sched/cpufreq: Clarify sugov_get_util()
Add a few comments to (hopefully) clarifying some of the magic in sugov_get_util(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Link: http://lkml.kernel.org/r/20180705123617.GM2458@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
5fd778915a
commit
45f5519ec5
|
@ -177,6 +177,26 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
|
|||
return cpufreq_driver_resolve_freq(policy, freq);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes an effective utilization for the given CPU, to be
|
||||
* used for frequency selection given the linear relation: f = u * f_max.
|
||||
*
|
||||
* The scheduler tracks the following metrics:
|
||||
*
|
||||
* cpu_util_{cfs,rt,dl,irq}()
|
||||
* cpu_bw_dl()
|
||||
*
|
||||
* Where the cfs,rt and dl util numbers are tracked with the same metric and
|
||||
* synchronized windows and are thus directly comparable.
|
||||
*
|
||||
* The cfs,rt,dl utilization are the running times measured with rq->clock_task
|
||||
* which excludes things like IRQ and steal-time. These latter are then accrued
|
||||
* in the irq utilization.
|
||||
*
|
||||
* The DL bandwidth number otoh is not a measured metric but a value computed
|
||||
* based on the task model parameters and gives the minimal utilization
|
||||
* required to meet deadlines.
|
||||
*/
|
||||
static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(sg_cpu->cpu);
|
||||
|
@ -188,47 +208,60 @@ static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
|
|||
if (rt_rq_is_runnable(&rq->rt))
|
||||
return max;
|
||||
|
||||
/*
|
||||
* Early check to see if IRQ/steal time saturates the CPU, can be
|
||||
* because of inaccuracies in how we track these -- see
|
||||
* update_irq_load_avg().
|
||||
*/
|
||||
irq = cpu_util_irq(rq);
|
||||
|
||||
if (unlikely(irq >= max))
|
||||
return max;
|
||||
|
||||
/* Sum rq utilization */
|
||||
/*
|
||||
* Because the time spend on RT/DL tasks is visible as 'lost' time to
|
||||
* CFS tasks and we use the same metric to track the effective
|
||||
* utilization (PELT windows are synchronized) we can directly add them
|
||||
* to obtain the CPU's actual utilization.
|
||||
*/
|
||||
util = cpu_util_cfs(rq);
|
||||
util += cpu_util_rt(rq);
|
||||
|
||||
/*
|
||||
* Interrupt time is not seen by RQS utilization so we can compare
|
||||
* them with the CPU capacity
|
||||
* We do not make cpu_util_dl() a permanent part of this sum because we
|
||||
* want to use cpu_bw_dl() later on, but we need to check if the
|
||||
* CFS+RT+DL sum is saturated (ie. no idle time) such that we select
|
||||
* f_max when there is no idle time.
|
||||
*
|
||||
* NOTE: numerical errors or stop class might cause us to not quite hit
|
||||
* saturation when we should -- something for later.
|
||||
*/
|
||||
if ((util + cpu_util_dl(rq)) >= max)
|
||||
return max;
|
||||
|
||||
/*
|
||||
* As there is still idle time on the CPU, we need to compute the
|
||||
* utilization level of the CPU.
|
||||
* There is still idle time; further improve the number by using the
|
||||
* irq metric. Because IRQ/steal time is hidden from the task clock we
|
||||
* need to scale the task numbers:
|
||||
*
|
||||
* 1 - irq
|
||||
* U' = irq + ------- * U
|
||||
* max
|
||||
*/
|
||||
util *= (max - irq);
|
||||
util /= max;
|
||||
util += irq;
|
||||
|
||||
/*
|
||||
* Bandwidth required by DEADLINE must always be granted while, for
|
||||
* FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
|
||||
* to gracefully reduce the frequency when no tasks show up for longer
|
||||
* periods of time.
|
||||
*
|
||||
* Ideally we would like to set util_dl as min/guaranteed freq and
|
||||
* util_cfs + util_dl as requested freq. However, cpufreq is not yet
|
||||
* ready for such an interface. So, we only do the latter for now.
|
||||
* Ideally we would like to set bw_dl as min/guaranteed freq and util +
|
||||
* bw_dl as requested freq. However, cpufreq is not yet ready for such
|
||||
* an interface. So, we only do the latter for now.
|
||||
*/
|
||||
|
||||
/* Weight RQS utilization to normal context window */
|
||||
util *= (max - irq);
|
||||
util /= max;
|
||||
|
||||
/* Add interrupt utilization */
|
||||
util += irq;
|
||||
|
||||
/* Add DL bandwidth requirement */
|
||||
util += sg_cpu->bw_dl;
|
||||
|
||||
return min(max, util);
|
||||
return min(max, util + sg_cpu->bw_dl);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
Loading…
Reference in New Issue