metag: Scheduling/Process management
Signed-off-by: James Hogan <james.hogan@imgtec.com>
This commit is contained in:
parent
26025bbfbb
commit
44dea393cf
|
@ -0,0 +1,155 @@
|
|||
/* thread_info.h: Meta low-level thread information
|
||||
*
|
||||
* Copyright (C) 2002 David Howells (dhowells@redhat.com)
|
||||
* - Incorporating suggestions made by Linus Torvalds and Dave Miller
|
||||
*
|
||||
* Meta port by Imagination Technologies
|
||||
*/
|
||||
|
||||
#ifndef _ASM_THREAD_INFO_H
|
||||
#define _ASM_THREAD_INFO_H
|
||||
|
||||
#include <linux/compiler.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <asm/processor.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
* low level task data that entry.S needs immediate access to
|
||||
* - this struct should fit entirely inside of one cache line
|
||||
* - this struct shares the supervisor stack pages
|
||||
* - if the contents of this structure are changed, the assembly constants must
|
||||
* also be changed
|
||||
*/
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/* This must be 8 byte aligned so we can ensure stack alignment. */
|
||||
struct thread_info {
|
||||
struct task_struct *task; /* main task structure */
|
||||
struct exec_domain *exec_domain; /* execution domain */
|
||||
unsigned long flags; /* low level flags */
|
||||
unsigned long status; /* thread-synchronous flags */
|
||||
u32 cpu; /* current CPU */
|
||||
int preempt_count; /* 0 => preemptable, <0 => BUG */
|
||||
|
||||
mm_segment_t addr_limit; /* thread address space */
|
||||
struct restart_block restart_block;
|
||||
|
||||
u8 supervisor_stack[0];
|
||||
};
|
||||
|
||||
#else /* !__ASSEMBLY__ */
|
||||
|
||||
#include <generated/asm-offsets.h>
|
||||
|
||||
#endif
|
||||
|
||||
#define PREEMPT_ACTIVE 0x10000000
|
||||
|
||||
#ifdef CONFIG_4KSTACKS
|
||||
#define THREAD_SHIFT 12
|
||||
#else
|
||||
#define THREAD_SHIFT 13
|
||||
#endif
|
||||
|
||||
#if THREAD_SHIFT >= PAGE_SHIFT
|
||||
#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
|
||||
#else
|
||||
#define THREAD_SIZE_ORDER 0
|
||||
#endif
|
||||
|
||||
#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)
|
||||
|
||||
#define STACK_WARN (THREAD_SIZE/8)
|
||||
/*
|
||||
* macros/functions for gaining access to the thread information structure
|
||||
*/
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
#define INIT_THREAD_INFO(tsk) \
|
||||
{ \
|
||||
.task = &tsk, \
|
||||
.exec_domain = &default_exec_domain, \
|
||||
.flags = 0, \
|
||||
.cpu = 0, \
|
||||
.preempt_count = INIT_PREEMPT_COUNT, \
|
||||
.addr_limit = KERNEL_DS, \
|
||||
.restart_block = { \
|
||||
.fn = do_no_restart_syscall, \
|
||||
}, \
|
||||
}
|
||||
|
||||
#define init_thread_info (init_thread_union.thread_info)
|
||||
#define init_stack (init_thread_union.stack)
|
||||
|
||||
/* how to get the current stack pointer from C */
|
||||
register unsigned long current_stack_pointer asm("A0StP") __used;
|
||||
|
||||
/* how to get the thread information struct from C */
|
||||
static inline struct thread_info *current_thread_info(void)
|
||||
{
|
||||
return (struct thread_info *)(current_stack_pointer &
|
||||
~(THREAD_SIZE - 1));
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_KSTACK_END
|
||||
static inline int kstack_end(void *addr)
|
||||
{
|
||||
return addr == (void *) (((unsigned long) addr & ~(THREAD_SIZE - 1))
|
||||
+ sizeof(struct thread_info));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* thread information flags
|
||||
* - these are process state flags that various assembly files may need to
|
||||
* access
|
||||
* - pending work-to-be-done flags are in LSW
|
||||
* - other flags in MSW
|
||||
*/
|
||||
#define TIF_SYSCALL_TRACE 0 /* syscall trace active */
|
||||
#define TIF_SIGPENDING 1 /* signal pending */
|
||||
#define TIF_NEED_RESCHED 2 /* rescheduling necessary */
|
||||
#define TIF_SINGLESTEP 3 /* restore singlestep on return to user
|
||||
mode */
|
||||
#define TIF_SYSCALL_AUDIT 4 /* syscall auditing active */
|
||||
#define TIF_SECCOMP 5 /* secure computing */
|
||||
#define TIF_RESTORE_SIGMASK 6 /* restore signal mask in do_signal() */
|
||||
#define TIF_NOTIFY_RESUME 7 /* callback before returning to user */
|
||||
#define TIF_POLLING_NRFLAG 8 /* true if poll_idle() is polling
|
||||
TIF_NEED_RESCHED */
|
||||
#define TIF_MEMDIE 9 /* is terminating due to OOM killer */
|
||||
#define TIF_SYSCALL_TRACEPOINT 10 /* syscall tracepoint instrumentation */
|
||||
|
||||
|
||||
#define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE)
|
||||
#define _TIF_SIGPENDING (1<<TIF_SIGPENDING)
|
||||
#define _TIF_NEED_RESCHED (1<<TIF_NEED_RESCHED)
|
||||
#define _TIF_SINGLESTEP (1<<TIF_SINGLESTEP)
|
||||
#define _TIF_SYSCALL_AUDIT (1<<TIF_SYSCALL_AUDIT)
|
||||
#define _TIF_SECCOMP (1<<TIF_SECCOMP)
|
||||
#define _TIF_NOTIFY_RESUME (1<<TIF_NOTIFY_RESUME)
|
||||
#define _TIF_RESTORE_SIGMASK (1<<TIF_RESTORE_SIGMASK)
|
||||
#define _TIF_SYSCALL_TRACEPOINT (1<<TIF_SYSCALL_TRACEPOINT)
|
||||
|
||||
/* work to do in syscall trace */
|
||||
#define _TIF_WORK_SYSCALL_MASK (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP | \
|
||||
_TIF_SYSCALL_AUDIT | _TIF_SECCOMP | \
|
||||
_TIF_SYSCALL_TRACEPOINT)
|
||||
|
||||
/* work to do on any return to u-space */
|
||||
#define _TIF_ALLWORK_MASK (_TIF_SYSCALL_TRACE | _TIF_SIGPENDING | \
|
||||
_TIF_NEED_RESCHED | _TIF_SYSCALL_AUDIT | \
|
||||
_TIF_SINGLESTEP | _TIF_RESTORE_SIGMASK | \
|
||||
_TIF_NOTIFY_RESUME)
|
||||
|
||||
/* work to do on interrupt/exception return */
|
||||
#define _TIF_WORK_MASK (_TIF_ALLWORK_MASK & ~(_TIF_SYSCALL_TRACE | \
|
||||
_TIF_SYSCALL_AUDIT | _TIF_SINGLESTEP))
|
||||
|
||||
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
|
||||
|
||||
#endif /* _ASM_THREAD_INFO_H */
|
|
@ -0,0 +1,461 @@
|
|||
/*
|
||||
* Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
|
||||
*
|
||||
* This file contains the architecture-dependent parts of process handling.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/errno.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/unistd.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/user.h>
|
||||
#include <linux/reboot.h>
|
||||
#include <linux/elfcore.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/tick.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/pm.h>
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/core_reg.h>
|
||||
#include <asm/user_gateway.h>
|
||||
#include <asm/tcm.h>
|
||||
#include <asm/traps.h>
|
||||
#include <asm/switch_to.h>
|
||||
|
||||
/*
|
||||
* Wait for the next interrupt and enable local interrupts
|
||||
*/
|
||||
static inline void arch_idle(void)
|
||||
{
|
||||
int tmp;
|
||||
|
||||
/*
|
||||
* Quickly jump straight into the interrupt entry point without actually
|
||||
* triggering an interrupt. When TXSTATI gets read the processor will
|
||||
* block until an interrupt is triggered.
|
||||
*/
|
||||
asm volatile (/* Switch into ISTAT mode */
|
||||
"RTH\n\t"
|
||||
/* Enable local interrupts */
|
||||
"MOV TXMASKI, %1\n\t"
|
||||
/*
|
||||
* We can't directly "SWAP PC, PCX", so we swap via a
|
||||
* temporary. Essentially we do:
|
||||
* PCX_new = 1f (the place to continue execution)
|
||||
* PC = PCX_old
|
||||
*/
|
||||
"ADD %0, CPC0, #(1f-.)\n\t"
|
||||
"SWAP PCX, %0\n\t"
|
||||
"MOV PC, %0\n"
|
||||
/* Continue execution here with interrupts enabled */
|
||||
"1:"
|
||||
: "=a" (tmp)
|
||||
: "r" (get_trigger_mask()));
|
||||
}
|
||||
|
||||
void cpu_idle(void)
|
||||
{
|
||||
set_thread_flag(TIF_POLLING_NRFLAG);
|
||||
|
||||
while (1) {
|
||||
tick_nohz_idle_enter();
|
||||
rcu_idle_enter();
|
||||
|
||||
while (!need_resched()) {
|
||||
/*
|
||||
* We need to disable interrupts here to ensure we don't
|
||||
* miss a wakeup call.
|
||||
*/
|
||||
local_irq_disable();
|
||||
if (!need_resched()) {
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
if (cpu_is_offline(smp_processor_id()))
|
||||
cpu_die();
|
||||
#endif
|
||||
arch_idle();
|
||||
} else {
|
||||
local_irq_enable();
|
||||
}
|
||||
}
|
||||
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
void (*pm_power_off)(void);
|
||||
EXPORT_SYMBOL(pm_power_off);
|
||||
|
||||
void (*soc_restart)(char *cmd);
|
||||
void (*soc_halt)(void);
|
||||
|
||||
void machine_restart(char *cmd)
|
||||
{
|
||||
if (soc_restart)
|
||||
soc_restart(cmd);
|
||||
hard_processor_halt(HALT_OK);
|
||||
}
|
||||
|
||||
void machine_halt(void)
|
||||
{
|
||||
if (soc_halt)
|
||||
soc_halt();
|
||||
smp_send_stop();
|
||||
hard_processor_halt(HALT_OK);
|
||||
}
|
||||
|
||||
void machine_power_off(void)
|
||||
{
|
||||
if (pm_power_off)
|
||||
pm_power_off();
|
||||
smp_send_stop();
|
||||
hard_processor_halt(HALT_OK);
|
||||
}
|
||||
|
||||
#define FLAG_Z 0x8
|
||||
#define FLAG_N 0x4
|
||||
#define FLAG_O 0x2
|
||||
#define FLAG_C 0x1
|
||||
|
||||
void show_regs(struct pt_regs *regs)
|
||||
{
|
||||
int i;
|
||||
const char *AX0_names[] = {"A0StP", "A0FrP"};
|
||||
const char *AX1_names[] = {"A1GbP", "A1LbP"};
|
||||
|
||||
const char *DX0_names[] = {
|
||||
"D0Re0",
|
||||
"D0Ar6",
|
||||
"D0Ar4",
|
||||
"D0Ar2",
|
||||
"D0FrT",
|
||||
"D0.5 ",
|
||||
"D0.6 ",
|
||||
"D0.7 "
|
||||
};
|
||||
|
||||
const char *DX1_names[] = {
|
||||
"D1Re0",
|
||||
"D1Ar5",
|
||||
"D1Ar3",
|
||||
"D1Ar1",
|
||||
"D1RtP",
|
||||
"D1.5 ",
|
||||
"D1.6 ",
|
||||
"D1.7 "
|
||||
};
|
||||
|
||||
pr_info(" pt_regs @ %p\n", regs);
|
||||
pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
|
||||
pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
|
||||
regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
|
||||
regs->ctx.Flags & FLAG_N ? 'N' : 'n',
|
||||
regs->ctx.Flags & FLAG_O ? 'O' : 'o',
|
||||
regs->ctx.Flags & FLAG_C ? 'C' : 'c');
|
||||
pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
|
||||
pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
|
||||
|
||||
/* AX regs */
|
||||
for (i = 0; i < 2; i++) {
|
||||
pr_info(" %s = 0x%08x ",
|
||||
AX0_names[i],
|
||||
regs->ctx.AX[i].U0);
|
||||
printk(" %s = 0x%08x\n",
|
||||
AX1_names[i],
|
||||
regs->ctx.AX[i].U1);
|
||||
}
|
||||
|
||||
if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
|
||||
pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
|
||||
|
||||
/* Special place with AXx.2 */
|
||||
pr_info(" A0.2 = 0x%08x ",
|
||||
regs->ctx.Ext.AX2.U0);
|
||||
printk(" A1.2 = 0x%08x\n",
|
||||
regs->ctx.Ext.AX2.U1);
|
||||
|
||||
/* 'extended' AX regs (nominally, just AXx.3) */
|
||||
for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
|
||||
pr_info(" A0.%d = 0x%08x ", i + 3, regs->ctx.AX3[i].U0);
|
||||
printk(" A1.%d = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
pr_info(" %s = 0x%08x ", DX0_names[i], regs->ctx.DX[i].U0);
|
||||
printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
|
||||
}
|
||||
|
||||
show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
|
||||
}
|
||||
|
||||
int copy_thread(unsigned long clone_flags, unsigned long usp,
|
||||
unsigned long arg, struct task_struct *tsk)
|
||||
{
|
||||
struct pt_regs *childregs = task_pt_regs(tsk);
|
||||
void *kernel_context = ((void *) childregs +
|
||||
sizeof(struct pt_regs));
|
||||
unsigned long global_base;
|
||||
|
||||
BUG_ON(((unsigned long)childregs) & 0x7);
|
||||
BUG_ON(((unsigned long)kernel_context) & 0x7);
|
||||
|
||||
memset(&tsk->thread.kernel_context, 0,
|
||||
sizeof(tsk->thread.kernel_context));
|
||||
|
||||
tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
|
||||
ret_from_fork,
|
||||
0, 0);
|
||||
|
||||
if (unlikely(tsk->flags & PF_KTHREAD)) {
|
||||
/*
|
||||
* Make sure we don't leak any kernel data to child's regs
|
||||
* if kernel thread becomes a userspace thread in the future
|
||||
*/
|
||||
memset(childregs, 0 , sizeof(struct pt_regs));
|
||||
|
||||
global_base = __core_reg_get(A1GbP);
|
||||
childregs->ctx.AX[0].U1 = (unsigned long) global_base;
|
||||
childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
|
||||
/* Set D1Ar1=arg and D1RtP=usp (fn) */
|
||||
childregs->ctx.DX[4].U1 = usp;
|
||||
childregs->ctx.DX[3].U1 = arg;
|
||||
tsk->thread.int_depth = 2;
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* Get a pointer to where the new child's register block should have
|
||||
* been pushed.
|
||||
* The Meta's stack grows upwards, and the context is the the first
|
||||
* thing to be pushed by TBX (phew)
|
||||
*/
|
||||
*childregs = *current_pt_regs();
|
||||
/* Set the correct stack for the clone mode */
|
||||
if (usp)
|
||||
childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
|
||||
tsk->thread.int_depth = 1;
|
||||
|
||||
/* set return value for child process */
|
||||
childregs->ctx.DX[0].U0 = 0;
|
||||
|
||||
/* The TLS pointer is passed as an argument to sys_clone. */
|
||||
if (clone_flags & CLONE_SETTLS)
|
||||
tsk->thread.tls_ptr =
|
||||
(__force void __user *)childregs->ctx.DX[1].U1;
|
||||
|
||||
#ifdef CONFIG_METAG_FPU
|
||||
if (tsk->thread.fpu_context) {
|
||||
struct meta_fpu_context *ctx;
|
||||
|
||||
ctx = kmemdup(tsk->thread.fpu_context,
|
||||
sizeof(struct meta_fpu_context), GFP_ATOMIC);
|
||||
tsk->thread.fpu_context = ctx;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_METAG_DSP
|
||||
if (tsk->thread.dsp_context) {
|
||||
struct meta_ext_context *ctx;
|
||||
int i;
|
||||
|
||||
ctx = kmemdup(tsk->thread.dsp_context,
|
||||
sizeof(struct meta_ext_context), GFP_ATOMIC);
|
||||
for (i = 0; i < 2; i++)
|
||||
ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
|
||||
GFP_ATOMIC);
|
||||
tsk->thread.dsp_context = ctx;
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_METAG_FPU
|
||||
static void alloc_fpu_context(struct thread_struct *thread)
|
||||
{
|
||||
thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
|
||||
GFP_ATOMIC);
|
||||
}
|
||||
|
||||
static void clear_fpu(struct thread_struct *thread)
|
||||
{
|
||||
thread->user_flags &= ~TBICTX_FPAC_BIT;
|
||||
kfree(thread->fpu_context);
|
||||
thread->fpu_context = NULL;
|
||||
}
|
||||
#else
|
||||
static void clear_fpu(struct thread_struct *thread)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_METAG_DSP
|
||||
static void clear_dsp(struct thread_struct *thread)
|
||||
{
|
||||
if (thread->dsp_context) {
|
||||
kfree(thread->dsp_context->ram[0]);
|
||||
kfree(thread->dsp_context->ram[1]);
|
||||
|
||||
kfree(thread->dsp_context);
|
||||
|
||||
thread->dsp_context = NULL;
|
||||
}
|
||||
|
||||
__core_reg_set(D0.8, 0);
|
||||
}
|
||||
#else
|
||||
static void clear_dsp(struct thread_struct *thread)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
struct task_struct *__sched __switch_to(struct task_struct *prev,
|
||||
struct task_struct *next)
|
||||
{
|
||||
TBIRES to, from;
|
||||
|
||||
to.Switch.pCtx = next->thread.kernel_context;
|
||||
to.Switch.pPara = prev;
|
||||
|
||||
#ifdef CONFIG_METAG_FPU
|
||||
if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
|
||||
struct pt_regs *regs = task_pt_regs(prev);
|
||||
TBIRES state;
|
||||
|
||||
state.Sig.SaveMask = prev->thread.user_flags;
|
||||
state.Sig.pCtx = ®s->ctx;
|
||||
|
||||
if (!prev->thread.fpu_context)
|
||||
alloc_fpu_context(&prev->thread);
|
||||
if (prev->thread.fpu_context)
|
||||
__TBICtxFPUSave(state, prev->thread.fpu_context);
|
||||
}
|
||||
/*
|
||||
* Force a restore of the FPU context next time this process is
|
||||
* scheduled.
|
||||
*/
|
||||
if (prev->thread.fpu_context)
|
||||
prev->thread.fpu_context->needs_restore = true;
|
||||
#endif
|
||||
|
||||
|
||||
from = __TBISwitch(to, &prev->thread.kernel_context);
|
||||
|
||||
/* Restore TLS pointer for this process. */
|
||||
set_gateway_tls(current->thread.tls_ptr);
|
||||
|
||||
return (struct task_struct *) from.Switch.pPara;
|
||||
}
|
||||
|
||||
void flush_thread(void)
|
||||
{
|
||||
clear_fpu(¤t->thread);
|
||||
clear_dsp(¤t->thread);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free current thread data structures etc.
|
||||
*/
|
||||
void exit_thread(void)
|
||||
{
|
||||
clear_fpu(¤t->thread);
|
||||
clear_dsp(¤t->thread);
|
||||
}
|
||||
|
||||
/* TODO: figure out how to unwind the kernel stack here to figure out
|
||||
* where we went to sleep. */
|
||||
unsigned long get_wchan(struct task_struct *p)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
|
||||
{
|
||||
/* Returning 0 indicates that the FPU state was not stored (as it was
|
||||
* not in use) */
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_METAG_USER_TCM
|
||||
|
||||
#define ELF_MIN_ALIGN PAGE_SIZE
|
||||
|
||||
#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
|
||||
#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
|
||||
#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
|
||||
|
||||
#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
|
||||
|
||||
unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
|
||||
struct elf_phdr *eppnt, int prot, int type,
|
||||
unsigned long total_size)
|
||||
{
|
||||
unsigned long map_addr, size;
|
||||
unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
|
||||
unsigned long raw_size = eppnt->p_filesz + page_off;
|
||||
unsigned long off = eppnt->p_offset - page_off;
|
||||
unsigned int tcm_tag;
|
||||
addr = ELF_PAGESTART(addr);
|
||||
size = ELF_PAGEALIGN(raw_size);
|
||||
|
||||
/* mmap() will return -EINVAL if given a zero size, but a
|
||||
* segment with zero filesize is perfectly valid */
|
||||
if (!size)
|
||||
return addr;
|
||||
|
||||
tcm_tag = tcm_lookup_tag(addr);
|
||||
|
||||
if (tcm_tag != TCM_INVALID_TAG)
|
||||
type &= ~MAP_FIXED;
|
||||
|
||||
/*
|
||||
* total_size is the size of the ELF (interpreter) image.
|
||||
* The _first_ mmap needs to know the full size, otherwise
|
||||
* randomization might put this image into an overlapping
|
||||
* position with the ELF binary image. (since size < total_size)
|
||||
* So we first map the 'big' image - and unmap the remainder at
|
||||
* the end. (which unmap is needed for ELF images with holes.)
|
||||
*/
|
||||
if (total_size) {
|
||||
total_size = ELF_PAGEALIGN(total_size);
|
||||
map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
|
||||
if (!BAD_ADDR(map_addr))
|
||||
vm_munmap(map_addr+size, total_size-size);
|
||||
} else
|
||||
map_addr = vm_mmap(filep, addr, size, prot, type, off);
|
||||
|
||||
if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
|
||||
struct tcm_allocation *tcm;
|
||||
unsigned long tcm_addr;
|
||||
|
||||
tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
|
||||
if (!tcm)
|
||||
return -ENOMEM;
|
||||
|
||||
tcm_addr = tcm_alloc(tcm_tag, raw_size);
|
||||
if (tcm_addr != addr) {
|
||||
kfree(tcm);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
tcm->tag = tcm_tag;
|
||||
tcm->addr = tcm_addr;
|
||||
tcm->size = raw_size;
|
||||
|
||||
list_add(&tcm->list, ¤t->mm->context.tcm);
|
||||
|
||||
eppnt->p_vaddr = map_addr;
|
||||
if (copy_from_user((void *) addr, (void __user *) map_addr,
|
||||
raw_size))
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
return map_addr;
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue