Merge branch 'kexec' into next

This commit is contained in:
Benjamin Herrenschmidt 2011-12-16 11:09:21 +11:00
commit 43ca5d347a
6 changed files with 219 additions and 208 deletions

View File

@ -49,7 +49,6 @@
#define KEXEC_STATE_REAL_MODE 2 #define KEXEC_STATE_REAL_MODE 2
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
#include <linux/cpumask.h>
#include <asm/reg.h> #include <asm/reg.h>
typedef void (*crash_shutdown_t)(void); typedef void (*crash_shutdown_t)(void);
@ -73,11 +72,6 @@ extern void kexec_smp_wait(void); /* get and clear naca physid, wait for
master to copy new code to 0 */ master to copy new code to 0 */
extern int crashing_cpu; extern int crashing_cpu;
extern void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)); extern void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *));
extern cpumask_t cpus_in_sr;
static inline int kexec_sr_activated(int cpu)
{
return cpumask_test_cpu(cpu, &cpus_in_sr);
}
struct kimage; struct kimage;
struct pt_regs; struct pt_regs;
@ -94,7 +88,6 @@ extern void reserve_crashkernel(void);
extern void machine_kexec_mask_interrupts(void); extern void machine_kexec_mask_interrupts(void);
#else /* !CONFIG_KEXEC */ #else /* !CONFIG_KEXEC */
static inline int kexec_sr_activated(int cpu) { return 0; }
static inline void crash_kexec_secondary(struct pt_regs *regs) { } static inline void crash_kexec_secondary(struct pt_regs *regs) { }
static inline int overlaps_crashkernel(unsigned long start, unsigned long size) static inline int overlaps_crashkernel(unsigned long start, unsigned long size)

View File

@ -193,8 +193,8 @@ extern void cacheable_memzero(void *p, unsigned int nb);
extern void *cacheable_memcpy(void *, const void *, unsigned int); extern void *cacheable_memcpy(void *, const void *, unsigned int);
extern int do_page_fault(struct pt_regs *, unsigned long, unsigned long); extern int do_page_fault(struct pt_regs *, unsigned long, unsigned long);
extern void bad_page_fault(struct pt_regs *, unsigned long, int); extern void bad_page_fault(struct pt_regs *, unsigned long, int);
extern int die(const char *, struct pt_regs *, long);
extern void _exception(int, struct pt_regs *, int, unsigned long); extern void _exception(int, struct pt_regs *, int, unsigned long);
extern void die(const char *, struct pt_regs *, long);
extern void _nmask_and_or_msr(unsigned long nmask, unsigned long or_val); extern void _nmask_and_or_msr(unsigned long nmask, unsigned long or_val);
#ifdef CONFIG_BOOKE_WDT #ifdef CONFIG_BOOKE_WDT

View File

@ -10,85 +10,85 @@
* *
*/ */
#undef DEBUG
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/reboot.h> #include <linux/reboot.h>
#include <linux/kexec.h> #include <linux/kexec.h>
#include <linux/bootmem.h>
#include <linux/export.h> #include <linux/export.h>
#include <linux/crash_dump.h> #include <linux/crash_dump.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/memblock.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/machdep.h> #include <asm/machdep.h>
#include <asm/kexec.h> #include <asm/kexec.h>
#include <asm/kdump.h> #include <asm/kdump.h>
#include <asm/prom.h> #include <asm/prom.h>
#include <asm/firmware.h>
#include <asm/smp.h> #include <asm/smp.h>
#include <asm/system.h> #include <asm/system.h>
#include <asm/setjmp.h> #include <asm/setjmp.h>
#ifdef DEBUG /*
#include <asm/udbg.h> * The primary CPU waits a while for all secondary CPUs to enter. This is to
#define DBG(fmt...) udbg_printf(fmt) * avoid sending an IPI if the secondary CPUs are entering
#else * crash_kexec_secondary on their own (eg via a system reset).
#define DBG(fmt...) *
#endif * The secondary timeout has to be longer than the primary. Both timeouts are
* in milliseconds.
*/
#define PRIMARY_TIMEOUT 500
#define SECONDARY_TIMEOUT 1000
/* This keeps a track of which one is crashing cpu. */ #define IPI_TIMEOUT 10000
#define REAL_MODE_TIMEOUT 10000
/* This keeps a track of which one is the crashing cpu. */
int crashing_cpu = -1; int crashing_cpu = -1;
static cpumask_t cpus_in_crash = CPU_MASK_NONE; static atomic_t cpus_in_crash;
cpumask_t cpus_in_sr = CPU_MASK_NONE; static int time_to_dump;
#define CRASH_HANDLER_MAX 3 #define CRASH_HANDLER_MAX 3
/* NULL terminated list of shutdown handles */ /* NULL terminated list of shutdown handles */
static crash_shutdown_t crash_shutdown_handles[CRASH_HANDLER_MAX+1]; static crash_shutdown_t crash_shutdown_handles[CRASH_HANDLER_MAX+1];
static DEFINE_SPINLOCK(crash_handlers_lock); static DEFINE_SPINLOCK(crash_handlers_lock);
static unsigned long crash_shutdown_buf[JMP_BUF_LEN];
static int crash_shutdown_cpu = -1;
static int handle_fault(struct pt_regs *regs)
{
if (crash_shutdown_cpu == smp_processor_id())
longjmp(crash_shutdown_buf, 1);
return 0;
}
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
static atomic_t enter_on_soft_reset = ATOMIC_INIT(0);
void crash_ipi_callback(struct pt_regs *regs) void crash_ipi_callback(struct pt_regs *regs)
{ {
static cpumask_t cpus_state_saved = CPU_MASK_NONE;
int cpu = smp_processor_id(); int cpu = smp_processor_id();
if (!cpu_online(cpu)) if (!cpu_online(cpu))
return; return;
hard_irq_disable(); hard_irq_disable();
if (!cpumask_test_cpu(cpu, &cpus_in_crash)) if (!cpumask_test_cpu(cpu, &cpus_state_saved)) {
crash_save_cpu(regs, cpu); crash_save_cpu(regs, cpu);
cpumask_set_cpu(cpu, &cpus_in_crash); cpumask_set_cpu(cpu, &cpus_state_saved);
/*
* Entered via soft-reset - could be the kdump
* process is invoked using soft-reset or user activated
* it if some CPU did not respond to an IPI.
* For soft-reset, the secondary CPU can enter this func
* twice. 1 - using IPI, and 2. soft-reset.
* Tell the kexec CPU that entered via soft-reset and ready
* to go down.
*/
if (cpumask_test_cpu(cpu, &cpus_in_sr)) {
cpumask_clear_cpu(cpu, &cpus_in_sr);
atomic_inc(&enter_on_soft_reset);
} }
atomic_inc(&cpus_in_crash);
smp_mb__after_atomic_inc();
/* /*
* Starting the kdump boot. * Starting the kdump boot.
* This barrier is needed to make sure that all CPUs are stopped. * This barrier is needed to make sure that all CPUs are stopped.
* If not, soft-reset will be invoked to bring other CPUs.
*/ */
while (!cpumask_test_cpu(crashing_cpu, &cpus_in_crash)) while (!time_to_dump)
cpu_relax(); cpu_relax();
if (ppc_md.kexec_cpu_down) if (ppc_md.kexec_cpu_down)
@ -103,106 +103,99 @@ void crash_ipi_callback(struct pt_regs *regs)
/* NOTREACHED */ /* NOTREACHED */
} }
/*
* Wait until all CPUs are entered via soft-reset.
*/
static void crash_soft_reset_check(int cpu)
{
unsigned int ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */
cpumask_clear_cpu(cpu, &cpus_in_sr);
while (atomic_read(&enter_on_soft_reset) != ncpus)
cpu_relax();
}
static void crash_kexec_prepare_cpus(int cpu) static void crash_kexec_prepare_cpus(int cpu)
{ {
unsigned int msecs; unsigned int msecs;
unsigned int ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */ unsigned int ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */
int tries = 0;
int (*old_handler)(struct pt_regs *regs);
printk(KERN_EMERG "Sending IPI to other CPUs\n");
crash_send_ipi(crash_ipi_callback); crash_send_ipi(crash_ipi_callback);
smp_wmb(); smp_wmb();
again:
/* /*
* FIXME: Until we will have the way to stop other CPUs reliably, * FIXME: Until we will have the way to stop other CPUs reliably,
* the crash CPU will send an IPI and wait for other CPUs to * the crash CPU will send an IPI and wait for other CPUs to
* respond. * respond.
* Delay of at least 10 seconds.
*/ */
printk(KERN_EMERG "Sending IPI to other cpus...\n"); msecs = IPI_TIMEOUT;
msecs = 10000; while ((atomic_read(&cpus_in_crash) < ncpus) && (--msecs > 0))
while ((cpumask_weight(&cpus_in_crash) < ncpus) && (--msecs > 0)) {
cpu_relax();
mdelay(1); mdelay(1);
}
/* Would it be better to replace the trap vector here? */ /* Would it be better to replace the trap vector here? */
if (atomic_read(&cpus_in_crash) >= ncpus) {
printk(KERN_EMERG "IPI complete\n");
return;
}
printk(KERN_EMERG "ERROR: %d cpu(s) not responding\n",
ncpus - atomic_read(&cpus_in_crash));
/* /*
* FIXME: In case if we do not get all CPUs, one possibility: ask the * If we have a panic timeout set then we can't wait indefinitely
* user to do soft reset such that we get all. * for someone to activate system reset. We also give up on the
* Soft-reset will be used until better mechanism is implemented. * second time through if system reset fail to work.
*/ */
if (cpumask_weight(&cpus_in_crash) < ncpus) { if ((panic_timeout > 0) || (tries > 0))
printk(KERN_EMERG "done waiting: %d cpu(s) not responding\n", return;
ncpus - cpumask_weight(&cpus_in_crash));
printk(KERN_EMERG "Activate soft-reset to stop other cpu(s)\n"); /*
cpumask_clear(&cpus_in_sr); * A system reset will cause all CPUs to take an 0x100 exception.
atomic_set(&enter_on_soft_reset, 0); * The primary CPU returns here via setjmp, and the secondary
while (cpumask_weight(&cpus_in_crash) < ncpus) * CPUs reexecute the crash_kexec_secondary path.
*/
old_handler = __debugger;
__debugger = handle_fault;
crash_shutdown_cpu = smp_processor_id();
if (setjmp(crash_shutdown_buf) == 0) {
printk(KERN_EMERG "Activate system reset (dumprestart) "
"to stop other cpu(s)\n");
/*
* A system reset will force all CPUs to execute the
* crash code again. We need to reset cpus_in_crash so we
* wait for everyone to do this.
*/
atomic_set(&cpus_in_crash, 0);
smp_mb();
while (atomic_read(&cpus_in_crash) < ncpus)
cpu_relax(); cpu_relax();
} }
/*
* Make sure all CPUs are entered via soft-reset if the kdump is crash_shutdown_cpu = -1;
* invoked using soft-reset. __debugger = old_handler;
*/
if (cpumask_test_cpu(cpu, &cpus_in_sr)) tries++;
crash_soft_reset_check(cpu); goto again;
/* Leave the IPI callback set */
} }
/* /*
* This function will be called by secondary cpus or by kexec cpu * This function will be called by secondary cpus.
* if soft-reset is activated to stop some CPUs.
*/ */
void crash_kexec_secondary(struct pt_regs *regs) void crash_kexec_secondary(struct pt_regs *regs)
{ {
int cpu = smp_processor_id();
unsigned long flags; unsigned long flags;
int msecs = 5; int msecs = SECONDARY_TIMEOUT;
local_irq_save(flags); local_irq_save(flags);
/* Wait 5ms if the kexec CPU is not entered yet. */
/* Wait for the primary crash CPU to signal its progress */
while (crashing_cpu < 0) { while (crashing_cpu < 0) {
if (--msecs < 0) { if (--msecs < 0) {
/* /* No response, kdump image may not have been loaded */
* Either kdump image is not loaded or
* kdump process is not started - Probably xmon
* exited using 'x'(exit and recover) or
* kexec_should_crash() failed for all running tasks.
*/
cpumask_clear_cpu(cpu, &cpus_in_sr);
local_irq_restore(flags); local_irq_restore(flags);
return; return;
} }
mdelay(1); mdelay(1);
cpu_relax();
}
if (cpu == crashing_cpu) {
/*
* Panic CPU will enter this func only via soft-reset.
* Wait until all secondary CPUs entered and
* then start kexec boot.
*/
crash_soft_reset_check(cpu);
cpumask_set_cpu(crashing_cpu, &cpus_in_crash);
if (ppc_md.kexec_cpu_down)
ppc_md.kexec_cpu_down(1, 0);
machine_kexec(kexec_crash_image);
/* NOTREACHED */
} }
crash_ipi_callback(regs); crash_ipi_callback(regs);
} }
@ -211,7 +204,7 @@ void crash_kexec_secondary(struct pt_regs *regs)
static void crash_kexec_prepare_cpus(int cpu) static void crash_kexec_prepare_cpus(int cpu)
{ {
/* /*
* move the secondarys to us so that we can copy * move the secondaries to us so that we can copy
* the new kernel 0-0x100 safely * the new kernel 0-0x100 safely
* *
* do this if kexec in setup.c ? * do this if kexec in setup.c ?
@ -225,7 +218,6 @@ static void crash_kexec_prepare_cpus(int cpu)
void crash_kexec_secondary(struct pt_regs *regs) void crash_kexec_secondary(struct pt_regs *regs)
{ {
cpumask_clear(&cpus_in_sr);
} }
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
@ -236,7 +228,7 @@ static void crash_kexec_wait_realmode(int cpu)
unsigned int msecs; unsigned int msecs;
int i; int i;
msecs = 10000; msecs = REAL_MODE_TIMEOUT;
for (i=0; i < nr_cpu_ids && msecs > 0; i++) { for (i=0; i < nr_cpu_ids && msecs > 0; i++) {
if (i == cpu) if (i == cpu)
continue; continue;
@ -308,22 +300,11 @@ int crash_shutdown_unregister(crash_shutdown_t handler)
} }
EXPORT_SYMBOL(crash_shutdown_unregister); EXPORT_SYMBOL(crash_shutdown_unregister);
static unsigned long crash_shutdown_buf[JMP_BUF_LEN];
static int crash_shutdown_cpu = -1;
static int handle_fault(struct pt_regs *regs)
{
if (crash_shutdown_cpu == smp_processor_id())
longjmp(crash_shutdown_buf, 1);
return 0;
}
void default_machine_crash_shutdown(struct pt_regs *regs) void default_machine_crash_shutdown(struct pt_regs *regs)
{ {
unsigned int i; unsigned int i;
int (*old_handler)(struct pt_regs *regs); int (*old_handler)(struct pt_regs *regs);
/* /*
* This function is only called after the system * This function is only called after the system
* has panicked or is otherwise in a critical state. * has panicked or is otherwise in a critical state.
@ -341,15 +322,26 @@ void default_machine_crash_shutdown(struct pt_regs *regs)
* such that another IPI will not be sent. * such that another IPI will not be sent.
*/ */
crashing_cpu = smp_processor_id(); crashing_cpu = smp_processor_id();
crash_save_cpu(regs, crashing_cpu);
/*
* If we came in via system reset, wait a while for the secondary
* CPUs to enter.
*/
if (TRAP(regs) == 0x100)
mdelay(PRIMARY_TIMEOUT);
crash_kexec_prepare_cpus(crashing_cpu); crash_kexec_prepare_cpus(crashing_cpu);
cpumask_set_cpu(crashing_cpu, &cpus_in_crash);
crash_save_cpu(regs, crashing_cpu);
time_to_dump = 1;
crash_kexec_wait_realmode(crashing_cpu); crash_kexec_wait_realmode(crashing_cpu);
machine_kexec_mask_interrupts(); machine_kexec_mask_interrupts();
/* /*
* Call registered shutdown routines savely. Swap out * Call registered shutdown routines safely. Swap out
* __debugger_fault_handler, and replace on exit. * __debugger_fault_handler, and replace on exit.
*/ */
old_handler = __debugger_fault_handler; old_handler = __debugger_fault_handler;

View File

@ -98,18 +98,14 @@ static void pmac_backlight_unblank(void)
static inline void pmac_backlight_unblank(void) { } static inline void pmac_backlight_unblank(void) { }
#endif #endif
int die(const char *str, struct pt_regs *regs, long err) static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;
static unsigned __kprobes long oops_begin(struct pt_regs *regs)
{ {
static struct { int cpu;
raw_spinlock_t lock;
u32 lock_owner;
int lock_owner_depth;
} die = {
.lock = __RAW_SPIN_LOCK_UNLOCKED(die.lock),
.lock_owner = -1,
.lock_owner_depth = 0
};
static int die_counter;
unsigned long flags; unsigned long flags;
if (debugger(regs)) if (debugger(regs))
@ -117,66 +113,109 @@ int die(const char *str, struct pt_regs *regs, long err)
oops_enter(); oops_enter();
if (die.lock_owner != raw_smp_processor_id()) { /* racy, but better than risking deadlock. */
console_verbose(); raw_local_irq_save(flags);
raw_spin_lock_irqsave(&die.lock, flags); cpu = smp_processor_id();
die.lock_owner = smp_processor_id(); if (!arch_spin_trylock(&die_lock)) {
die.lock_owner_depth = 0; if (cpu == die_owner)
bust_spinlocks(1); /* nested oops. should stop eventually */;
if (machine_is(powermac)) else
pmac_backlight_unblank(); arch_spin_lock(&die_lock);
} else {
local_save_flags(flags);
}
if (++die.lock_owner_depth < 3) {
printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
printk("NUMA ");
#endif
printk("%s\n", ppc_md.name ? ppc_md.name : "");
if (notify_die(DIE_OOPS, str, regs, err, 255,
SIGSEGV) == NOTIFY_STOP)
return 1;
print_modules();
show_regs(regs);
} else {
printk("Recursive die() failure, output suppressed\n");
} }
die_nest_count++;
die_owner = cpu;
console_verbose();
bust_spinlocks(1);
if (machine_is(powermac))
pmac_backlight_unblank();
return flags;
}
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
int signr)
{
bust_spinlocks(0); bust_spinlocks(0);
die.lock_owner = -1; die_owner = -1;
add_taint(TAINT_DIE); add_taint(TAINT_DIE);
raw_spin_unlock_irqrestore(&die.lock, flags); die_nest_count--;
oops_exit();
printk("\n");
if (!die_nest_count)
/* Nest count reaches zero, release the lock. */
arch_spin_unlock(&die_lock);
raw_local_irq_restore(flags);
if (kexec_should_crash(current) || /*
kexec_sr_activated(smp_processor_id())) * A system reset (0x100) is a request to dump, so we always send
* it through the crashdump code.
*/
if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
crash_kexec(regs); crash_kexec(regs);
crash_kexec_secondary(regs);
/*
* We aren't the primary crash CPU. We need to send it
* to a holding pattern to avoid it ending up in the panic
* code.
*/
crash_kexec_secondary(regs);
}
if (!signr)
return;
/*
* While our oops output is serialised by a spinlock, output
* from panic() called below can race and corrupt it. If we
* know we are going to panic, delay for 1 second so we have a
* chance to get clean backtraces from all CPUs that are oopsing.
*/
if (in_interrupt() || panic_on_oops || !current->pid ||
is_global_init(current)) {
mdelay(MSEC_PER_SEC);
}
if (in_interrupt()) if (in_interrupt())
panic("Fatal exception in interrupt"); panic("Fatal exception in interrupt");
if (panic_on_oops) if (panic_on_oops)
panic("Fatal exception"); panic("Fatal exception");
do_exit(signr);
}
oops_exit(); static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
do_exit(err); {
printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
printk("NUMA ");
#endif
printk("%s\n", ppc_md.name ? ppc_md.name : "");
if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
return 1;
print_modules();
show_regs(regs);
return 0; return 0;
} }
void die(const char *str, struct pt_regs *regs, long err)
{
unsigned long flags = oops_begin(regs);
if (__die(str, regs, err))
err = 0;
oops_end(flags, regs, err);
}
void user_single_step_siginfo(struct task_struct *tsk, void user_single_step_siginfo(struct task_struct *tsk,
struct pt_regs *regs, siginfo_t *info) struct pt_regs *regs, siginfo_t *info)
{ {
@ -195,10 +234,11 @@ void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
"at %016lx nip %016lx lr %016lx code %x\n"; "at %016lx nip %016lx lr %016lx code %x\n";
if (!user_mode(regs)) { if (!user_mode(regs)) {
if (die("Exception in kernel mode", regs, signr)) die("Exception in kernel mode", regs, signr);
return; return;
} else if (show_unhandled_signals && }
unhandled_signal(current, signr)) {
if (show_unhandled_signals && unhandled_signal(current, signr)) {
printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
current->comm, current->pid, signr, current->comm, current->pid, signr,
addr, regs->nip, regs->link, code); addr, regs->nip, regs->link, code);
@ -220,25 +260,8 @@ void system_reset_exception(struct pt_regs *regs)
return; return;
} }
#ifdef CONFIG_KEXEC
cpumask_set_cpu(smp_processor_id(), &cpus_in_sr);
#endif
die("System Reset", regs, SIGABRT); die("System Reset", regs, SIGABRT);
/*
* Some CPUs when released from the debugger will execute this path.
* These CPUs entered the debugger via a soft-reset. If the CPU was
* hung before entering the debugger it will return to the hung
* state when exiting this function. This causes a problem in
* kdump since the hung CPU(s) will not respond to the IPI sent
* from kdump. To prevent the problem we call crash_kexec_secondary()
* here. If a kdump had not been initiated or we exit the debugger
* with the "exit and recover" command (x) crash_kexec_secondary()
* will return after 5ms and the CPU returns to its previous state.
*/
crash_kexec_secondary(regs);
/* Must die if the interrupt is not recoverable */ /* Must die if the interrupt is not recoverable */
if (!(regs->msr & MSR_RI)) if (!(regs->msr & MSR_RI))
panic("Unrecoverable System Reset"); panic("Unrecoverable System Reset");

View File

@ -366,6 +366,8 @@ static void pSeries_idle(void)
static void __init pSeries_setup_arch(void) static void __init pSeries_setup_arch(void)
{ {
panic_timeout = 10;
/* Discover PIC type and setup ppc_md accordingly */ /* Discover PIC type and setup ppc_md accordingly */
pseries_discover_pic(); pseries_discover_pic();

View File

@ -41,16 +41,6 @@ static inline unsigned int icp_hv_get_xirr(unsigned char cppr)
return ret; return ret;
} }
static inline void icp_hv_set_xirr(unsigned int value)
{
long rc = plpar_hcall_norets(H_EOI, value);
if (rc != H_SUCCESS) {
pr_err("%s: bad return code eoi xirr=0x%x returned %ld\n",
__func__, value, rc);
WARN_ON_ONCE(1);
}
}
static inline void icp_hv_set_cppr(u8 value) static inline void icp_hv_set_cppr(u8 value)
{ {
long rc = plpar_hcall_norets(H_CPPR, value); long rc = plpar_hcall_norets(H_CPPR, value);
@ -61,6 +51,17 @@ static inline void icp_hv_set_cppr(u8 value)
} }
} }
static inline void icp_hv_set_xirr(unsigned int value)
{
long rc = plpar_hcall_norets(H_EOI, value);
if (rc != H_SUCCESS) {
pr_err("%s: bad return code eoi xirr=0x%x returned %ld\n",
__func__, value, rc);
WARN_ON_ONCE(1);
icp_hv_set_cppr(value >> 24);
}
}
static inline void icp_hv_set_qirr(int n_cpu , u8 value) static inline void icp_hv_set_qirr(int n_cpu , u8 value)
{ {
int hw_cpu = get_hard_smp_processor_id(n_cpu); int hw_cpu = get_hard_smp_processor_id(n_cpu);