|
@ -567,13 +581,40 @@ static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
|
|||
|
||||
static DEFINE_MUTEX(nvm_mutex);
|
||||
|
||||
/**
|
||||
* e1000_acquire_nvm_ich8lan - Acquire NVM mutex
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Acquires the mutex for performing NVM operations.
|
||||
**/
|
||||
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
mutex_lock(&nvm_mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_release_nvm_ich8lan - Release NVM mutex
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Releases the mutex used while performing NVM operations.
|
||||
**/
|
||||
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
mutex_unlock(&nvm_mutex);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
static DEFINE_MUTEX(swflag_mutex);
|
||||
|
||||
/**
|
||||
* e1000_acquire_swflag_ich8lan - Acquire software control flag
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Acquires the software control flag for performing NVM and PHY
|
||||
* operations. This is a function pointer entry point only called by
|
||||
* read/write routines for the PHY and NVM parts.
|
||||
* Acquires the software control flag for performing PHY and select
|
||||
* MAC CSR accesses.
|
||||
**/
|
||||
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
|
@ -582,7 +623,7 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
might_sleep();
|
||||
|
||||
mutex_lock(&nvm_mutex);
|
||||
mutex_lock(&swflag_mutex);
|
||||
|
||||
while (timeout) {
|
||||
extcnf_ctrl = er32(EXTCNF_CTRL);
|
||||
|
@ -599,7 +640,7 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
|||
goto out;
|
||||
}
|
||||
|
||||
timeout = PHY_CFG_TIMEOUT * 2;
|
||||
timeout = SW_FLAG_TIMEOUT;
|
||||
|
||||
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
|
||||
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
||||
|
@ -623,7 +664,7 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
|||
|
||||
out:
|
||||
if (ret_val)
|
||||
mutex_unlock(&nvm_mutex);
|
||||
mutex_unlock(&swflag_mutex);
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -632,9 +673,8 @@ out:
|
|||
* e1000_release_swflag_ich8lan - Release software control flag
|
||||
* @hw: pointer to the HW structure
|
||||
*
|
||||
* Releases the software control flag for performing NVM and PHY operations.
|
||||
* This is a function pointer entry point only called by read/write
|
||||
* routines for the PHY and NVM parts.
|
||||
* Releases the software control flag for performing PHY and select
|
||||
* MAC CSR accesses.
|
||||
**/
|
||||
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
|
@ -644,7 +684,9 @@ static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
|
|||
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
|
||||
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
||||
|
||||
mutex_unlock(&nvm_mutex);
|
||||
mutex_unlock(&swflag_mutex);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -844,7 +886,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
u32 i;
|
||||
u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
|
||||
s32 ret_val;
|
||||
u16 word_addr, reg_data, reg_addr, phy_page = 0;
|
||||
u16 reg, word_addr, reg_data, reg_addr, phy_page = 0;
|
||||
|
||||
ret_val = e1000e_phy_hw_reset_generic(hw);
|
||||
if (ret_val)
|
||||
|
@ -859,6 +901,10 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/* Dummy read to clear the phy wakeup bit after lcd reset */
|
||||
if (hw->mac.type == e1000_pchlan)
|
||||
e1e_rphy(hw, BM_WUC, ®);
|
||||
|
||||
/*
|
||||
* Initialize the PHY from the NVM on ICH platforms. This
|
||||
* is needed due to an issue where the NVM configuration is
|
||||
|
@ -1053,6 +1099,38 @@ static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_set_lplu_state_pchlan - Set Low Power Link Up state
|
||||
* @hw: pointer to the HW structure
|
||||
* @active: true to enable LPLU, false to disable
|
||||
*
|
||||
* Sets the LPLU state according to the active flag. For PCH, if OEM write
|
||||
* bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
|
||||
* the phy speed. This function will manually set the LPLU bit and restart
|
||||
* auto-neg as hw would do. D3 and D0 LPLU will call the same function
|
||||
* since it configures the same bit.
|
||||
**/
|
||||
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
|
||||
{
|
||||
s32 ret_val = 0;
|
||||
u16 oem_reg;
|
||||
|
||||
ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
if (active)
|
||||
oem_reg |= HV_OEM_BITS_LPLU;
|
||||
else
|
||||
oem_reg &= ~HV_OEM_BITS_LPLU;
|
||||
|
||||
oem_reg |= HV_OEM_BITS_RESTART_AN;
|
||||
ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
|
||||
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
|
||||
* @hw: pointer to the HW structure
|
||||
|
@ -1314,12 +1392,11 @@ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
|||
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
|
||||
(words == 0)) {
|
||||
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||||
return -E1000_ERR_NVM;
|
||||
ret_val = -E1000_ERR_NVM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
nvm->ops.acquire_nvm(hw);
|
||||
|
||||
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
|
||||
if (ret_val) {
|
||||
|
@ -1345,7 +1422,7 @@ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
|||
}
|
||||
}
|
||||
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
|
||||
out:
|
||||
if (ret_val)
|
||||
|
@ -1603,11 +1680,15 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
|||
return -E1000_ERR_NVM;
|
||||
}
|
||||
|
||||
nvm->ops.acquire_nvm(hw);
|
||||
|
||||
for (i = 0; i < words; i++) {
|
||||
dev_spec->shadow_ram[offset+i].modified = 1;
|
||||
dev_spec->shadow_ram[offset+i].value = data[i];
|
||||
}
|
||||
|
||||
nvm->ops.release_nvm(hw);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1637,9 +1718,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
if (nvm->type != e1000_nvm_flash_sw)
|
||||
goto out;
|
||||
|
||||
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
nvm->ops.acquire_nvm(hw);
|
||||
|
||||
/*
|
||||
* We're writing to the opposite bank so if we're on bank 1,
|
||||
|
@ -1657,7 +1736,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
old_bank_offset = 0;
|
||||
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
|
||||
if (ret_val) {
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
} else {
|
||||
|
@ -1665,7 +1744,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
new_bank_offset = 0;
|
||||
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
|
||||
if (ret_val) {
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
@ -1723,7 +1802,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
if (ret_val) {
|
||||
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
|
||||
hw_dbg(hw, "Flash commit failed.\n");
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
|
||||
|
@ -1736,7 +1815,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
|
||||
ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
|
||||
if (ret_val) {
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
data &= 0xBFFF;
|
||||
|
@ -1744,7 +1823,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
act_offset * 2 + 1,
|
||||
(u8)(data >> 8));
|
||||
if (ret_val) {
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
|
||||
|
@ -1757,7 +1836,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
|
||||
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
|
||||
if (ret_val) {
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
goto out;
|
||||
}
|
||||
|
||||
|
@ -1767,7 +1846,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
dev_spec->shadow_ram[i].value = 0xFFFF;
|
||||
}
|
||||
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
|
||||
/*
|
||||
* Reload the EEPROM, or else modifications will not appear
|
||||
|
@ -1831,14 +1910,12 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|||
**/
|
||||
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
struct e1000_nvm_info *nvm = &hw->nvm;
|
||||
union ich8_flash_protected_range pr0;
|
||||
union ich8_hws_flash_status hsfsts;
|
||||
u32 gfpreg;
|
||||
s32 ret_val;
|
||||
|
||||
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||||
if (ret_val)
|
||||
return;
|
||||
nvm->ops.acquire_nvm(hw);
|
||||
|
||||
gfpreg = er32flash(ICH_FLASH_GFPREG);
|
||||
|
||||
|
@ -1859,7 +1936,7 @@ void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
|
|||
hsfsts.hsf_status.flockdn = true;
|
||||
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||||
|
||||
e1000_release_swflag_ich8lan(hw);
|
||||
nvm->ops.release_nvm(hw);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -2229,6 +2306,7 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
|
|||
**/
|
||||
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
||||
{
|
||||
u16 reg;
|
||||
u32 ctrl, icr, kab;
|
||||
s32 ret_val;
|
||||
|
||||
|
@ -2304,6 +2382,9 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
|||
hw_dbg(hw, "Auto Read Done did not complete\n");
|
||||
}
|
||||
}
|
||||
/* Dummy read to clear the phy wakeup bit after lcd reset */
|
||||
if (hw->mac.type == e1000_pchlan)
|
||||
e1e_rphy(hw, BM_WUC, ®);
|
||||
|
||||
/*
|
||||
* For PCH, this write will make sure that any noise
|
||||
|
@ -2843,9 +2924,8 @@ void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
|
|||
E1000_PHY_CTRL_GBE_DISABLE;
|
||||
ew32(PHY_CTRL, phy_ctrl);
|
||||
|
||||
/* Workaround SWFLAG unexpectedly set during S0->Sx */
|
||||
if (hw->mac.type == e1000_pchlan)
|
||||
udelay(500);
|
||||
e1000_phy_hw_reset_ich8lan(hw);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -3113,9 +3193,9 @@ static struct e1000_phy_operations ich8_phy_ops = {
|
|||
};
|
||||
|
||||
static struct e1000_nvm_operations ich8_nvm_ops = {
|
||||
.acquire_nvm = e1000_acquire_swflag_ich8lan,
|
||||
.acquire_nvm = e1000_acquire_nvm_ich8lan,
|
||||
.read_nvm = e1000_read_nvm_ich8lan,
|
||||
.release_nvm = e1000_release_swflag_ich8lan,
|
||||
.release_nvm = e1000_release_nvm_ich8lan,
|
||||
.update_nvm = e1000_update_nvm_checksum_ich8lan,
|
||||
.valid_led_default = e1000_valid_led_default_ich8lan,
|
||||
.validate_nvm = e1000_validate_nvm_checksum_ich8lan,
|
||||
|
|
|
@ -164,16 +164,25 @@ s32 e1000e_get_phy_id(struct e1000_hw *hw)
|
|||
* MDIC mode. No harm in trying again in this case since
|
||||
* the PHY ID is unknown at this point anyway
|
||||
*/
|
||||
ret_val = phy->ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
phy->ops.release_phy(hw);
|
||||
|
||||
retry_count++;
|
||||
}
|
||||
out:
|
||||
/* Revert to MDIO fast mode, if applicable */
|
||||
if (retry_count)
|
||||
if (retry_count) {
|
||||
ret_val = phy->ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
|
||||
phy->ops.release_phy(hw);
|
||||
}
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -354,38 +363,117 @@ s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
}
|
||||
|
||||
/**
|
||||
* e1000e_read_phy_reg_igp - Read igp PHY register
|
||||
* __e1000e_read_phy_reg_igp - Read igp PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
||||
* and storing the retrieved information in data. Release any acquired
|
||||
* and stores the retrieved information in data. Release any acquired
|
||||
* semaphores before exiting.
|
||||
**/
|
||||
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
|
||||
bool locked)
|
||||
{
|
||||
s32 ret_val;
|
||||
s32 ret_val = 0;
|
||||
|
||||
if (!locked) {
|
||||
if (!(hw->phy.ops.acquire_phy))
|
||||
goto out;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw,
|
||||
IGP01E1000_PHY_PAGE_SELECT,
|
||||
(u16)offset);
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
if (ret_val)
|
||||
goto release;
|
||||
}
|
||||
|
||||
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
|
||||
release:
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000e_read_phy_reg_igp - Read igp PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Acquires semaphore then reads the PHY register at offset and stores the
|
||||
* retrieved information in data.
|
||||
* Release the acquired semaphore before exiting.
|
||||
**/
|
||||
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000e_read_phy_reg_igp(hw, offset, data, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000e_read_phy_reg_igp_locked - Read igp PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Reads the PHY register at offset and stores the retrieved information
|
||||
* in data. Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000e_read_phy_reg_igp(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000e_write_phy_reg_igp - Write igp PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary, then writes the data to PHY register
|
||||
* at the offset. Release any acquired semaphores before exiting.
|
||||
**/
|
||||
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
|
||||
bool locked)
|
||||
{
|
||||
s32 ret_val = 0;
|
||||
|
||||
if (!locked) {
|
||||
if (!(hw->phy.ops.acquire_phy))
|
||||
goto out;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw,
|
||||
IGP01E1000_PHY_PAGE_SELECT,
|
||||
(u16)offset);
|
||||
if (ret_val)
|
||||
goto release;
|
||||
}
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
|
||||
release:
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -395,53 +483,53 @@ s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Acquires semaphore, if necessary, then writes the data to PHY register
|
||||
* Acquires semaphore then writes the data to PHY register
|
||||
* at the offset. Release any acquired semaphores before exiting.
|
||||
**/
|
||||
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
s32 ret_val;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw,
|
||||
IGP01E1000_PHY_PAGE_SELECT,
|
||||
(u16)offset);
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
}
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
return __e1000e_write_phy_reg_igp(hw, offset, data, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000e_read_kmrn_reg - Read kumeran register
|
||||
* e1000e_write_phy_reg_igp_locked - Write igp PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Writes the data to PHY register at the offset.
|
||||
* Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
return __e1000e_write_phy_reg_igp(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* __e1000_read_kmrn_reg - Read kumeran register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary. Then reads the PHY register at offset
|
||||
* using the kumeran interface. The information retrieved is stored in data.
|
||||
* Release any acquired semaphores before exiting.
|
||||
**/
|
||||
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
|
||||
bool locked)
|
||||
{
|
||||
u32 kmrnctrlsta;
|
||||
s32 ret_val;
|
||||
s32 ret_val = 0;
|
||||
|
||||
if (!locked) {
|
||||
if (!(hw->phy.ops.acquire_phy))
|
||||
goto out;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
goto out;
|
||||
}
|
||||
|
||||
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
||||
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
|
||||
|
@ -452,8 +540,79 @@ s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
kmrnctrlsta = er32(KMRNCTRLSTA);
|
||||
*data = (u16)kmrnctrlsta;
|
||||
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000e_read_kmrn_reg - Read kumeran register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Acquires semaphore then reads the PHY register at offset using the
|
||||
* kumeran interface. The information retrieved is stored in data.
|
||||
* Release the acquired semaphore before exiting.
|
||||
**/
|
||||
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000_read_kmrn_reg(hw, offset, data, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_read_kmrn_reg_locked - Read kumeran register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Reads the PHY register at offset using the kumeran interface. The
|
||||
* information retrieved is stored in data.
|
||||
* Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000_read_kmrn_reg(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* __e1000_write_kmrn_reg - Write kumeran register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary. Then write the data to PHY register
|
||||
* at the offset using the kumeran interface. Release any acquired semaphores
|
||||
* before exiting.
|
||||
**/
|
||||
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
|
||||
bool locked)
|
||||
{
|
||||
u32 kmrnctrlsta;
|
||||
s32 ret_val = 0;
|
||||
|
||||
if (!locked) {
|
||||
if (!(hw->phy.ops.acquire_phy))
|
||||
goto out;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
|
||||
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
||||
E1000_KMRNCTRLSTA_OFFSET) | data;
|
||||
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
||||
|
||||
udelay(2);
|
||||
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -463,27 +622,26 @@ s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Acquires semaphore, if necessary. Then write the data to PHY register
|
||||
* at the offset using the kumeran interface. Release any acquired semaphores
|
||||
* before exiting.
|
||||
* Acquires semaphore then writes the data to the PHY register at the offset
|
||||
* using the kumeran interface. Release the acquired semaphore before exiting.
|
||||
**/
|
||||
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
u32 kmrnctrlsta;
|
||||
s32 ret_val;
|
||||
return __e1000_write_kmrn_reg(hw, offset, data, false);
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
||||
E1000_KMRNCTRLSTA_OFFSET) | data;
|
||||
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
||||
|
||||
udelay(2);
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
/**
|
||||
* e1000_write_kmrn_reg_locked - Write kumeran register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Write the data to PHY register at the offset using the kumeran interface.
|
||||
* Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
return __e1000_write_kmrn_reg(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -2105,6 +2263,10 @@ s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
u32 page = offset >> IGP_PAGE_SHIFT;
|
||||
u32 page_shift = 0;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Page 800 works differently than the rest so it has its own func */
|
||||
if (page == BM_WUC_PAGE) {
|
||||
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
|
||||
|
@ -2112,10 +2274,6 @@ s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
|
@ -2135,18 +2293,15 @@ s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
/* Page is shifted left, PHY expects (page x 32) */
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
|
||||
(page << page_shift));
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -2167,6 +2322,10 @@ s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
u32 page = offset >> IGP_PAGE_SHIFT;
|
||||
u32 page_shift = 0;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Page 800 works differently than the rest so it has its own func */
|
||||
if (page == BM_WUC_PAGE) {
|
||||
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
|
||||
|
@ -2174,10 +2333,6 @@ s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
|
@ -2197,17 +2352,14 @@ s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
/* Page is shifted left, PHY expects (page x 32) */
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
|
||||
(page << page_shift));
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -2226,17 +2378,17 @@ s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
s32 ret_val;
|
||||
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Page 800 works differently than the rest so it has its own func */
|
||||
if (page == BM_WUC_PAGE) {
|
||||
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
|
||||
true);
|
||||
return ret_val;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
hw->phy.addr = 1;
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
|
@ -2245,16 +2397,14 @@ s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
|
||||
page);
|
||||
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
out:
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -2272,17 +2422,17 @@ s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
s32 ret_val;
|
||||
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Page 800 works differently than the rest so it has its own func */
|
||||
if (page == BM_WUC_PAGE) {
|
||||
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
|
||||
false);
|
||||
return ret_val;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
hw->phy.addr = 1;
|
||||
|
||||
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||||
|
@ -2290,17 +2440,15 @@ s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
|
||||
page);
|
||||
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
|
||||
data);
|
||||
|
||||
out:
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -2320,6 +2468,8 @@ s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
* 3) Write the address using the address opcode (0x11)
|
||||
* 4) Read or write the data using the data opcode (0x12)
|
||||
* 5) Restore 769_17.2 to its original value
|
||||
*
|
||||
* Assumes semaphore already acquired.
|
||||
**/
|
||||
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
|
||||
u16 *data, bool read)
|
||||
|
@ -2327,20 +2477,12 @@ static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
|
|||
s32 ret_val;
|
||||
u16 reg = BM_PHY_REG_NUM(offset);
|
||||
u16 phy_reg = 0;
|
||||
u8 phy_acquired = 1;
|
||||
|
||||
|
||||
/* Gig must be disabled for MDIO accesses to page 800 */
|
||||
if ((hw->mac.type == e1000_pchlan) &&
|
||||
(!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
|
||||
hw_dbg(hw, "Attempting to access page 800 while gig enabled\n");
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val) {
|
||||
phy_acquired = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* All operations in this function are phy address 1 */
|
||||
hw->phy.addr = 1;
|
||||
|
||||
|
@ -2397,8 +2539,6 @@ static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
|
|||
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
|
||||
|
||||
out:
|
||||
if (phy_acquired == 1)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
@ -2439,52 +2579,63 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
|
||||
* @hw: pointer to the HW structure
|
||||
* @slow: true for slow mode, false for normal mode
|
||||
*
|
||||
* Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw, bool slow)
|
||||
{
|
||||
s32 ret_val = 0;
|
||||
u16 data = 0;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
|
||||
/* Set MDIO mode - page 769, register 16: 0x2580==slow, 0x2180==fast */
|
||||
hw->phy.addr = 1;
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
|
||||
(BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, BM_CS_CTRL1,
|
||||
(0x2180 | (slow << 10)));
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
/* dummy read when reverting to fast mode - throw away result */
|
||||
if (!slow)
|
||||
e1000e_read_phy_reg_mdic(hw, BM_CS_CTRL1, &data);
|
||||
|
||||
hw->phy.ops.release_phy(hw);
|
||||
ret_val = e1000e_read_phy_reg_mdic(hw, BM_CS_CTRL1, &data);
|
||||
|
||||
out:
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_read_phy_reg_hv - Read HV PHY register
|
||||
* __e1000_read_phy_reg_hv - Read HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
||||
* and storing the retrieved information in data. Release any acquired
|
||||
* and stores the retrieved information in data. Release any acquired
|
||||
* semaphore before exiting.
|
||||
**/
|
||||
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
|
||||
bool locked)
|
||||
{
|
||||
s32 ret_val;
|
||||
u16 page = BM_PHY_REG_PAGE(offset);
|
||||
u16 reg = BM_PHY_REG_NUM(offset);
|
||||
bool in_slow_mode = false;
|
||||
|
||||
if (!locked) {
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Workaround failure in MDIO access while cable is disconnected */
|
||||
if ((hw->phy.type == e1000_phy_82577) &&
|
||||
!(er32(STATUS) & E1000_STATUS_LU)) {
|
||||
|
@ -2508,10 +2659,6 @@ s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
|
||||
|
||||
if (page == HV_INTC_FC_PAGE_START)
|
||||
|
@ -2529,42 +2676,76 @@ s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
|
|||
ret_val = e1000e_write_phy_reg_mdic(hw,
|
||||
IGP01E1000_PHY_PAGE_SELECT,
|
||||
(page << IGP_PAGE_SHIFT));
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
goto out;
|
||||
}
|
||||
hw->phy.addr = phy_addr;
|
||||
}
|
||||
}
|
||||
|
||||
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
|
||||
data);
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
/* Revert to MDIO fast mode, if applicable */
|
||||
if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
|
||||
ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
|
||||
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_write_phy_reg_hv - Write HV PHY register
|
||||
* e1000_read_phy_reg_hv - Read HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Acquires semaphore then reads the PHY register at offset and stores
|
||||
* the retrieved information in data. Release the acquired semaphore
|
||||
* before exiting.
|
||||
**/
|
||||
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000_read_phy_reg_hv(hw, offset, data, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_read_phy_reg_hv_locked - Read HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to be read
|
||||
* @data: pointer to the read data
|
||||
*
|
||||
* Reads the PHY register at offset and stores the retrieved information
|
||||
* in data. Assumes semaphore already acquired.
|
||||
**/
|
||||
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
|
||||
{
|
||||
return __e1000_read_phy_reg_hv(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* __e1000_write_phy_reg_hv - Write HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
* @locked: semaphore has already been acquired or not
|
||||
*
|
||||
* Acquires semaphore, if necessary, then writes the data to PHY register
|
||||
* at the offset. Release any acquired semaphores before exiting.
|
||||
**/
|
||||
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
|
||||
bool locked)
|
||||
{
|
||||
s32 ret_val;
|
||||
u16 page = BM_PHY_REG_PAGE(offset);
|
||||
u16 reg = BM_PHY_REG_NUM(offset);
|
||||
bool in_slow_mode = false;
|
||||
|
||||
if (!locked) {
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Workaround failure in MDIO access while cable is disconnected */
|
||||
if ((hw->phy.type == e1000_phy_82577) &&
|
||||
!(er32(STATUS) & E1000_STATUS_LU)) {
|
||||
|
@ -2588,10 +2769,6 @@ s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
goto out;
|
||||
}
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
|
||||
|
||||
if (page == HV_INTC_FC_PAGE_START)
|
||||
|
@ -2607,15 +2784,10 @@ s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
((MAX_PHY_REG_ADDRESS & reg) == 0) &&
|
||||
(data & (1 << 11))) {
|
||||
u16 data2 = 0x7EFF;
|
||||
hw->phy.ops.release_phy(hw);
|
||||
ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
|
||||
&data2, false);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val)
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (reg > MAX_PHY_MULTI_PAGE_REG) {
|
||||
|
@ -2630,26 +2802,52 @@ s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
|
|||
ret_val = e1000e_write_phy_reg_mdic(hw,
|
||||
IGP01E1000_PHY_PAGE_SELECT,
|
||||
(page << IGP_PAGE_SHIFT));
|
||||
if (ret_val) {
|
||||
hw->phy.ops.release_phy(hw);
|
||||
goto out;
|
||||
}
|
||||
hw->phy.addr = phy_addr;
|
||||
}
|
||||
}
|
||||
|
||||
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
|
||||
data);
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
out:
|
||||
/* Revert to MDIO fast mode, if applicable */
|
||||
if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
|
||||
ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
|
||||
|
||||
if (!locked)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_write_phy_reg_hv - Write HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Acquires semaphore then writes the data to PHY register at the offset.
|
||||
* Release the acquired semaphores before exiting.
|
||||
**/
|
||||
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
return __e1000_write_phy_reg_hv(hw, offset, data, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_write_phy_reg_hv_locked - Write HV PHY register
|
||||
* @hw: pointer to the HW structure
|
||||
* @offset: register offset to write to
|
||||
* @data: data to write at register offset
|
||||
*
|
||||
* Writes the data to PHY register at the offset. Assumes semaphore
|
||||
* already acquired.
|
||||
**/
|
||||
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
|
||||
{
|
||||
return __e1000_write_phy_reg_hv(hw, offset, data, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
|
||||
* @page: page to be accessed
|
||||
|
@ -2671,10 +2869,9 @@ static u32 e1000_get_phy_addr_for_hv_page(u32 page)
|
|||
* @data: pointer to the data to be read or written
|
||||
* @read: determines if operation is read or written
|
||||
*
|
||||
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
||||
* and storing the retreived information in data. Release any acquired
|
||||
* semaphores before exiting. Note that the procedure to read these regs
|
||||
* uses the address port and data port to read/write.
|
||||
* Reads the PHY register at offset and stores the retreived information
|
||||
* in data. Assumes semaphore already acquired. Note that the procedure
|
||||
* to read these regs uses the address port and data port to read/write.
|
||||
**/
|
||||
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
|
||||
u16 *data, bool read)
|
||||
|
@ -2682,20 +2879,12 @@ static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
|
|||
s32 ret_val;
|
||||
u32 addr_reg = 0;
|
||||
u32 data_reg = 0;
|
||||
u8 phy_acquired = 1;
|
||||
|
||||
/* This takes care of the difference with desktop vs mobile phy */
|
||||
addr_reg = (hw->phy.type == e1000_phy_82578) ?
|
||||
I82578_ADDR_REG : I82577_ADDR_REG;
|
||||
data_reg = addr_reg + 1;
|
||||
|
||||
ret_val = hw->phy.ops.acquire_phy(hw);
|
||||
if (ret_val) {
|
||||
hw_dbg(hw, "Could not acquire PHY\n");
|
||||
phy_acquired = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* All operations in this function are phy address 2 */
|
||||
hw->phy.addr = 2;
|
||||
|
||||
|
@ -2718,8 +2907,6 @@ static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
|
|||
}
|
||||
|
||||
out:
|
||||
if (phy_acquired == 1)
|
||||
hw->phy.ops.release_phy(hw);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
|
|
@ -98,12 +98,13 @@ static void ri_tasklet(unsigned long dev)
|
|||
stats->tx_packets++;
|
||||
stats->tx_bytes +=skb->len;
|
||||
|
||||
skb->dev = __dev_get_by_index(&init_net, skb->iif);
|
||||
skb->dev = dev_get_by_index(&init_net, skb->iif);
|
||||
if (!skb->dev) {
|
||||
dev_kfree_skb(skb);
|
||||
stats->tx_dropped++;
|
||||
break;
|
||||
}
|
||||
dev_put(skb->dev);
|
||||
skb->iif = _dev->ifindex;
|
||||
|
||||
if (from & AT_EGRESS) {
|
||||
|
|
|
@ -732,7 +732,7 @@ static int igb_set_ringparam(struct net_device *netdev,
|
|||
{
|
||||
struct igb_adapter *adapter = netdev_priv(netdev);
|
||||
struct igb_ring *temp_ring;
|
||||
int i, err;
|
||||
int i, err = 0;
|
||||
u32 new_rx_count, new_tx_count;
|
||||
|
||||
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
||||
|
@ -752,17 +752,29 @@ static int igb_set_ringparam(struct net_device *netdev,
|
|||
return 0;
|
||||
}
|
||||
|
||||
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
||||
msleep(1);
|
||||
|
||||
if (!netif_running(adapter->netdev)) {
|
||||
for (i = 0; i < adapter->num_tx_queues; i++)
|
||||
adapter->tx_ring[i].count = new_tx_count;
|
||||
for (i = 0; i < adapter->num_rx_queues; i++)
|
||||
adapter->rx_ring[i].count = new_rx_count;
|
||||
adapter->tx_ring_count = new_tx_count;
|
||||
adapter->rx_ring_count = new_rx_count;
|
||||
goto clear_reset;
|
||||
}
|
||||
|
||||
if (adapter->num_tx_queues > adapter->num_rx_queues)
|
||||
temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
|
||||
else
|
||||
temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
|
||||
if (!temp_ring)
|
||||
return -ENOMEM;
|
||||
|
||||
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
||||
msleep(1);
|
||||
if (!temp_ring) {
|
||||
err = -ENOMEM;
|
||||
goto clear_reset;
|
||||
}
|
||||
|
||||
if (netif_running(adapter->netdev))
|
||||
igb_down(adapter);
|
||||
|
||||
/*
|
||||
|
@ -820,14 +832,11 @@ static int igb_set_ringparam(struct net_device *netdev,
|
|||
|
||||
adapter->rx_ring_count = new_rx_count;
|
||||
}
|
||||
|
||||
err = 0;
|
||||
err_setup:
|
||||
if (netif_running(adapter->netdev))
|
||||
igb_up(adapter);
|
||||
|
||||
clear_bit(__IGB_RESETTING, &adapter->state);
|
||||
vfree(temp_ring);
|
||||
clear_reset:
|
||||
clear_bit(__IGB_RESETTING, &adapter->state);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
|
|
@ -279,7 +279,7 @@ static int igbvf_set_ringparam(struct net_device *netdev,
|
|||
{
|
||||
struct igbvf_adapter *adapter = netdev_priv(netdev);
|
||||
struct igbvf_ring *temp_ring;
|
||||
int err;
|
||||
int err = 0;
|
||||
u32 new_rx_count, new_tx_count;
|
||||
|
||||
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
||||
|
@ -299,14 +299,21 @@ static int igbvf_set_ringparam(struct net_device *netdev,
|
|||
return 0;
|
||||
}
|
||||
|
||||
temp_ring = vmalloc(sizeof(struct igbvf_ring));
|
||||
if (!temp_ring)
|
||||
return -ENOMEM;
|
||||
|
||||
while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
|
||||
msleep(1);
|
||||
|
||||
if (netif_running(adapter->netdev))
|
||||
if (!netif_running(adapter->netdev)) {
|
||||
adapter->tx_ring->count = new_tx_count;
|
||||
adapter->rx_ring->count = new_rx_count;
|
||||
goto clear_reset;
|
||||
}
|
||||
|
||||
temp_ring = vmalloc(sizeof(struct igbvf_ring));
|
||||
if (!temp_ring) {
|
||||
err = -ENOMEM;
|
||||
goto clear_reset;
|
||||
}
|
||||
|
||||
igbvf_down(adapter);
|
||||
|
||||
/*
|
||||
|
@ -339,14 +346,11 @@ static int igbvf_set_ringparam(struct net_device *netdev,
|
|||
|
||||
memcpy(adapter->rx_ring, temp_ring,sizeof(struct igbvf_ring));
|
||||
}
|
||||
|
||||
err = 0;
|
||||
err_setup:
|
||||
if (netif_running(adapter->netdev))
|
||||
igbvf_up(adapter);
|
||||
|
||||
clear_bit(__IGBVF_RESETTING, &adapter->state);
|
||||
vfree(temp_ring);
|
||||
clear_reset:
|
||||
clear_bit(__IGBVF_RESETTING, &adapter->state);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
|
|
@ -798,7 +798,7 @@ static int ixgbe_set_ringparam(struct net_device *netdev,
|
|||
{
|
||||
struct ixgbe_adapter *adapter = netdev_priv(netdev);
|
||||
struct ixgbe_ring *temp_tx_ring, *temp_rx_ring;
|
||||
int i, err;
|
||||
int i, err = 0;
|
||||
u32 new_rx_count, new_tx_count;
|
||||
bool need_update = false;
|
||||
|
||||
|
@ -822,6 +822,16 @@ static int ixgbe_set_ringparam(struct net_device *netdev,
|
|||
while (test_and_set_bit(__IXGBE_RESETTING, &adapter->state))
|
||||
msleep(1);
|
||||
|
||||
if (!netif_running(adapter->netdev)) {
|
||||
for (i = 0; i < adapter->num_tx_queues; i++)
|
||||
adapter->tx_ring[i].count = new_tx_count;
|
||||
for (i = 0; i < adapter->num_rx_queues; i++)
|
||||
adapter->rx_ring[i].count = new_rx_count;
|
||||
adapter->tx_ring_count = new_tx_count;
|
||||
adapter->rx_ring_count = new_rx_count;
|
||||
goto err_setup;
|
||||
}
|
||||
|
||||
temp_tx_ring = kcalloc(adapter->num_tx_queues,
|
||||
sizeof(struct ixgbe_ring), GFP_KERNEL);
|
||||
if (!temp_tx_ring) {
|
||||
|
@ -879,7 +889,6 @@ static int ixgbe_set_ringparam(struct net_device *netdev,
|
|||
|
||||
/* if rings need to be updated, here's the place to do it in one shot */
|
||||
if (need_update) {
|
||||
if (netif_running(netdev))
|
||||
ixgbe_down(adapter);
|
||||
|
||||
/* tx */
|
||||
|
@ -897,13 +906,8 @@ static int ixgbe_set_ringparam(struct net_device *netdev,
|
|||
temp_rx_ring = NULL;
|
||||
adapter->rx_ring_count = new_rx_count;
|
||||
}
|
||||
}
|
||||
|
||||
/* success! */
|
||||
err = 0;
|
||||
if (netif_running(netdev))
|
||||
ixgbe_up(adapter);
|
||||
|
||||
}
|
||||
err_setup:
|
||||
clear_bit(__IXGBE_RESETTING, &adapter->state);
|
||||
return err;
|
||||
|
|
|
@ -75,7 +75,7 @@
|
|||
#include "myri10ge_mcp.h"
|
||||
#include "myri10ge_mcp_gen_header.h"
|
||||
|
||||
#define MYRI10GE_VERSION_STR "1.5.0-1.432"
|
||||
#define MYRI10GE_VERSION_STR "1.5.1-1.451"
|
||||
|
||||
MODULE_DESCRIPTION("Myricom 10G driver (10GbE)");
|
||||
MODULE_AUTHOR("Maintainer: help@myri.com");
|
||||
|
@ -1624,10 +1624,21 @@ myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
|
|||
return 0;
|
||||
}
|
||||
}
|
||||
if (*ptr == 'R' || *ptr == 'Q') {
|
||||
/* We've found either an XFP or quad ribbon fiber */
|
||||
if (*ptr == '2')
|
||||
ptr++;
|
||||
if (*ptr == 'R' || *ptr == 'Q' || *ptr == 'S') {
|
||||
/* We've found either an XFP, quad ribbon fiber, or SFP+ */
|
||||
cmd->port = PORT_FIBRE;
|
||||
cmd->supported |= SUPPORTED_FIBRE;
|
||||
cmd->advertising |= ADVERTISED_FIBRE;
|
||||
} else {
|
||||
cmd->port = PORT_OTHER;
|
||||
}
|
||||
if (*ptr == 'R' || *ptr == 'S')
|
||||
cmd->transceiver = XCVR_EXTERNAL;
|
||||
else
|
||||
cmd->transceiver = XCVR_INTERNAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -419,6 +419,7 @@ enum {
|
|||
#define NETXEN_CRB_ROMUSB \
|
||||
NETXEN_PCI_CRB_WINDOW(NETXEN_HW_PX_MAP_CRB_ROMUSB)
|
||||
#define NETXEN_CRB_I2Q NETXEN_PCI_CRB_WINDOW(NETXEN_HW_PX_MAP_CRB_I2Q)
|
||||
#define NETXEN_CRB_I2C0 NETXEN_PCI_CRB_WINDOW(NETXEN_HW_PX_MAP_CRB_I2C0)
|
||||
#define NETXEN_CRB_SMB NETXEN_PCI_CRB_WINDOW(NETXEN_HW_PX_MAP_CRB_SMB)
|
||||
#define NETXEN_CRB_MAX NETXEN_PCI_CRB_WINDOW(64)
|
||||
|
||||
|
|
|
@ -1901,22 +1901,16 @@ netxen_setup_hwops(struct netxen_adapter *adapter)
|
|||
|
||||
int netxen_nic_get_board_info(struct netxen_adapter *adapter)
|
||||
{
|
||||
int offset, board_type, magic, header_version;
|
||||
int offset, board_type, magic;
|
||||
struct pci_dev *pdev = adapter->pdev;
|
||||
|
||||
offset = NX_FW_MAGIC_OFFSET;
|
||||
if (netxen_rom_fast_read(adapter, offset, &magic))
|
||||
return -EIO;
|
||||
|
||||
offset = NX_HDR_VERSION_OFFSET;
|
||||
if (netxen_rom_fast_read(adapter, offset, &header_version))
|
||||
return -EIO;
|
||||
|
||||
if (magic != NETXEN_BDINFO_MAGIC ||
|
||||
header_version != NETXEN_BDINFO_VERSION) {
|
||||
dev_err(&pdev->dev,
|
||||
"invalid board config, magic=%08x, version=%08x\n",
|
||||
magic, header_version);
|
||||
if (magic != NETXEN_BDINFO_MAGIC) {
|
||||
dev_err(&pdev->dev, "invalid board config, magic=%08x\n",
|
||||
magic);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
|
|
|
@ -531,6 +531,8 @@ int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
|
|||
continue;
|
||||
|
||||
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
|
||||
if (off == (NETXEN_CRB_I2C0 + 0x1c))
|
||||
continue;
|
||||
/* do not reset PCI */
|
||||
if (off == (ROMUSB_GLB + 0xbc))
|
||||
continue;
|
||||
|
@ -553,12 +555,6 @@ int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
|
|||
continue;
|
||||
}
|
||||
|
||||
if (off == NETXEN_ADDR_ERROR) {
|
||||
printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n",
|
||||
netxen_nic_driver_name, buf[i].addr);
|
||||
continue;
|
||||
}
|
||||
|
||||
init_delay = 1;
|
||||
/* After writing this register, HW needs time for CRB */
|
||||
/* to quiet down (else crb_window returns 0xffffffff) */
|
||||
|
|
|
@ -1919,6 +1919,7 @@ static void netxen_tx_timeout_task(struct work_struct *work)
|
|||
|
||||
request_reset:
|
||||
adapter->need_fw_reset = 1;
|
||||
clear_bit(__NX_RESETTING, &adapter->state);
|
||||
}
|
||||
|
||||
struct net_device_stats *netxen_nic_get_stats(struct net_device *netdev)
|
||||
|
|
|
@ -111,9 +111,6 @@ struct pppoe_net {
|
|||
rwlock_t hash_lock;
|
||||
};
|
||||
|
||||
/* to eliminate a race btw pppoe_flush_dev and pppoe_release */
|
||||
static DEFINE_SPINLOCK(flush_lock);
|
||||
|
||||
/*
|
||||
* PPPoE could be in the following stages:
|
||||
* 1) Discovery stage (to obtain remote MAC and Session ID)
|
||||
|
@ -303,45 +300,48 @@ static void pppoe_flush_dev(struct net_device *dev)
|
|||
write_lock_bh(&pn->hash_lock);
|
||||
for (i = 0; i < PPPOE_HASH_SIZE; i++) {
|
||||
struct pppox_sock *po = pn->hash_table[i];
|
||||
|
||||
while (po != NULL) {
|
||||
struct sock *sk;
|
||||
if (po->pppoe_dev != dev) {
|
||||
|
||||
while (po) {
|
||||
while (po && po->pppoe_dev != dev) {
|
||||
po = po->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!po)
|
||||
break;
|
||||
|
||||
sk = sk_pppox(po);
|
||||
spin_lock(&flush_lock);
|
||||
po->pppoe_dev = NULL;
|
||||
spin_unlock(&flush_lock);
|
||||
dev_put(dev);
|
||||
|
||||
/* We always grab the socket lock, followed by the
|
||||
* hash_lock, in that order. Since we should
|
||||
* hold the sock lock while doing any unbinding,
|
||||
* we need to release the lock we're holding.
|
||||
* Hold a reference to the sock so it doesn't disappear
|
||||
* as we're jumping between locks.
|
||||
* hash_lock, in that order. Since we should hold the
|
||||
* sock lock while doing any unbinding, we need to
|
||||
* release the lock we're holding. Hold a reference to
|
||||
* the sock so it doesn't disappear as we're jumping
|
||||
* between locks.
|
||||
*/
|
||||
|
||||
sock_hold(sk);
|
||||
|
||||
write_unlock_bh(&pn->hash_lock);
|
||||
lock_sock(sk);
|
||||
|
||||
if (sk->sk_state & (PPPOX_CONNECTED | PPPOX_BOUND)) {
|
||||
if (po->pppoe_dev == dev
|
||||
&& sk->sk_state & (PPPOX_CONNECTED | PPPOX_BOUND)) {
|
||||
pppox_unbind_sock(sk);
|
||||
sk->sk_state = PPPOX_ZOMBIE;
|
||||
sk->sk_state_change(sk);
|
||||
po->pppoe_dev = NULL;
|
||||
dev_put(dev);
|
||||
}
|
||||
|
||||
release_sock(sk);
|
||||
sock_put(sk);
|
||||
|
||||
/* Restart scan at the beginning of this hash chain.
|
||||
* While the lock was dropped the chain contents may
|
||||
* have changed.
|
||||
/* Restart the process from the start of the current
|
||||
* hash chain. We dropped locks so the world may have
|
||||
* change from underneath us.
|
||||
*/
|
||||
|
||||
BUG_ON(pppoe_pernet(dev_net(dev)) == NULL);
|
||||
write_lock_bh(&pn->hash_lock);
|
||||
po = pn->hash_table[i];
|
||||
}
|
||||
|
@ -388,10 +388,15 @@ static int pppoe_rcv_core(struct sock *sk, struct sk_buff *skb)
|
|||
struct pppox_sock *po = pppox_sk(sk);
|
||||
struct pppox_sock *relay_po;
|
||||
|
||||
/* Backlog receive. Semantics of backlog rcv preclude any code from
|
||||
* executing in lock_sock()/release_sock() bounds; meaning sk->sk_state
|
||||
* can't change.
|
||||
*/
|
||||
|
||||
if (sk->sk_state & PPPOX_BOUND) {
|
||||
ppp_input(&po->chan, skb);
|
||||
} else if (sk->sk_state & PPPOX_RELAY) {
|
||||
relay_po = get_item_by_addr(dev_net(po->pppoe_dev),
|
||||
relay_po = get_item_by_addr(sock_net(sk),
|
||||
&po->pppoe_relay);
|
||||
if (relay_po == NULL)
|
||||
goto abort_kfree;
|
||||
|
@ -447,6 +452,10 @@ static int pppoe_rcv(struct sk_buff *skb, struct net_device *dev,
|
|||
goto drop;
|
||||
|
||||
pn = pppoe_pernet(dev_net(dev));
|
||||
|
||||
/* Note that get_item does a sock_hold(), so sk_pppox(po)
|
||||
* is known to be safe.
|
||||
*/
|
||||
po = get_item(pn, ph->sid, eth_hdr(skb)->h_source, dev->ifindex);
|
||||
if (!po)
|
||||
goto drop;
|
||||
|
@ -561,6 +570,7 @@ static int pppoe_release(struct socket *sock)
|
|||
struct sock *sk = sock->sk;
|
||||
struct pppox_sock *po;
|
||||
struct pppoe_net *pn;
|
||||
struct net *net = NULL;
|
||||
|
||||
if (!sk)
|
||||
return 0;
|
||||
|
@ -571,44 +581,28 @@ static int pppoe_release(struct socket *sock)
|
|||
return -EBADF;
|
||||
}
|
||||
|
||||
po = pppox_sk(sk);
|
||||
|
||||
if (sk->sk_state & (PPPOX_CONNECTED | PPPOX_BOUND)) {
|
||||
dev_put(po->pppoe_dev);
|
||||
po->pppoe_dev = NULL;
|
||||
}
|
||||
|
||||
pppox_unbind_sock(sk);
|
||||
|
||||
/* Signal the death of the socket. */
|
||||
sk->sk_state = PPPOX_DEAD;
|
||||
|
||||
/*
|
||||
* pppoe_flush_dev could lead to a race with
|
||||
* this routine so we use flush_lock to eliminate
|
||||
* such a case (we only need per-net specific data)
|
||||
*/
|
||||
spin_lock(&flush_lock);
|
||||
po = pppox_sk(sk);
|
||||
if (!po->pppoe_dev) {
|
||||
spin_unlock(&flush_lock);
|
||||
goto out;
|
||||
}
|
||||
pn = pppoe_pernet(dev_net(po->pppoe_dev));
|
||||
spin_unlock(&flush_lock);
|
||||
net = sock_net(sk);
|
||||
pn = pppoe_pernet(net);
|
||||
|
||||
/*
|
||||
* protect "po" from concurrent updates
|
||||
* on pppoe_flush_dev
|
||||
*/
|
||||
write_lock_bh(&pn->hash_lock);
|
||||
|
||||
po = pppox_sk(sk);
|
||||
if (stage_session(po->pppoe_pa.sid))
|
||||
__delete_item(pn, po->pppoe_pa.sid, po->pppoe_pa.remote,
|
||||
delete_item(pn, po->pppoe_pa.sid, po->pppoe_pa.remote,
|
||||
po->pppoe_ifindex);
|
||||
|
||||
if (po->pppoe_dev) {
|
||||
dev_put(po->pppoe_dev);
|
||||
po->pppoe_dev = NULL;
|
||||
}
|
||||
|
||||
write_unlock_bh(&pn->hash_lock);
|
||||
|
||||
out:
|
||||
sock_orphan(sk);
|
||||
sock->sk = NULL;
|
||||
|
||||
|
@ -625,8 +619,9 @@ static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
|
|||
struct sock *sk = sock->sk;
|
||||
struct sockaddr_pppox *sp = (struct sockaddr_pppox *)uservaddr;
|
||||
struct pppox_sock *po = pppox_sk(sk);
|
||||
struct net_device *dev;
|
||||
struct net_device *dev = NULL;
|
||||
struct pppoe_net *pn;
|
||||
struct net *net = NULL;
|
||||
int error;
|
||||
|
||||
lock_sock(sk);
|
||||
|
@ -652,12 +647,14 @@ static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
|
|||
/* Delete the old binding */
|
||||
if (stage_session(po->pppoe_pa.sid)) {
|
||||
pppox_unbind_sock(sk);
|
||||
if (po->pppoe_dev) {
|
||||
pn = pppoe_pernet(dev_net(po->pppoe_dev));
|
||||
pn = pppoe_pernet(sock_net(sk));
|
||||
delete_item(pn, po->pppoe_pa.sid,
|
||||
po->pppoe_pa.remote, po->pppoe_ifindex);
|
||||
if (po->pppoe_dev) {
|
||||
dev_put(po->pppoe_dev);
|
||||
po->pppoe_dev = NULL;
|
||||
}
|
||||
|
||||
memset(sk_pppox(po) + 1, 0,
|
||||
sizeof(struct pppox_sock) - sizeof(struct sock));
|
||||
sk->sk_state = PPPOX_NONE;
|
||||
|
@ -666,16 +663,15 @@ static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
|
|||
/* Re-bind in session stage only */
|
||||
if (stage_session(sp->sa_addr.pppoe.sid)) {
|
||||
error = -ENODEV;
|
||||
dev = dev_get_by_name(sock_net(sk), sp->sa_addr.pppoe.dev);
|
||||
net = sock_net(sk);
|
||||
dev = dev_get_by_name(net, sp->sa_addr.pppoe.dev);
|
||||
if (!dev)
|
||||
goto end;
|
||||
goto err_put;
|
||||
|
||||
po->pppoe_dev = dev;
|
||||
po->pppoe_ifindex = dev->ifindex;
|
||||
pn = pppoe_pernet(dev_net(dev));
|
||||
write_lock_bh(&pn->hash_lock);
|
||||
pn = pppoe_pernet(net);
|
||||
if (!(dev->flags & IFF_UP)) {
|
||||
write_unlock_bh(&pn->hash_lock);
|
||||
goto err_put;
|
||||
}
|
||||
|
||||
|
@ -683,6 +679,7 @@ static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
|
|||
&sp->sa_addr.pppoe,
|
||||
sizeof(struct pppoe_addr));
|
||||
|
||||
write_lock_bh(&pn->hash_lock);
|
||||
error = __set_item(pn, po);
|
||||
write_unlock_bh(&pn->hash_lock);
|
||||
if (error < 0)
|
||||
|
@ -696,8 +693,11 @@ static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
|
|||
po->chan.ops = &pppoe_chan_ops;
|
||||
|
||||
error = ppp_register_net_channel(dev_net(dev), &po->chan);
|
||||
if (error)
|
||||
if (error) {
|
||||
delete_item(pn, po->pppoe_pa.sid,
|
||||
po->pppoe_pa.remote, po->pppoe_ifindex);
|
||||
goto err_put;
|
||||
}
|
||||
|
||||
sk->sk_state = PPPOX_CONNECTED;
|
||||
}
|
||||
|
@ -915,6 +915,14 @@ static int __pppoe_xmit(struct sock *sk, struct sk_buff *skb)
|
|||
struct pppoe_hdr *ph;
|
||||
int data_len = skb->len;
|
||||
|
||||
/* The higher-level PPP code (ppp_unregister_channel()) ensures the PPP
|
||||
* xmit operations conclude prior to an unregistration call. Thus
|
||||
* sk->sk_state cannot change, so we don't need to do lock_sock().
|
||||
* But, we also can't do a lock_sock since that introduces a potential
|
||||
* deadlock as we'd reverse the lock ordering used when calling
|
||||
* ppp_unregister_channel().
|
||||
*/
|
||||
|
||||
if (sock_flag(sk, SOCK_DEAD) || !(sk->sk_state & PPPOX_CONNECTED))
|
||||
goto abort;
|
||||
|
||||
|
@ -944,7 +952,6 @@ static int __pppoe_xmit(struct sock *sk, struct sk_buff *skb)
|
|||
po->pppoe_pa.remote, NULL, data_len);
|
||||
|
||||
dev_queue_xmit(skb);
|
||||
|
||||
return 1;
|
||||
|
||||
abort:
|
||||
|
|
|
@ -95,6 +95,7 @@ enum {
|
|||
|
||||
/* Misc. stuff */
|
||||
MAILBOX_COUNT = 16,
|
||||
MAILBOX_TIMEOUT = 5,
|
||||
|
||||
PROC_ADDR_RDY = (1 << 31),
|
||||
PROC_ADDR_R = (1 << 30),
|
||||
|
|
|
@ -3916,6 +3916,7 @@ static int __devinit ql_init_device(struct pci_dev *pdev,
|
|||
goto err_out;
|
||||
}
|
||||
|
||||
pci_save_state(pdev);
|
||||
qdev->reg_base =
|
||||
ioremap_nocache(pci_resource_start(pdev, 1),
|
||||
pci_resource_len(pdev, 1));
|
||||
|
@ -4070,6 +4071,33 @@ static void __devexit qlge_remove(struct pci_dev *pdev)
|
|||
free_netdev(ndev);
|
||||
}
|
||||
|
||||
/* Clean up resources without touching hardware. */
|
||||
static void ql_eeh_close(struct net_device *ndev)
|
||||
{
|
||||
int i;
|
||||
struct ql_adapter *qdev = netdev_priv(ndev);
|
||||
|
||||
if (netif_carrier_ok(ndev)) {
|
||||
netif_carrier_off(ndev);
|
||||
netif_stop_queue(ndev);
|
||||
}
|
||||
|
||||
if (test_bit(QL_ADAPTER_UP, &qdev->flags))
|
||||
cancel_delayed_work_sync(&qdev->asic_reset_work);
|
||||
cancel_delayed_work_sync(&qdev->mpi_reset_work);
|
||||
cancel_delayed_work_sync(&qdev->mpi_work);
|
||||
cancel_delayed_work_sync(&qdev->mpi_idc_work);
|
||||
cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
|
||||
|
||||
for (i = 0; i < qdev->rss_ring_count; i++)
|
||||
netif_napi_del(&qdev->rx_ring[i].napi);
|
||||
|
||||
clear_bit(QL_ADAPTER_UP, &qdev->flags);
|
||||
ql_tx_ring_clean(qdev);
|
||||
ql_free_rx_buffers(qdev);
|
||||
ql_release_adapter_resources(qdev);
|
||||
}
|
||||
|
||||
/*
|
||||
* This callback is called by the PCI subsystem whenever
|
||||
* a PCI bus error is detected.
|
||||
|
@ -4078,17 +4106,21 @@ static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
|
|||
enum pci_channel_state state)
|
||||
{
|
||||
struct net_device *ndev = pci_get_drvdata(pdev);
|
||||
struct ql_adapter *qdev = netdev_priv(ndev);
|
||||
|
||||
switch (state) {
|
||||
case pci_channel_io_normal:
|
||||
return PCI_ERS_RESULT_CAN_RECOVER;
|
||||
case pci_channel_io_frozen:
|
||||
netif_device_detach(ndev);
|
||||
|
||||
if (state == pci_channel_io_perm_failure)
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
|
||||
if (netif_running(ndev))
|
||||
ql_adapter_down(qdev);
|
||||
|
||||
ql_eeh_close(ndev);
|
||||
pci_disable_device(pdev);
|
||||
return PCI_ERS_RESULT_NEED_RESET;
|
||||
case pci_channel_io_perm_failure:
|
||||
dev_err(&pdev->dev,
|
||||
"%s: pci_channel_io_perm_failure.\n", __func__);
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
}
|
||||
|
||||
/* Request a slot reset. */
|
||||
return PCI_ERS_RESULT_NEED_RESET;
|
||||
|
@ -4105,25 +4137,15 @@ static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
|
|||
struct net_device *ndev = pci_get_drvdata(pdev);
|
||||
struct ql_adapter *qdev = netdev_priv(ndev);
|
||||
|
||||
pdev->error_state = pci_channel_io_normal;
|
||||
|
||||
pci_restore_state(pdev);
|
||||
if (pci_enable_device(pdev)) {
|
||||
QPRINTK(qdev, IFUP, ERR,
|
||||
"Cannot re-enable PCI device after reset.\n");
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
}
|
||||
|
||||
pci_set_master(pdev);
|
||||
|
||||
netif_carrier_off(ndev);
|
||||
ql_adapter_reset(qdev);
|
||||
|
||||
/* Make sure the EEPROM is good */
|
||||
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
|
||||
|
||||
if (!is_valid_ether_addr(ndev->perm_addr)) {
|
||||
QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
}
|
||||
|
||||
return PCI_ERS_RESULT_RECOVERED;
|
||||
}
|
||||
|
||||
|
@ -4131,17 +4153,21 @@ static void qlge_io_resume(struct pci_dev *pdev)
|
|||
{
|
||||
struct net_device *ndev = pci_get_drvdata(pdev);
|
||||
struct ql_adapter *qdev = netdev_priv(ndev);
|
||||
int err = 0;
|
||||
|
||||
pci_set_master(pdev);
|
||||
|
||||
if (ql_adapter_reset(qdev))
|
||||
QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
|
||||
if (netif_running(ndev)) {
|
||||
if (ql_adapter_up(qdev)) {
|
||||
err = qlge_open(ndev);
|
||||
if (err) {
|
||||
QPRINTK(qdev, IFUP, ERR,
|
||||
"Device initialization failed after reset.\n");
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
QPRINTK(qdev, IFUP, ERR,
|
||||
"Device was not running prior to EEH.\n");
|
||||
}
|
||||
|
||||
netif_device_attach(ndev);
|
||||
}
|
||||
|
||||
|
|
|
@ -470,7 +470,8 @@ end:
|
|||
*/
|
||||
static int ql_mailbox_command(struct ql_adapter *qdev, struct mbox_params *mbcp)
|
||||
{
|
||||
int status, count;
|
||||
int status;
|
||||
unsigned long count;
|
||||
|
||||
|
||||
/* Begin polled mode for MPI */
|
||||
|
@ -491,9 +492,9 @@ static int ql_mailbox_command(struct ql_adapter *qdev, struct mbox_params *mbcp)
|
|||
/* Wait for the command to complete. We loop
|
||||
* here because some AEN might arrive while
|
||||
* we're waiting for the mailbox command to
|
||||
* complete. If more than 5 arrive then we can
|
||||
* complete. If more than 5 seconds expire we can
|
||||
* assume something is wrong. */
|
||||
count = 5;
|
||||
count = jiffies + HZ * MAILBOX_TIMEOUT;
|
||||
do {
|
||||
/* Wait for the interrupt to come in. */
|
||||
status = ql_wait_mbx_cmd_cmplt(qdev);
|
||||
|
@ -517,15 +518,15 @@ static int ql_mailbox_command(struct ql_adapter *qdev, struct mbox_params *mbcp)
|
|||
MB_CMD_STS_GOOD) ||
|
||||
((mbcp->mbox_out[0] & 0x0000f000) ==
|
||||
MB_CMD_STS_INTRMDT))
|
||||
break;
|
||||
} while (--count);
|
||||
goto done;
|
||||
} while (time_before(jiffies, count));
|
||||
|
||||
if (!count) {
|
||||
QPRINTK(qdev, DRV, ERR,
|
||||
"Timed out waiting for mailbox complete.\n");
|
||||
status = -ETIMEDOUT;
|
||||
goto end;
|
||||
}
|
||||
|
||||
done:
|
||||
|
||||
/* Now we can clear the interrupt condition
|
||||
* and look at our status.
|
||||
|
|
|
@ -1029,7 +1029,10 @@ static void rtl8169_vlan_rx_register(struct net_device *dev,
|
|||
|
||||
spin_lock_irqsave(&tp->lock, flags);
|
||||
tp->vlgrp = grp;
|
||||
if (tp->vlgrp)
|
||||
/*
|
||||
* Do not disable RxVlan on 8110SCd.
|
||||
*/
|
||||
if (tp->vlgrp || (tp->mac_version == RTL_GIGA_MAC_VER_05))
|
||||
tp->cp_cmd |= RxVlan;
|
||||
else
|
||||
tp->cp_cmd &= ~RxVlan;
|
||||
|
@ -3197,6 +3200,14 @@ rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|||
}
|
||||
|
||||
rtl8169_init_phy(dev, tp);
|
||||
|
||||
/*
|
||||
* Pretend we are using VLANs; This bypasses a nasty bug where
|
||||
* Interrupts stop flowing on high load on 8110SCd controllers.
|
||||
*/
|
||||
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
|
||||
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | RxVlan);
|
||||
|
||||
device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL);
|
||||
|
||||
out:
|
||||
|
|
|
@ -444,7 +444,8 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|||
* the appropriate LRO method
|
||||
*/
|
||||
static void efx_rx_packet_lro(struct efx_channel *channel,
|
||||
struct efx_rx_buffer *rx_buf)
|
||||
struct efx_rx_buffer *rx_buf,
|
||||
bool checksummed)
|
||||
{
|
||||
struct napi_struct *napi = &channel->napi_str;
|
||||
|
||||
|
@ -466,7 +467,8 @@ static void efx_rx_packet_lro(struct efx_channel *channel,
|
|||
skb->len = rx_buf->len;
|
||||
skb->data_len = rx_buf->len;
|
||||
skb->truesize += rx_buf->len;
|
||||
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||||
skb->ip_summed =
|
||||
checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
|
||||
|
||||
napi_gro_frags(napi);
|
||||
|
||||
|
@ -475,6 +477,7 @@ out:
|
|||
rx_buf->page = NULL;
|
||||
} else {
|
||||
EFX_BUG_ON_PARANOID(!rx_buf->skb);
|
||||
EFX_BUG_ON_PARANOID(!checksummed);
|
||||
|
||||
napi_gro_receive(napi, rx_buf->skb);
|
||||
rx_buf->skb = NULL;
|
||||
|
@ -570,7 +573,7 @@ void __efx_rx_packet(struct efx_channel *channel,
|
|||
}
|
||||
|
||||
if (likely(checksummed || rx_buf->page)) {
|
||||
efx_rx_packet_lro(channel, rx_buf);
|
||||
efx_rx_packet_lro(channel, rx_buf, checksummed);
|
||||
goto done;
|
||||
}
|
||||
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include <linux/phy.h>
|
||||
#include <linux/cache.h>
|
||||
#include <linux/io.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
#include "sh_eth.h"
|
||||
|
||||
|
|
|
@ -649,6 +649,10 @@ static const struct usb_device_id products[] = {
|
|||
USB_DEVICE(0x0fe6, 0x8101), /* DM9601 USB to Fast Ethernet Adapter */
|
||||
.driver_info = (unsigned long)&dm9601_info,
|
||||
},
|
||||
{
|
||||
USB_DEVICE(0x0a46, 0x9000), /* DM9000E */
|
||||
.driver_info = (unsigned long)&dm9601_info,
|
||||
},
|
||||
{}, // END
|
||||
};
|
||||
|
||||
|
|
|
@ -516,8 +516,7 @@ again:
|
|||
/* Free up any pending old buffers before queueing new ones. */
|
||||
free_old_xmit_skbs(vi);
|
||||
|
||||
/* Put new one in send queue and do transmit */
|
||||
__skb_queue_head(&vi->send, skb);
|
||||
/* Try to transmit */
|
||||
capacity = xmit_skb(vi, skb);
|
||||
|
||||
/* This can happen with OOM and indirect buffers. */
|
||||
|
@ -531,8 +530,17 @@ again:
|
|||
}
|
||||
return NETDEV_TX_BUSY;
|
||||
}
|
||||
|
||||
vi->svq->vq_ops->kick(vi->svq);
|
||||
|
||||
/*
|
||||
* Put new one in send queue. You'd expect we'd need this before
|
||||
* xmit_skb calls add_buf(), since the callback can be triggered
|
||||
* immediately after that. But since the callback just triggers
|
||||
* another call back here, normal network xmit locking prevents the
|
||||
* race.
|
||||
*/
|
||||
__skb_queue_head(&vi->send, skb);
|
||||
|
||||
/* Don't wait up for transmitted skbs to be freed. */
|
||||
skb_orphan(skb);
|
||||
nf_reset(skb);
|
||||
|
|
|
@ -4790,9 +4790,8 @@ static int proc_stats_rid_open( struct inode *inode,
|
|||
static int get_dec_u16( char *buffer, int *start, int limit ) {
|
||||
u16 value;
|
||||
int valid = 0;
|
||||
for( value = 0; buffer[*start] >= '0' &&
|
||||
buffer[*start] <= '9' &&
|
||||
*start < limit; (*start)++ ) {
|
||||
for (value = 0; *start < limit && buffer[*start] >= '0' &&
|
||||
buffer[*start] <= '9'; (*start)++) {
|
||||
valid = 1;
|
||||
value *= 10;
|
||||
value += buffer[*start] - '0';
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#ifndef B43_LEDS_H_
|
||||
#define B43_LEDS_H_
|
||||
|
||||
struct b43_wl;
|
||||
struct b43_wldev;
|
||||
|
||||
#ifdef CONFIG_B43_LEDS
|
||||
|
|
|
@ -4501,7 +4501,6 @@ static void b43_op_stop(struct ieee80211_hw *hw)
|
|||
|
||||
cancel_work_sync(&(wl->beacon_update_trigger));
|
||||
|
||||
wiphy_rfkill_stop_polling(hw->wiphy);
|
||||
mutex_lock(&wl->mutex);
|
||||
if (b43_status(dev) >= B43_STAT_STARTED) {
|
||||
dev = b43_wireless_core_stop(dev);
|
||||
|
|
|
@ -33,7 +33,8 @@ bool b43_is_hw_radio_enabled(struct b43_wldev *dev)
|
|||
& B43_MMIO_RADIO_HWENABLED_HI_MASK))
|
||||
return 1;
|
||||
} else {
|
||||
if (b43_read16(dev, B43_MMIO_RADIO_HWENABLED_LO)
|
||||
if (b43_status(dev) >= B43_STAT_STARTED &&
|
||||
b43_read16(dev, B43_MMIO_RADIO_HWENABLED_LO)
|
||||
& B43_MMIO_RADIO_HWENABLED_LO_MASK)
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -134,7 +134,7 @@ static void spu_transaction_finish(struct if_spi_card *card)
|
|||
static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len)
|
||||
{
|
||||
int err = 0;
|
||||
u16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK);
|
||||
__le16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK);
|
||||
struct spi_message m;
|
||||
struct spi_transfer reg_trans;
|
||||
struct spi_transfer data_trans;
|
||||
|
@ -166,7 +166,7 @@ static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len)
|
|||
|
||||
static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val)
|
||||
{
|
||||
u16 buff;
|
||||
__le16 buff;
|
||||
|
||||
buff = cpu_to_le16(val);
|
||||
return spu_write(card, reg, (u8 *)&buff, sizeof(u16));
|
||||
|
@ -188,7 +188,7 @@ static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len)
|
|||
{
|
||||
unsigned int delay;
|
||||
int err = 0;
|
||||
u16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK);
|
||||
__le16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK);
|
||||
struct spi_message m;
|
||||
struct spi_transfer reg_trans;
|
||||
struct spi_transfer dummy_trans;
|
||||
|
@ -235,7 +235,7 @@ static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len)
|
|||
/* Read 16 bits from an SPI register */
|
||||
static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val)
|
||||
{
|
||||
u16 buf;
|
||||
__le16 buf;
|
||||
int ret;
|
||||
|
||||
ret = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
|
||||
|
@ -248,7 +248,7 @@ static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val)
|
|||
* The low 16 bits are read first. */
|
||||
static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val)
|
||||
{
|
||||
u32 buf;
|
||||
__le32 buf;
|
||||
int err;
|
||||
|
||||
err = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
|
||||
|
|
|
@ -1994,7 +1994,7 @@ static void rt2800usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
|
|||
rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
|
||||
rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
|
||||
test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
|
||||
(skbdesc->entry->entry_idx + 1) : 0xff);
|
||||
txdesc->key_idx : 0xff);
|
||||
rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
|
||||
skb->len - txdesc->l2pad);
|
||||
rt2x00_set_field32(&word, TXWI_W1_PACKETID,
|
||||
|
|
|
@ -335,6 +335,7 @@ struct pktgen_dev {
|
|||
__u32 cur_src_mac_offset;
|
||||
__be32 cur_saddr;
|
||||
__be32 cur_daddr;
|
||||
__u16 ip_id;
|
||||
__u16 cur_udp_dst;
|
||||
__u16 cur_udp_src;
|
||||
__u16 cur_queue_map;
|
||||
|
@ -2630,6 +2631,8 @@ static struct sk_buff *fill_packet_ipv4(struct net_device *odev,
|
|||
iph->protocol = IPPROTO_UDP; /* UDP */
|
||||
iph->saddr = pkt_dev->cur_saddr;
|
||||
iph->daddr = pkt_dev->cur_daddr;
|
||||
iph->id = htons(pkt_dev->ip_id);
|
||||
pkt_dev->ip_id++;
|
||||
iph->frag_off = 0;
|
||||
iplen = 20 + 8 + datalen;
|
||||
iph->tot_len = htons(iplen);
|
||||
|
@ -2641,24 +2644,26 @@ static struct sk_buff *fill_packet_ipv4(struct net_device *odev,
|
|||
skb->dev = odev;
|
||||
skb->pkt_type = PACKET_HOST;
|
||||
|
||||
if (pkt_dev->nfrags <= 0)
|
||||
if (pkt_dev->nfrags <= 0) {
|
||||
pgh = (struct pktgen_hdr *)skb_put(skb, datalen);
|
||||
else {
|
||||
memset(pgh + 1, 0, datalen - sizeof(struct pktgen_hdr));
|
||||
} else {
|
||||
int frags = pkt_dev->nfrags;
|
||||
int i;
|
||||
int i, len;
|
||||
|
||||
pgh = (struct pktgen_hdr *)(((char *)(udph)) + 8);
|
||||
|
||||
if (frags > MAX_SKB_FRAGS)
|
||||
frags = MAX_SKB_FRAGS;
|
||||
if (datalen > frags * PAGE_SIZE) {
|
||||
skb_put(skb, datalen - frags * PAGE_SIZE);
|
||||
len = datalen - frags * PAGE_SIZE;
|
||||
memset(skb_put(skb, len), 0, len);
|
||||
datalen = frags * PAGE_SIZE;
|
||||
}
|
||||
|
||||
i = 0;
|
||||
while (datalen > 0) {
|
||||
struct page *page = alloc_pages(GFP_KERNEL, 0);
|
||||
struct page *page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
|
||||
skb_shinfo(skb)->frags[i].page = page;
|
||||
skb_shinfo(skb)->frags[i].page_offset = 0;
|
||||
skb_shinfo(skb)->frags[i].size =
|
||||
|
|
|
@ -352,13 +352,24 @@ static int raw_send_hdrinc(struct sock *sk, void *from, size_t length,
|
|||
skb->ip_summed = CHECKSUM_NONE;
|
||||
|
||||
skb->transport_header = skb->network_header;
|
||||
err = memcpy_fromiovecend((void *)iph, from, 0, length);
|
||||
if (err)
|
||||
goto error_fault;
|
||||
err = -EFAULT;
|
||||
if (memcpy_fromiovecend((void *)iph, from, 0, length))
|
||||
goto error_free;
|
||||
|
||||
/* We don't modify invalid header */
|
||||
iphlen = iph->ihl * 4;
|
||||
if (iphlen >= sizeof(*iph) && iphlen <= length) {
|
||||
|
||||
/*
|
||||
* We don't want to modify the ip header, but we do need to
|
||||
* be sure that it won't cause problems later along the network
|
||||
* stack. Specifically we want to make sure that iph->ihl is a
|
||||
* sane value. If ihl points beyond the length of the buffer passed
|
||||
* in, reject the frame as invalid
|
||||
*/
|
||||
err = -EINVAL;
|
||||
if (iphlen > length)
|
||||
goto error_free;
|
||||
|
||||
if (iphlen >= sizeof(*iph)) {
|
||||
if (!iph->saddr)
|
||||
iph->saddr = rt->rt_src;
|
||||
iph->check = 0;
|
||||
|
@ -381,8 +392,7 @@ static int raw_send_hdrinc(struct sock *sk, void *from, size_t length,
|
|||
out:
|
||||
return 0;
|
||||
|
||||
error_fault:
|
||||
err = -EFAULT;
|
||||
error_free:
|
||||
kfree_skb(skb);
|
||||
error:
|
||||
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
|
||||
|
|
|
@ -1442,9 +1442,9 @@ int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
|
|||
goto found_ok_skb;
|
||||
if (tcp_hdr(skb)->fin)
|
||||
goto found_fin_ok;
|
||||
if (WARN_ON(!(flags & MSG_PEEK)))
|
||||
printk(KERN_INFO "recvmsg bug 2: copied %X "
|
||||
"seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
|
||||
WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
|
||||
"copied %X seq %X\n", *seq,
|
||||
TCP_SKB_CB(skb)->seq);
|
||||
}
|
||||
|
||||
/* Well, if we have backlog, try to process it now yet. */
|
||||
|
|
|
@ -538,13 +538,12 @@ static void ieee80211_sta_find_ibss(struct ieee80211_sub_if_data *sdata)
|
|||
WLAN_CAPABILITY_PRIVACY,
|
||||
capability);
|
||||
|
||||
if (bss) {
|
||||
#ifdef CONFIG_MAC80211_IBSS_DEBUG
|
||||
if (bss)
|
||||
printk(KERN_DEBUG " sta_find_ibss: selected %pM current "
|
||||
"%pM\n", bss->cbss.bssid, ifibss->bssid);
|
||||
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
|
||||
|
||||
if (bss && !memcmp(ifibss->bssid, bss->cbss.bssid, ETH_ALEN)) {
|
||||
printk(KERN_DEBUG "%s: Selected IBSS BSSID %pM"
|
||||
" based on configured SSID\n",
|
||||
sdata->dev->name, bss->cbss.bssid);
|
||||
|
@ -552,8 +551,7 @@ static void ieee80211_sta_find_ibss(struct ieee80211_sub_if_data *sdata)
|
|||
ieee80211_sta_join_ibss(sdata, bss);
|
||||
ieee80211_rx_bss_put(local, bss);
|
||||
return;
|
||||
} else if (bss)
|
||||
ieee80211_rx_bss_put(local, bss);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MAC80211_IBSS_DEBUG
|
||||
printk(KERN_DEBUG " did not try to join ibss\n");
|
||||
|
|
|
@ -259,7 +259,7 @@ static u32 airtime_link_metric_get(struct ieee80211_local *local,
|
|||
* @hwmp_ie: hwmp information element (PREP or PREQ)
|
||||
*
|
||||
* This function updates the path routing information to the originator and the
|
||||
* transmitter of a HWMP PREQ or PREP fram.
|
||||
* transmitter of a HWMP PREQ or PREP frame.
|
||||
*
|
||||
* Returns: metric to frame originator or 0 if the frame should not be further
|
||||
* processed
|
||||
|
|
|
@ -1457,8 +1457,7 @@ ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
|
|||
if (status_code != WLAN_STATUS_SUCCESS) {
|
||||
printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
|
||||
sdata->dev->name, status_code);
|
||||
list_del(&wk->list);
|
||||
kfree(wk);
|
||||
wk->state = IEEE80211_MGD_STATE_IDLE;
|
||||
return RX_MGMT_CFG80211_ASSOC;
|
||||
}
|
||||
|
||||
|
|
|
@ -1445,7 +1445,7 @@ static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
|
|||
if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
|
||||
continue;
|
||||
if (compare_ether_addr(tmp_sdata->dev->dev_addr,
|
||||
hdr->addr2)) {
|
||||
hdr->addr2) == 0) {
|
||||
dev_hold(tmp_sdata->dev);
|
||||
dev_put(sdata->dev);
|
||||
sdata = tmp_sdata;
|
||||
|
|
|
@ -982,10 +982,7 @@ static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
|
|||
goto out_put;
|
||||
|
||||
size_max = po->tx_ring.frame_size
|
||||
- sizeof(struct skb_shared_info)
|
||||
- po->tp_hdrlen
|
||||
- LL_ALLOCATED_SPACE(dev)
|
||||
- sizeof(struct sockaddr_ll);
|
||||
- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
|
||||
|
||||
if (size_max > dev->mtu + reserve)
|
||||
size_max = dev->mtu + reserve;
|
||||
|
|
|
@ -358,6 +358,7 @@ int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev,
|
|||
struct wireless_dev *wdev);
|
||||
|
||||
void cfg80211_conn_work(struct work_struct *work);
|
||||
void cfg80211_sme_failed_assoc(struct wireless_dev *wdev);
|
||||
bool cfg80211_sme_failed_reassoc(struct wireless_dev *wdev);
|
||||
|
||||
/* internal helpers */
|
||||
|
|
|
@ -62,6 +62,7 @@ void cfg80211_send_rx_assoc(struct net_device *dev, const u8 *buf, size_t len)
|
|||
u8 *ie = mgmt->u.assoc_resp.variable;
|
||||
int i, ieoffs = offsetof(struct ieee80211_mgmt, u.assoc_resp.variable);
|
||||
struct cfg80211_internal_bss *bss = NULL;
|
||||
bool need_connect_result = true;
|
||||
|
||||
wdev_lock(wdev);
|
||||
|
||||
|
@ -94,6 +95,14 @@ void cfg80211_send_rx_assoc(struct net_device *dev, const u8 *buf, size_t len)
|
|||
}
|
||||
|
||||
WARN_ON(!bss);
|
||||
} else if (wdev->conn) {
|
||||
cfg80211_sme_failed_assoc(wdev);
|
||||
need_connect_result = false;
|
||||
/*
|
||||
* do not call connect_result() now because the
|
||||
* sme will schedule work that does it later.
|
||||
*/
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (!wdev->conn && wdev->sme_state == CFG80211_SME_IDLE) {
|
||||
|
|
|
@ -26,6 +26,7 @@ struct cfg80211_conn {
|
|||
CFG80211_CONN_AUTHENTICATING,
|
||||
CFG80211_CONN_ASSOCIATE_NEXT,
|
||||
CFG80211_CONN_ASSOCIATING,
|
||||
CFG80211_CONN_DEAUTH_ASSOC_FAIL,
|
||||
} state;
|
||||
u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN];
|
||||
u8 *ie;
|
||||
|
@ -148,6 +149,12 @@ static int cfg80211_conn_do_work(struct wireless_dev *wdev)
|
|||
NULL, 0,
|
||||
WLAN_REASON_DEAUTH_LEAVING);
|
||||
return err;
|
||||
case CFG80211_CONN_DEAUTH_ASSOC_FAIL:
|
||||
__cfg80211_mlme_deauth(rdev, wdev->netdev, params->bssid,
|
||||
NULL, 0,
|
||||
WLAN_REASON_DEAUTH_LEAVING);
|
||||
/* return an error so that we call __cfg80211_connect_result() */
|
||||
return -EINVAL;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
|
@ -158,6 +165,7 @@ void cfg80211_conn_work(struct work_struct *work)
|
|||
struct cfg80211_registered_device *rdev =
|
||||
container_of(work, struct cfg80211_registered_device, conn_work);
|
||||
struct wireless_dev *wdev;
|
||||
u8 bssid[ETH_ALEN];
|
||||
|
||||
rtnl_lock();
|
||||
cfg80211_lock_rdev(rdev);
|
||||
|
@ -173,10 +181,10 @@ void cfg80211_conn_work(struct work_struct *work)
|
|||
wdev_unlock(wdev);
|
||||
continue;
|
||||
}
|
||||
memcpy(bssid, wdev->conn->params.bssid, ETH_ALEN);
|
||||
if (cfg80211_conn_do_work(wdev))
|
||||
__cfg80211_connect_result(
|
||||
wdev->netdev,
|
||||
wdev->conn->params.bssid,
|
||||
wdev->netdev, bssid,
|
||||
NULL, 0, NULL, 0,
|
||||
WLAN_STATUS_UNSPECIFIED_FAILURE,
|
||||
false, NULL);
|
||||
|
@ -337,6 +345,15 @@ bool cfg80211_sme_failed_reassoc(struct wireless_dev *wdev)
|
|||
return true;
|
||||
}
|
||||
|
||||
void cfg80211_sme_failed_assoc(struct wireless_dev *wdev)
|
||||
{
|
||||
struct wiphy *wiphy = wdev->wiphy;
|
||||
struct cfg80211_registered_device *rdev = wiphy_to_dev(wiphy);
|
||||
|
||||
wdev->conn->state = CFG80211_CONN_DEAUTH_ASSOC_FAIL;
|
||||
schedule_work(&rdev->conn_work);
|
||||
}
|
||||
|
||||
void __cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
|
||||
const u8 *req_ie, size_t req_ie_len,
|
||||
const u8 *resp_ie, size_t resp_ie_len,
|
||||
|
|
Loading…
Reference in New Issue