genericirq.tmpl: convert it to ReST
Brainless conversion of genericirq.tmpl book to ReST, via Documentation/sphinx/tmplcvt Copyright information inserted manually. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
f9b5c5304c
commit
3bd3b99ab6
|
@ -11,7 +11,7 @@ DOCBOOKS := z8530book.xml \
|
|||
writing_usb_driver.xml networking.xml \
|
||||
kernel-api.xml filesystems.xml lsm.xml kgdb.xml \
|
||||
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
|
||||
genericirq.xml s390-drivers.xml scsi.xml \
|
||||
s390-drivers.xml scsi.xml \
|
||||
sh.xml w1.xml \
|
||||
writing_musb_glue_layer.xml
|
||||
|
||||
|
|
|
@ -1,520 +0,0 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="Generic-IRQ-Guide">
|
||||
<bookinfo>
|
||||
<title>Linux generic IRQ handling</title>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Thomas</firstname>
|
||||
<surname>Gleixner</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>tglx@linutronix.de</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
<author>
|
||||
<firstname>Ingo</firstname>
|
||||
<surname>Molnar</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>mingo@elte.hu</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2005-2010</year>
|
||||
<holder>Thomas Gleixner</holder>
|
||||
</copyright>
|
||||
<copyright>
|
||||
<year>2005-2006</year>
|
||||
<holder>Ingo Molnar</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License version 2 as published by the Free Software Foundation.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="intro">
|
||||
<title>Introduction</title>
|
||||
<para>
|
||||
The generic interrupt handling layer is designed to provide a
|
||||
complete abstraction of interrupt handling for device drivers.
|
||||
It is able to handle all the different types of interrupt controller
|
||||
hardware. Device drivers use generic API functions to request, enable,
|
||||
disable and free interrupts. The drivers do not have to know anything
|
||||
about interrupt hardware details, so they can be used on different
|
||||
platforms without code changes.
|
||||
</para>
|
||||
<para>
|
||||
This documentation is provided to developers who want to implement
|
||||
an interrupt subsystem based for their architecture, with the help
|
||||
of the generic IRQ handling layer.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="rationale">
|
||||
<title>Rationale</title>
|
||||
<para>
|
||||
The original implementation of interrupt handling in Linux uses
|
||||
the __do_IRQ() super-handler, which is able to deal with every
|
||||
type of interrupt logic.
|
||||
</para>
|
||||
<para>
|
||||
Originally, Russell King identified different types of handlers to
|
||||
build a quite universal set for the ARM interrupt handler
|
||||
implementation in Linux 2.5/2.6. He distinguished between:
|
||||
<itemizedlist>
|
||||
<listitem><para>Level type</para></listitem>
|
||||
<listitem><para>Edge type</para></listitem>
|
||||
<listitem><para>Simple type</para></listitem>
|
||||
</itemizedlist>
|
||||
During the implementation we identified another type:
|
||||
<itemizedlist>
|
||||
<listitem><para>Fast EOI type</para></listitem>
|
||||
</itemizedlist>
|
||||
In the SMP world of the __do_IRQ() super-handler another type
|
||||
was identified:
|
||||
<itemizedlist>
|
||||
<listitem><para>Per CPU type</para></listitem>
|
||||
</itemizedlist>
|
||||
</para>
|
||||
<para>
|
||||
This split implementation of high-level IRQ handlers allows us to
|
||||
optimize the flow of the interrupt handling for each specific
|
||||
interrupt type. This reduces complexity in that particular code path
|
||||
and allows the optimized handling of a given type.
|
||||
</para>
|
||||
<para>
|
||||
The original general IRQ implementation used hw_interrupt_type
|
||||
structures and their ->ack(), ->end() [etc.] callbacks to
|
||||
differentiate the flow control in the super-handler. This leads to
|
||||
a mix of flow logic and low-level hardware logic, and it also leads
|
||||
to unnecessary code duplication: for example in i386, there is an
|
||||
ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many
|
||||
of the low-level details but have different flow handling.
|
||||
</para>
|
||||
<para>
|
||||
A more natural abstraction is the clean separation of the
|
||||
'irq flow' and the 'chip details'.
|
||||
</para>
|
||||
<para>
|
||||
Analysing a couple of architecture's IRQ subsystem implementations
|
||||
reveals that most of them can use a generic set of 'irq flow'
|
||||
methods and only need to add the chip-level specific code.
|
||||
The separation is also valuable for (sub)architectures
|
||||
which need specific quirks in the IRQ flow itself but not in the
|
||||
chip details - and thus provides a more transparent IRQ subsystem
|
||||
design.
|
||||
</para>
|
||||
<para>
|
||||
Each interrupt descriptor is assigned its own high-level flow
|
||||
handler, which is normally one of the generic
|
||||
implementations. (This high-level flow handler implementation also
|
||||
makes it simple to provide demultiplexing handlers which can be
|
||||
found in embedded platforms on various architectures.)
|
||||
</para>
|
||||
<para>
|
||||
The separation makes the generic interrupt handling layer more
|
||||
flexible and extensible. For example, an (sub)architecture can
|
||||
use a generic IRQ-flow implementation for 'level type' interrupts
|
||||
and add a (sub)architecture specific 'edge type' implementation.
|
||||
</para>
|
||||
<para>
|
||||
To make the transition to the new model easier and prevent the
|
||||
breakage of existing implementations, the __do_IRQ() super-handler
|
||||
is still available. This leads to a kind of duality for the time
|
||||
being. Over time the new model should be used in more and more
|
||||
architectures, as it enables smaller and cleaner IRQ subsystems.
|
||||
It's deprecated for three years now and about to be removed.
|
||||
</para>
|
||||
</chapter>
|
||||
<chapter id="bugs">
|
||||
<title>Known Bugs And Assumptions</title>
|
||||
<para>
|
||||
None (knock on wood).
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="Abstraction">
|
||||
<title>Abstraction layers</title>
|
||||
<para>
|
||||
There are three main levels of abstraction in the interrupt code:
|
||||
<orderedlist>
|
||||
<listitem><para>High-level driver API</para></listitem>
|
||||
<listitem><para>High-level IRQ flow handlers</para></listitem>
|
||||
<listitem><para>Chip-level hardware encapsulation</para></listitem>
|
||||
</orderedlist>
|
||||
</para>
|
||||
<sect1 id="Interrupt_control_flow">
|
||||
<title>Interrupt control flow</title>
|
||||
<para>
|
||||
Each interrupt is described by an interrupt descriptor structure
|
||||
irq_desc. The interrupt is referenced by an 'unsigned int' numeric
|
||||
value which selects the corresponding interrupt description structure
|
||||
in the descriptor structures array.
|
||||
The descriptor structure contains status information and pointers
|
||||
to the interrupt flow method and the interrupt chip structure
|
||||
which are assigned to this interrupt.
|
||||
</para>
|
||||
<para>
|
||||
Whenever an interrupt triggers, the low-level architecture code calls
|
||||
into the generic interrupt code by calling desc->handle_irq().
|
||||
This high-level IRQ handling function only uses desc->irq_data.chip
|
||||
primitives referenced by the assigned chip descriptor structure.
|
||||
</para>
|
||||
</sect1>
|
||||
<sect1 id="Highlevel_Driver_API">
|
||||
<title>High-level Driver API</title>
|
||||
<para>
|
||||
The high-level Driver API consists of following functions:
|
||||
<itemizedlist>
|
||||
<listitem><para>request_irq()</para></listitem>
|
||||
<listitem><para>free_irq()</para></listitem>
|
||||
<listitem><para>disable_irq()</para></listitem>
|
||||
<listitem><para>enable_irq()</para></listitem>
|
||||
<listitem><para>disable_irq_nosync() (SMP only)</para></listitem>
|
||||
<listitem><para>synchronize_irq() (SMP only)</para></listitem>
|
||||
<listitem><para>irq_set_irq_type()</para></listitem>
|
||||
<listitem><para>irq_set_irq_wake()</para></listitem>
|
||||
<listitem><para>irq_set_handler_data()</para></listitem>
|
||||
<listitem><para>irq_set_chip()</para></listitem>
|
||||
<listitem><para>irq_set_chip_data()</para></listitem>
|
||||
</itemizedlist>
|
||||
See the autogenerated function documentation for details.
|
||||
</para>
|
||||
</sect1>
|
||||
<sect1 id="Highlevel_IRQ_flow_handlers">
|
||||
<title>High-level IRQ flow handlers</title>
|
||||
<para>
|
||||
The generic layer provides a set of pre-defined irq-flow methods:
|
||||
<itemizedlist>
|
||||
<listitem><para>handle_level_irq</para></listitem>
|
||||
<listitem><para>handle_edge_irq</para></listitem>
|
||||
<listitem><para>handle_fasteoi_irq</para></listitem>
|
||||
<listitem><para>handle_simple_irq</para></listitem>
|
||||
<listitem><para>handle_percpu_irq</para></listitem>
|
||||
<listitem><para>handle_edge_eoi_irq</para></listitem>
|
||||
<listitem><para>handle_bad_irq</para></listitem>
|
||||
</itemizedlist>
|
||||
The interrupt flow handlers (either pre-defined or architecture
|
||||
specific) are assigned to specific interrupts by the architecture
|
||||
either during bootup or during device initialization.
|
||||
</para>
|
||||
<sect2 id="Default_flow_implementations">
|
||||
<title>Default flow implementations</title>
|
||||
<sect3 id="Helper_functions">
|
||||
<title>Helper functions</title>
|
||||
<para>
|
||||
The helper functions call the chip primitives and
|
||||
are used by the default flow implementations.
|
||||
The following helper functions are implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
default_enable(struct irq_data *data)
|
||||
{
|
||||
desc->irq_data.chip->irq_unmask(data);
|
||||
}
|
||||
|
||||
default_disable(struct irq_data *data)
|
||||
{
|
||||
if (!delay_disable(data))
|
||||
desc->irq_data.chip->irq_mask(data);
|
||||
}
|
||||
|
||||
default_ack(struct irq_data *data)
|
||||
{
|
||||
chip->irq_ack(data);
|
||||
}
|
||||
|
||||
default_mask_ack(struct irq_data *data)
|
||||
{
|
||||
if (chip->irq_mask_ack) {
|
||||
chip->irq_mask_ack(data);
|
||||
} else {
|
||||
chip->irq_mask(data);
|
||||
chip->irq_ack(data);
|
||||
}
|
||||
}
|
||||
|
||||
noop(struct irq_data *data))
|
||||
{
|
||||
}
|
||||
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
</sect2>
|
||||
<sect2 id="Default_flow_handler_implementations">
|
||||
<title>Default flow handler implementations</title>
|
||||
<sect3 id="Default_Level_IRQ_flow_handler">
|
||||
<title>Default Level IRQ flow handler</title>
|
||||
<para>
|
||||
handle_level_irq provides a generic implementation
|
||||
for level-triggered interrupts.
|
||||
</para>
|
||||
<para>
|
||||
The following control flow is implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
handle_irq_event(desc->action);
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="Default_FASTEOI_IRQ_flow_handler">
|
||||
<title>Default Fast EOI IRQ flow handler</title>
|
||||
<para>
|
||||
handle_fasteoi_irq provides a generic implementation
|
||||
for interrupts, which only need an EOI at the end of
|
||||
the handler.
|
||||
</para>
|
||||
<para>
|
||||
The following control flow is implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
handle_irq_event(desc->action);
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="Default_Edge_IRQ_flow_handler">
|
||||
<title>Default Edge IRQ flow handler</title>
|
||||
<para>
|
||||
handle_edge_irq provides a generic implementation
|
||||
for edge-triggered interrupts.
|
||||
</para>
|
||||
<para>
|
||||
The following control flow is implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
if (desc->status & running) {
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
desc->status |= pending | masked;
|
||||
return;
|
||||
}
|
||||
desc->irq_data.chip->irq_ack();
|
||||
desc->status |= running;
|
||||
do {
|
||||
if (desc->status & masked)
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
desc->status &= ~pending;
|
||||
handle_irq_event(desc->action);
|
||||
} while (status & pending);
|
||||
desc->status &= ~running;
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="Default_simple_IRQ_flow_handler">
|
||||
<title>Default simple IRQ flow handler</title>
|
||||
<para>
|
||||
handle_simple_irq provides a generic implementation
|
||||
for simple interrupts.
|
||||
</para>
|
||||
<para>
|
||||
Note: The simple flow handler does not call any
|
||||
handler/chip primitives.
|
||||
</para>
|
||||
<para>
|
||||
The following control flow is implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
handle_irq_event(desc->action);
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="Default_per_CPU_flow_handler">
|
||||
<title>Default per CPU flow handler</title>
|
||||
<para>
|
||||
handle_percpu_irq provides a generic implementation
|
||||
for per CPU interrupts.
|
||||
</para>
|
||||
<para>
|
||||
Per CPU interrupts are only available on SMP and
|
||||
the handler provides a simplified version without
|
||||
locking.
|
||||
</para>
|
||||
<para>
|
||||
The following control flow is implemented (simplified excerpt):
|
||||
<programlisting>
|
||||
if (desc->irq_data.chip->irq_ack)
|
||||
desc->irq_data.chip->irq_ack();
|
||||
handle_irq_event(desc->action);
|
||||
if (desc->irq_data.chip->irq_eoi)
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
</programlisting>
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="EOI_Edge_IRQ_flow_handler">
|
||||
<title>EOI Edge IRQ flow handler</title>
|
||||
<para>
|
||||
handle_edge_eoi_irq provides an abnomination of the edge
|
||||
handler which is solely used to tame a badly wreckaged
|
||||
irq controller on powerpc/cell.
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3 id="BAD_IRQ_flow_handler">
|
||||
<title>Bad IRQ flow handler</title>
|
||||
<para>
|
||||
handle_bad_irq is used for spurious interrupts which
|
||||
have no real handler assigned..
|
||||
</para>
|
||||
</sect3>
|
||||
</sect2>
|
||||
<sect2 id="Quirks_and_optimizations">
|
||||
<title>Quirks and optimizations</title>
|
||||
<para>
|
||||
The generic functions are intended for 'clean' architectures and chips,
|
||||
which have no platform-specific IRQ handling quirks. If an architecture
|
||||
needs to implement quirks on the 'flow' level then it can do so by
|
||||
overriding the high-level irq-flow handler.
|
||||
</para>
|
||||
</sect2>
|
||||
<sect2 id="Delayed_interrupt_disable">
|
||||
<title>Delayed interrupt disable</title>
|
||||
<para>
|
||||
This per interrupt selectable feature, which was introduced by Russell
|
||||
King in the ARM interrupt implementation, does not mask an interrupt
|
||||
at the hardware level when disable_irq() is called. The interrupt is
|
||||
kept enabled and is masked in the flow handler when an interrupt event
|
||||
happens. This prevents losing edge interrupts on hardware which does
|
||||
not store an edge interrupt event while the interrupt is disabled at
|
||||
the hardware level. When an interrupt arrives while the IRQ_DISABLED
|
||||
flag is set, then the interrupt is masked at the hardware level and
|
||||
the IRQ_PENDING bit is set. When the interrupt is re-enabled by
|
||||
enable_irq() the pending bit is checked and if it is set, the
|
||||
interrupt is resent either via hardware or by a software resend
|
||||
mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when
|
||||
you want to use the delayed interrupt disable feature and your
|
||||
hardware is not capable of retriggering an interrupt.)
|
||||
The delayed interrupt disable is not configurable.
|
||||
</para>
|
||||
</sect2>
|
||||
</sect1>
|
||||
<sect1 id="Chiplevel_hardware_encapsulation">
|
||||
<title>Chip-level hardware encapsulation</title>
|
||||
<para>
|
||||
The chip-level hardware descriptor structure irq_chip
|
||||
contains all the direct chip relevant functions, which
|
||||
can be utilized by the irq flow implementations.
|
||||
<itemizedlist>
|
||||
<listitem><para>irq_ack()</para></listitem>
|
||||
<listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
|
||||
<listitem><para>irq_mask()</para></listitem>
|
||||
<listitem><para>irq_unmask()</para></listitem>
|
||||
<listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem>
|
||||
<listitem><para>irq_retrigger() - Optional</para></listitem>
|
||||
<listitem><para>irq_set_type() - Optional</para></listitem>
|
||||
<listitem><para>irq_set_wake() - Optional</para></listitem>
|
||||
</itemizedlist>
|
||||
These primitives are strictly intended to mean what they say: ack means
|
||||
ACK, masking means masking of an IRQ line, etc. It is up to the flow
|
||||
handler(s) to use these basic units of low-level functionality.
|
||||
</para>
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="doirq">
|
||||
<title>__do_IRQ entry point</title>
|
||||
<para>
|
||||
The original implementation __do_IRQ() was an alternative entry
|
||||
point for all types of interrupts. It no longer exists.
|
||||
</para>
|
||||
<para>
|
||||
This handler turned out to be not suitable for all
|
||||
interrupt hardware and was therefore reimplemented with split
|
||||
functionality for edge/level/simple/percpu interrupts. This is not
|
||||
only a functional optimization. It also shortens code paths for
|
||||
interrupts.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="locking">
|
||||
<title>Locking on SMP</title>
|
||||
<para>
|
||||
The locking of chip registers is up to the architecture that
|
||||
defines the chip primitives. The per-irq structure is
|
||||
protected via desc->lock, by the generic layer.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="genericchip">
|
||||
<title>Generic interrupt chip</title>
|
||||
<para>
|
||||
To avoid copies of identical implementations of IRQ chips the
|
||||
core provides a configurable generic interrupt chip
|
||||
implementation. Developers should check carefully whether the
|
||||
generic chip fits their needs before implementing the same
|
||||
functionality slightly differently themselves.
|
||||
</para>
|
||||
!Ekernel/irq/generic-chip.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="structs">
|
||||
<title>Structures</title>
|
||||
<para>
|
||||
This chapter contains the autogenerated documentation of the structures which are
|
||||
used in the generic IRQ layer.
|
||||
</para>
|
||||
!Iinclude/linux/irq.h
|
||||
!Iinclude/linux/interrupt.h
|
||||
</chapter>
|
||||
|
||||
<chapter id="pubfunctions">
|
||||
<title>Public Functions Provided</title>
|
||||
<para>
|
||||
This chapter contains the autogenerated documentation of the kernel API functions
|
||||
which are exported.
|
||||
</para>
|
||||
!Ekernel/irq/manage.c
|
||||
!Ekernel/irq/chip.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="intfunctions">
|
||||
<title>Internal Functions Provided</title>
|
||||
<para>
|
||||
This chapter contains the autogenerated documentation of the internal functions.
|
||||
</para>
|
||||
!Ikernel/irq/irqdesc.c
|
||||
!Ikernel/irq/handle.c
|
||||
!Ikernel/irq/chip.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="credits">
|
||||
<title>Credits</title>
|
||||
<para>
|
||||
The following people have contributed to this document:
|
||||
<orderedlist>
|
||||
<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
|
||||
<listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem>
|
||||
</orderedlist>
|
||||
</para>
|
||||
</chapter>
|
||||
</book>
|
|
@ -0,0 +1,445 @@
|
|||
.. include:: <isonum.txt>
|
||||
|
||||
==========================
|
||||
Linux generic IRQ handling
|
||||
==========================
|
||||
|
||||
:Copyright: |copy| 2005-2010: Thomas Gleixner
|
||||
:Copyright: |copy| 2005-2006: Ingo Molnar
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
The generic interrupt handling layer is designed to provide a complete
|
||||
abstraction of interrupt handling for device drivers. It is able to
|
||||
handle all the different types of interrupt controller hardware. Device
|
||||
drivers use generic API functions to request, enable, disable and free
|
||||
interrupts. The drivers do not have to know anything about interrupt
|
||||
hardware details, so they can be used on different platforms without
|
||||
code changes.
|
||||
|
||||
This documentation is provided to developers who want to implement an
|
||||
interrupt subsystem based for their architecture, with the help of the
|
||||
generic IRQ handling layer.
|
||||
|
||||
Rationale
|
||||
=========
|
||||
|
||||
The original implementation of interrupt handling in Linux uses the
|
||||
__do_IRQ() super-handler, which is able to deal with every type of
|
||||
interrupt logic.
|
||||
|
||||
Originally, Russell King identified different types of handlers to build
|
||||
a quite universal set for the ARM interrupt handler implementation in
|
||||
Linux 2.5/2.6. He distinguished between:
|
||||
|
||||
- Level type
|
||||
|
||||
- Edge type
|
||||
|
||||
- Simple type
|
||||
|
||||
During the implementation we identified another type:
|
||||
|
||||
- Fast EOI type
|
||||
|
||||
In the SMP world of the __do_IRQ() super-handler another type was
|
||||
identified:
|
||||
|
||||
- Per CPU type
|
||||
|
||||
This split implementation of high-level IRQ handlers allows us to
|
||||
optimize the flow of the interrupt handling for each specific interrupt
|
||||
type. This reduces complexity in that particular code path and allows
|
||||
the optimized handling of a given type.
|
||||
|
||||
The original general IRQ implementation used hw_interrupt_type
|
||||
structures and their ->ack(), ->end() [etc.] callbacks to differentiate
|
||||
the flow control in the super-handler. This leads to a mix of flow logic
|
||||
and low-level hardware logic, and it also leads to unnecessary code
|
||||
duplication: for example in i386, there is an ioapic_level_irq and an
|
||||
ioapic_edge_irq IRQ-type which share many of the low-level details but
|
||||
have different flow handling.
|
||||
|
||||
A more natural abstraction is the clean separation of the 'irq flow' and
|
||||
the 'chip details'.
|
||||
|
||||
Analysing a couple of architecture's IRQ subsystem implementations
|
||||
reveals that most of them can use a generic set of 'irq flow' methods
|
||||
and only need to add the chip-level specific code. The separation is
|
||||
also valuable for (sub)architectures which need specific quirks in the
|
||||
IRQ flow itself but not in the chip details - and thus provides a more
|
||||
transparent IRQ subsystem design.
|
||||
|
||||
Each interrupt descriptor is assigned its own high-level flow handler,
|
||||
which is normally one of the generic implementations. (This high-level
|
||||
flow handler implementation also makes it simple to provide
|
||||
demultiplexing handlers which can be found in embedded platforms on
|
||||
various architectures.)
|
||||
|
||||
The separation makes the generic interrupt handling layer more flexible
|
||||
and extensible. For example, an (sub)architecture can use a generic
|
||||
IRQ-flow implementation for 'level type' interrupts and add a
|
||||
(sub)architecture specific 'edge type' implementation.
|
||||
|
||||
To make the transition to the new model easier and prevent the breakage
|
||||
of existing implementations, the __do_IRQ() super-handler is still
|
||||
available. This leads to a kind of duality for the time being. Over time
|
||||
the new model should be used in more and more architectures, as it
|
||||
enables smaller and cleaner IRQ subsystems. It's deprecated for three
|
||||
years now and about to be removed.
|
||||
|
||||
Known Bugs And Assumptions
|
||||
==========================
|
||||
|
||||
None (knock on wood).
|
||||
|
||||
Abstraction layers
|
||||
==================
|
||||
|
||||
There are three main levels of abstraction in the interrupt code:
|
||||
|
||||
1. High-level driver API
|
||||
|
||||
2. High-level IRQ flow handlers
|
||||
|
||||
3. Chip-level hardware encapsulation
|
||||
|
||||
Interrupt control flow
|
||||
----------------------
|
||||
|
||||
Each interrupt is described by an interrupt descriptor structure
|
||||
irq_desc. The interrupt is referenced by an 'unsigned int' numeric
|
||||
value which selects the corresponding interrupt description structure in
|
||||
the descriptor structures array. The descriptor structure contains
|
||||
status information and pointers to the interrupt flow method and the
|
||||
interrupt chip structure which are assigned to this interrupt.
|
||||
|
||||
Whenever an interrupt triggers, the low-level architecture code calls
|
||||
into the generic interrupt code by calling desc->handle_irq(). This
|
||||
high-level IRQ handling function only uses desc->irq_data.chip
|
||||
primitives referenced by the assigned chip descriptor structure.
|
||||
|
||||
High-level Driver API
|
||||
---------------------
|
||||
|
||||
The high-level Driver API consists of following functions:
|
||||
|
||||
- request_irq()
|
||||
|
||||
- free_irq()
|
||||
|
||||
- disable_irq()
|
||||
|
||||
- enable_irq()
|
||||
|
||||
- disable_irq_nosync() (SMP only)
|
||||
|
||||
- synchronize_irq() (SMP only)
|
||||
|
||||
- irq_set_irq_type()
|
||||
|
||||
- irq_set_irq_wake()
|
||||
|
||||
- irq_set_handler_data()
|
||||
|
||||
- irq_set_chip()
|
||||
|
||||
- irq_set_chip_data()
|
||||
|
||||
See the autogenerated function documentation for details.
|
||||
|
||||
High-level IRQ flow handlers
|
||||
----------------------------
|
||||
|
||||
The generic layer provides a set of pre-defined irq-flow methods:
|
||||
|
||||
- handle_level_irq
|
||||
|
||||
- handle_edge_irq
|
||||
|
||||
- handle_fasteoi_irq
|
||||
|
||||
- handle_simple_irq
|
||||
|
||||
- handle_percpu_irq
|
||||
|
||||
- handle_edge_eoi_irq
|
||||
|
||||
- handle_bad_irq
|
||||
|
||||
The interrupt flow handlers (either pre-defined or architecture
|
||||
specific) are assigned to specific interrupts by the architecture either
|
||||
during bootup or during device initialization.
|
||||
|
||||
Default flow implementations
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Helper functions
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
The helper functions call the chip primitives and are used by the
|
||||
default flow implementations. The following helper functions are
|
||||
implemented (simplified excerpt)::
|
||||
|
||||
default_enable(struct irq_data *data)
|
||||
{
|
||||
desc->irq_data.chip->irq_unmask(data);
|
||||
}
|
||||
|
||||
default_disable(struct irq_data *data)
|
||||
{
|
||||
if (!delay_disable(data))
|
||||
desc->irq_data.chip->irq_mask(data);
|
||||
}
|
||||
|
||||
default_ack(struct irq_data *data)
|
||||
{
|
||||
chip->irq_ack(data);
|
||||
}
|
||||
|
||||
default_mask_ack(struct irq_data *data)
|
||||
{
|
||||
if (chip->irq_mask_ack) {
|
||||
chip->irq_mask_ack(data);
|
||||
} else {
|
||||
chip->irq_mask(data);
|
||||
chip->irq_ack(data);
|
||||
}
|
||||
}
|
||||
|
||||
noop(struct irq_data *data))
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
Default flow handler implementations
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Default Level IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_level_irq provides a generic implementation for level-triggered
|
||||
interrupts.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
handle_irq_event(desc->action);
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
|
||||
|
||||
Default Fast EOI IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_fasteoi_irq provides a generic implementation for interrupts,
|
||||
which only need an EOI at the end of the handler.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
handle_irq_event(desc->action);
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
|
||||
|
||||
Default Edge IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_edge_irq provides a generic implementation for edge-triggered
|
||||
interrupts.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
if (desc->status & running) {
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
desc->status |= pending | masked;
|
||||
return;
|
||||
}
|
||||
desc->irq_data.chip->irq_ack();
|
||||
desc->status |= running;
|
||||
do {
|
||||
if (desc->status & masked)
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
desc->status &= ~pending;
|
||||
handle_irq_event(desc->action);
|
||||
} while (status & pending);
|
||||
desc->status &= ~running;
|
||||
|
||||
|
||||
Default simple IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_simple_irq provides a generic implementation for simple
|
||||
interrupts.
|
||||
|
||||
.. note::
|
||||
|
||||
The simple flow handler does not call any handler/chip primitives.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
handle_irq_event(desc->action);
|
||||
|
||||
|
||||
Default per CPU flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_percpu_irq provides a generic implementation for per CPU
|
||||
interrupts.
|
||||
|
||||
Per CPU interrupts are only available on SMP and the handler provides a
|
||||
simplified version without locking.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
if (desc->irq_data.chip->irq_ack)
|
||||
desc->irq_data.chip->irq_ack();
|
||||
handle_irq_event(desc->action);
|
||||
if (desc->irq_data.chip->irq_eoi)
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
|
||||
|
||||
EOI Edge IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_edge_eoi_irq provides an abnomination of the edge handler
|
||||
which is solely used to tame a badly wreckaged irq controller on
|
||||
powerpc/cell.
|
||||
|
||||
Bad IRQ flow handler
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
handle_bad_irq is used for spurious interrupts which have no real
|
||||
handler assigned..
|
||||
|
||||
Quirks and optimizations
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The generic functions are intended for 'clean' architectures and chips,
|
||||
which have no platform-specific IRQ handling quirks. If an architecture
|
||||
needs to implement quirks on the 'flow' level then it can do so by
|
||||
overriding the high-level irq-flow handler.
|
||||
|
||||
Delayed interrupt disable
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This per interrupt selectable feature, which was introduced by Russell
|
||||
King in the ARM interrupt implementation, does not mask an interrupt at
|
||||
the hardware level when disable_irq() is called. The interrupt is kept
|
||||
enabled and is masked in the flow handler when an interrupt event
|
||||
happens. This prevents losing edge interrupts on hardware which does not
|
||||
store an edge interrupt event while the interrupt is disabled at the
|
||||
hardware level. When an interrupt arrives while the IRQ_DISABLED flag
|
||||
is set, then the interrupt is masked at the hardware level and the
|
||||
IRQ_PENDING bit is set. When the interrupt is re-enabled by
|
||||
enable_irq() the pending bit is checked and if it is set, the interrupt
|
||||
is resent either via hardware or by a software resend mechanism. (It's
|
||||
necessary to enable CONFIG_HARDIRQS_SW_RESEND when you want to use
|
||||
the delayed interrupt disable feature and your hardware is not capable
|
||||
of retriggering an interrupt.) The delayed interrupt disable is not
|
||||
configurable.
|
||||
|
||||
Chip-level hardware encapsulation
|
||||
---------------------------------
|
||||
|
||||
The chip-level hardware descriptor structure irq_chip contains all the
|
||||
direct chip relevant functions, which can be utilized by the irq flow
|
||||
implementations.
|
||||
|
||||
- irq_ack()
|
||||
|
||||
- irq_mask_ack() - Optional, recommended for performance
|
||||
|
||||
- irq_mask()
|
||||
|
||||
- irq_unmask()
|
||||
|
||||
- irq_eoi() - Optional, required for EOI flow handlers
|
||||
|
||||
- irq_retrigger() - Optional
|
||||
|
||||
- irq_set_type() - Optional
|
||||
|
||||
- irq_set_wake() - Optional
|
||||
|
||||
These primitives are strictly intended to mean what they say: ack means
|
||||
ACK, masking means masking of an IRQ line, etc. It is up to the flow
|
||||
handler(s) to use these basic units of low-level functionality.
|
||||
|
||||
__do_IRQ entry point
|
||||
====================
|
||||
|
||||
The original implementation __do_IRQ() was an alternative entry point
|
||||
for all types of interrupts. It no longer exists.
|
||||
|
||||
This handler turned out to be not suitable for all interrupt hardware
|
||||
and was therefore reimplemented with split functionality for
|
||||
edge/level/simple/percpu interrupts. This is not only a functional
|
||||
optimization. It also shortens code paths for interrupts.
|
||||
|
||||
Locking on SMP
|
||||
==============
|
||||
|
||||
The locking of chip registers is up to the architecture that defines the
|
||||
chip primitives. The per-irq structure is protected via desc->lock, by
|
||||
the generic layer.
|
||||
|
||||
Generic interrupt chip
|
||||
======================
|
||||
|
||||
To avoid copies of identical implementations of IRQ chips the core
|
||||
provides a configurable generic interrupt chip implementation.
|
||||
Developers should check carefully whether the generic chip fits their
|
||||
needs before implementing the same functionality slightly differently
|
||||
themselves.
|
||||
|
||||
.. kernel-doc:: kernel/irq/generic-chip.c
|
||||
:export:
|
||||
|
||||
Structures
|
||||
==========
|
||||
|
||||
This chapter contains the autogenerated documentation of the structures
|
||||
which are used in the generic IRQ layer.
|
||||
|
||||
.. kernel-doc:: include/linux/irq.h
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: include/linux/interrupt.h
|
||||
:internal:
|
||||
|
||||
Public Functions Provided
|
||||
=========================
|
||||
|
||||
This chapter contains the autogenerated documentation of the kernel API
|
||||
functions which are exported.
|
||||
|
||||
.. kernel-doc:: kernel/irq/manage.c
|
||||
:export:
|
||||
|
||||
.. kernel-doc:: kernel/irq/chip.c
|
||||
:export:
|
||||
|
||||
Internal Functions Provided
|
||||
===========================
|
||||
|
||||
This chapter contains the autogenerated documentation of the internal
|
||||
functions.
|
||||
|
||||
.. kernel-doc:: kernel/irq/irqdesc.c
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: kernel/irq/handle.c
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: kernel/irq/chip.c
|
||||
:internal:
|
||||
|
||||
Credits
|
||||
=======
|
||||
|
||||
The following people have contributed to this document:
|
||||
|
||||
1. Thomas Gleixner tglx@linutronix.de
|
||||
|
||||
2. Ingo Molnar mingo@elte.hu
|
|
@ -16,6 +16,7 @@ Core utilities
|
|||
cpu_hotplug
|
||||
local_ops
|
||||
workqueue
|
||||
genericirq
|
||||
flexible-arrays
|
||||
|
||||
Interfaces for kernel debugging
|
||||
|
|
Loading…
Reference in New Issue