Merge branch 'mac80211' into mac80211-next
Merge mac80211.git to get some changes that would otherwise cause conflicts with new changes coming here. Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This commit is contained in:
commit
3a4b0c948d
|
@ -1633,6 +1633,48 @@ There are some more advanced barrier functions:
|
|||
operations" subsection for information on where to use these.
|
||||
|
||||
|
||||
(*) dma_wmb();
|
||||
(*) dma_rmb();
|
||||
|
||||
These are for use with consistent memory to guarantee the ordering
|
||||
of writes or reads of shared memory accessible to both the CPU and a
|
||||
DMA capable device.
|
||||
|
||||
For example, consider a device driver that shares memory with a device
|
||||
and uses a descriptor status value to indicate if the descriptor belongs
|
||||
to the device or the CPU, and a doorbell to notify it when new
|
||||
descriptors are available:
|
||||
|
||||
if (desc->status != DEVICE_OWN) {
|
||||
/* do not read data until we own descriptor */
|
||||
dma_rmb();
|
||||
|
||||
/* read/modify data */
|
||||
read_data = desc->data;
|
||||
desc->data = write_data;
|
||||
|
||||
/* flush modifications before status update */
|
||||
dma_wmb();
|
||||
|
||||
/* assign ownership */
|
||||
desc->status = DEVICE_OWN;
|
||||
|
||||
/* force memory to sync before notifying device via MMIO */
|
||||
wmb();
|
||||
|
||||
/* notify device of new descriptors */
|
||||
writel(DESC_NOTIFY, doorbell);
|
||||
}
|
||||
|
||||
The dma_rmb() allows us guarantee the device has released ownership
|
||||
before we read the data from the descriptor, and he dma_wmb() allows
|
||||
us to guarantee the data is written to the descriptor before the device
|
||||
can see it now has ownership. The wmb() is needed to guarantee that the
|
||||
cache coherent memory writes have completed before attempting a write to
|
||||
the cache incoherent MMIO region.
|
||||
|
||||
See Documentation/DMA-API.txt for more information on consistent memory.
|
||||
|
||||
MMIO WRITE BARRIER
|
||||
------------------
|
||||
|
||||
|
|
|
@ -7,6 +7,57 @@
|
|||
#define rmb() __asm__ __volatile__("mb": : :"memory")
|
||||
#define wmb() __asm__ __volatile__("wmb": : :"memory")
|
||||
|
||||
/**
|
||||
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||||
* depend on.
|
||||
*
|
||||
* No data-dependent reads from memory-like regions are ever reordered
|
||||
* over this barrier. All reads preceding this primitive are guaranteed
|
||||
* to access memory (but not necessarily other CPUs' caches) before any
|
||||
* reads following this primitive that depend on the data return by
|
||||
* any of the preceding reads. This primitive is much lighter weight than
|
||||
* rmb() on most CPUs, and is never heavier weight than is
|
||||
* rmb().
|
||||
*
|
||||
* These ordering constraints are respected by both the local CPU
|
||||
* and the compiler.
|
||||
*
|
||||
* Ordering is not guaranteed by anything other than these primitives,
|
||||
* not even by data dependencies. See the documentation for
|
||||
* memory_barrier() for examples and URLs to more information.
|
||||
*
|
||||
* For example, the following code would force ordering (the initial
|
||||
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* b = 2;
|
||||
* memory_barrier();
|
||||
* p = &b; q = p;
|
||||
* read_barrier_depends();
|
||||
* d = *q;
|
||||
* </programlisting>
|
||||
*
|
||||
* because the read of "*q" depends on the read of "p" and these
|
||||
* two reads are separated by a read_barrier_depends(). However,
|
||||
* the following code, with the same initial values for "a" and "b":
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* a = 2;
|
||||
* memory_barrier();
|
||||
* b = 3; y = b;
|
||||
* read_barrier_depends();
|
||||
* x = a;
|
||||
* </programlisting>
|
||||
*
|
||||
* does not enforce ordering, since there is no data dependency between
|
||||
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||||
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||||
* in cases like this where there are no data dependencies.
|
||||
*/
|
||||
#define read_barrier_depends() __asm__ __volatile__("mb": : :"memory")
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
|
|
@ -43,10 +43,14 @@
|
|||
#define mb() do { dsb(); outer_sync(); } while (0)
|
||||
#define rmb() dsb()
|
||||
#define wmb() do { dsb(st); outer_sync(); } while (0)
|
||||
#define dma_rmb() dmb(osh)
|
||||
#define dma_wmb() dmb(oshst)
|
||||
#else
|
||||
#define mb() barrier()
|
||||
#define rmb() barrier()
|
||||
#define wmb() barrier()
|
||||
#define dma_rmb() barrier()
|
||||
#define dma_wmb() barrier()
|
||||
#endif
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
|
|
|
@ -32,6 +32,9 @@
|
|||
#define rmb() dsb(ld)
|
||||
#define wmb() dsb(st)
|
||||
|
||||
#define dma_rmb() dmb(oshld)
|
||||
#define dma_wmb() dmb(oshst)
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
#define smp_mb() barrier()
|
||||
#define smp_rmb() barrier()
|
||||
|
|
|
@ -22,6 +22,57 @@
|
|||
# define mb() do { barrier(); smp_check_barrier(); smp_mark_barrier(); } while (0)
|
||||
# define rmb() do { barrier(); smp_check_barrier(); } while (0)
|
||||
# define wmb() do { barrier(); smp_mark_barrier(); } while (0)
|
||||
/*
|
||||
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||||
* depend on.
|
||||
*
|
||||
* No data-dependent reads from memory-like regions are ever reordered
|
||||
* over this barrier. All reads preceding this primitive are guaranteed
|
||||
* to access memory (but not necessarily other CPUs' caches) before any
|
||||
* reads following this primitive that depend on the data return by
|
||||
* any of the preceding reads. This primitive is much lighter weight than
|
||||
* rmb() on most CPUs, and is never heavier weight than is
|
||||
* rmb().
|
||||
*
|
||||
* These ordering constraints are respected by both the local CPU
|
||||
* and the compiler.
|
||||
*
|
||||
* Ordering is not guaranteed by anything other than these primitives,
|
||||
* not even by data dependencies. See the documentation for
|
||||
* memory_barrier() for examples and URLs to more information.
|
||||
*
|
||||
* For example, the following code would force ordering (the initial
|
||||
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* b = 2;
|
||||
* memory_barrier();
|
||||
* p = &b; q = p;
|
||||
* read_barrier_depends();
|
||||
* d = *q;
|
||||
* </programlisting>
|
||||
*
|
||||
* because the read of "*q" depends on the read of "p" and these
|
||||
* two reads are separated by a read_barrier_depends(). However,
|
||||
* the following code, with the same initial values for "a" and "b":
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* a = 2;
|
||||
* memory_barrier();
|
||||
* b = 3; y = b;
|
||||
* read_barrier_depends();
|
||||
* x = a;
|
||||
* </programlisting>
|
||||
*
|
||||
* does not enforce ordering, since there is no data dependency between
|
||||
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||||
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||||
* in cases like this where there are no data dependencies.
|
||||
*/
|
||||
# define read_barrier_depends() do { barrier(); smp_check_barrier(); } while (0)
|
||||
#endif
|
||||
|
||||
|
|
|
@ -38,23 +38,22 @@
|
|||
#define mb() ia64_mf()
|
||||
#define rmb() mb()
|
||||
#define wmb() mb()
|
||||
#define read_barrier_depends() do { } while(0)
|
||||
|
||||
#define dma_rmb() mb()
|
||||
#define dma_wmb() mb()
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
# define smp_mb() mb()
|
||||
# define smp_rmb() rmb()
|
||||
# define smp_wmb() wmb()
|
||||
# define smp_read_barrier_depends() read_barrier_depends()
|
||||
|
||||
#else
|
||||
|
||||
# define smp_mb() barrier()
|
||||
# define smp_rmb() barrier()
|
||||
# define smp_wmb() barrier()
|
||||
# define smp_read_barrier_depends() do { } while(0)
|
||||
|
||||
#endif
|
||||
|
||||
#define smp_rmb() smp_mb()
|
||||
#define smp_wmb() smp_mb()
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
#define smp_mb__before_atomic() barrier()
|
||||
#define smp_mb__after_atomic() barrier()
|
||||
|
||||
|
|
|
@ -4,8 +4,6 @@
|
|||
#include <asm/metag_mem.h>
|
||||
|
||||
#define nop() asm volatile ("NOP")
|
||||
#define mb() wmb()
|
||||
#define rmb() barrier()
|
||||
|
||||
#ifdef CONFIG_METAG_META21
|
||||
|
||||
|
@ -41,13 +39,13 @@ static inline void wr_fence(void)
|
|||
|
||||
#endif /* !CONFIG_METAG_META21 */
|
||||
|
||||
static inline void wmb(void)
|
||||
{
|
||||
/* flush writes through the write combiner */
|
||||
wr_fence();
|
||||
}
|
||||
#define mb() wr_fence()
|
||||
#define rmb() barrier()
|
||||
#define wmb() mb()
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define dma_rmb() rmb()
|
||||
#define dma_wmb() wmb()
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
#define fence() do { } while (0)
|
||||
|
@ -82,7 +80,10 @@ static inline void fence(void)
|
|||
#define smp_wmb() barrier()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
#define set_mb(var, value) do { var = value; smp_mb(); } while (0)
|
||||
|
||||
#define smp_store_release(p, v) \
|
||||
|
|
|
@ -10,58 +10,6 @@
|
|||
|
||||
#include <asm/addrspace.h>
|
||||
|
||||
/*
|
||||
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||||
* depend on.
|
||||
*
|
||||
* No data-dependent reads from memory-like regions are ever reordered
|
||||
* over this barrier. All reads preceding this primitive are guaranteed
|
||||
* to access memory (but not necessarily other CPUs' caches) before any
|
||||
* reads following this primitive that depend on the data return by
|
||||
* any of the preceding reads. This primitive is much lighter weight than
|
||||
* rmb() on most CPUs, and is never heavier weight than is
|
||||
* rmb().
|
||||
*
|
||||
* These ordering constraints are respected by both the local CPU
|
||||
* and the compiler.
|
||||
*
|
||||
* Ordering is not guaranteed by anything other than these primitives,
|
||||
* not even by data dependencies. See the documentation for
|
||||
* memory_barrier() for examples and URLs to more information.
|
||||
*
|
||||
* For example, the following code would force ordering (the initial
|
||||
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* b = 2;
|
||||
* memory_barrier();
|
||||
* p = &b; q = p;
|
||||
* read_barrier_depends();
|
||||
* d = *q;
|
||||
* </programlisting>
|
||||
*
|
||||
* because the read of "*q" depends on the read of "p" and these
|
||||
* two reads are separated by a read_barrier_depends(). However,
|
||||
* the following code, with the same initial values for "a" and "b":
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* a = 2;
|
||||
* memory_barrier();
|
||||
* b = 3; y = b;
|
||||
* read_barrier_depends();
|
||||
* x = a;
|
||||
* </programlisting>
|
||||
*
|
||||
* does not enforce ordering, since there is no data dependency between
|
||||
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||||
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||||
* in cases like this where there are no data dependencies.
|
||||
*/
|
||||
|
||||
#define read_barrier_depends() do { } while(0)
|
||||
#define smp_read_barrier_depends() do { } while(0)
|
||||
|
||||
|
@ -127,20 +75,21 @@
|
|||
|
||||
#include <asm/wbflush.h>
|
||||
|
||||
#define wmb() fast_wmb()
|
||||
#define rmb() fast_rmb()
|
||||
#define mb() wbflush()
|
||||
#define iob() wbflush()
|
||||
|
||||
#else /* !CONFIG_CPU_HAS_WB */
|
||||
|
||||
#define wmb() fast_wmb()
|
||||
#define rmb() fast_rmb()
|
||||
#define mb() fast_mb()
|
||||
#define iob() fast_iob()
|
||||
|
||||
#endif /* !CONFIG_CPU_HAS_WB */
|
||||
|
||||
#define wmb() fast_wmb()
|
||||
#define rmb() fast_rmb()
|
||||
#define dma_wmb() fast_wmb()
|
||||
#define dma_rmb() fast_rmb()
|
||||
|
||||
#if defined(CONFIG_WEAK_ORDERING) && defined(CONFIG_SMP)
|
||||
# ifdef CONFIG_CPU_CAVIUM_OCTEON
|
||||
# define smp_mb() __sync()
|
||||
|
|
|
@ -33,12 +33,9 @@
|
|||
#define mb() __asm__ __volatile__ ("sync" : : : "memory")
|
||||
#define rmb() __asm__ __volatile__ ("sync" : : : "memory")
|
||||
#define wmb() __asm__ __volatile__ ("sync" : : : "memory")
|
||||
#define read_barrier_depends() do { } while(0)
|
||||
|
||||
#define set_mb(var, value) do { var = value; mb(); } while (0)
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
#ifdef __SUBARCH_HAS_LWSYNC
|
||||
# define SMPWMB LWSYNC
|
||||
#else
|
||||
|
@ -46,20 +43,26 @@
|
|||
#endif
|
||||
|
||||
#define __lwsync() __asm__ __volatile__ (stringify_in_c(LWSYNC) : : :"memory")
|
||||
#define dma_rmb() __lwsync()
|
||||
#define dma_wmb() __asm__ __volatile__ (stringify_in_c(SMPWMB) : : :"memory")
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
#define smp_lwsync() __lwsync()
|
||||
|
||||
#define smp_mb() mb()
|
||||
#define smp_rmb() __lwsync()
|
||||
#define smp_wmb() __asm__ __volatile__ (stringify_in_c(SMPWMB) : : :"memory")
|
||||
#define smp_read_barrier_depends() read_barrier_depends()
|
||||
#else
|
||||
#define __lwsync() barrier()
|
||||
#define smp_lwsync() barrier()
|
||||
|
||||
#define smp_mb() barrier()
|
||||
#define smp_rmb() barrier()
|
||||
#define smp_wmb() barrier()
|
||||
#define smp_read_barrier_depends() do { } while(0)
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
/*
|
||||
* This is a barrier which prevents following instructions from being
|
||||
* started until the value of the argument x is known. For example, if
|
||||
|
@ -72,7 +75,7 @@
|
|||
#define smp_store_release(p, v) \
|
||||
do { \
|
||||
compiletime_assert_atomic_type(*p); \
|
||||
__lwsync(); \
|
||||
smp_lwsync(); \
|
||||
ACCESS_ONCE(*p) = (v); \
|
||||
} while (0)
|
||||
|
||||
|
@ -80,7 +83,7 @@ do { \
|
|||
({ \
|
||||
typeof(*p) ___p1 = ACCESS_ONCE(*p); \
|
||||
compiletime_assert_atomic_type(*p); \
|
||||
__lwsync(); \
|
||||
smp_lwsync(); \
|
||||
___p1; \
|
||||
})
|
||||
|
||||
|
|
|
@ -24,11 +24,14 @@
|
|||
|
||||
#define rmb() mb()
|
||||
#define wmb() mb()
|
||||
#define read_barrier_depends() do { } while(0)
|
||||
#define dma_rmb() rmb()
|
||||
#define dma_wmb() wmb()
|
||||
#define smp_mb() mb()
|
||||
#define smp_rmb() rmb()
|
||||
#define smp_wmb() wmb()
|
||||
#define smp_read_barrier_depends() read_barrier_depends()
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
#define smp_mb__before_atomic() smp_mb()
|
||||
#define smp_mb__after_atomic() smp_mb()
|
||||
|
|
|
@ -37,7 +37,9 @@ do { __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" \
|
|||
#define rmb() __asm__ __volatile__("":::"memory")
|
||||
#define wmb() __asm__ __volatile__("":::"memory")
|
||||
|
||||
#define read_barrier_depends() do { } while(0)
|
||||
#define dma_rmb() rmb()
|
||||
#define dma_wmb() wmb()
|
||||
|
||||
#define set_mb(__var, __value) \
|
||||
do { __var = __value; membar_safe("#StoreLoad"); } while(0)
|
||||
|
||||
|
@ -51,6 +53,7 @@ do { __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" \
|
|||
#define smp_wmb() __asm__ __volatile__("":::"memory")
|
||||
#endif
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
#define smp_store_release(p, v) \
|
||||
|
|
|
@ -24,78 +24,28 @@
|
|||
#define wmb() asm volatile("sfence" ::: "memory")
|
||||
#endif
|
||||
|
||||
/**
|
||||
* read_barrier_depends - Flush all pending reads that subsequents reads
|
||||
* depend on.
|
||||
*
|
||||
* No data-dependent reads from memory-like regions are ever reordered
|
||||
* over this barrier. All reads preceding this primitive are guaranteed
|
||||
* to access memory (but not necessarily other CPUs' caches) before any
|
||||
* reads following this primitive that depend on the data return by
|
||||
* any of the preceding reads. This primitive is much lighter weight than
|
||||
* rmb() on most CPUs, and is never heavier weight than is
|
||||
* rmb().
|
||||
*
|
||||
* These ordering constraints are respected by both the local CPU
|
||||
* and the compiler.
|
||||
*
|
||||
* Ordering is not guaranteed by anything other than these primitives,
|
||||
* not even by data dependencies. See the documentation for
|
||||
* memory_barrier() for examples and URLs to more information.
|
||||
*
|
||||
* For example, the following code would force ordering (the initial
|
||||
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* b = 2;
|
||||
* memory_barrier();
|
||||
* p = &b; q = p;
|
||||
* read_barrier_depends();
|
||||
* d = *q;
|
||||
* </programlisting>
|
||||
*
|
||||
* because the read of "*q" depends on the read of "p" and these
|
||||
* two reads are separated by a read_barrier_depends(). However,
|
||||
* the following code, with the same initial values for "a" and "b":
|
||||
*
|
||||
* <programlisting>
|
||||
* CPU 0 CPU 1
|
||||
*
|
||||
* a = 2;
|
||||
* memory_barrier();
|
||||
* b = 3; y = b;
|
||||
* read_barrier_depends();
|
||||
* x = a;
|
||||
* </programlisting>
|
||||
*
|
||||
* does not enforce ordering, since there is no data dependency between
|
||||
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
||||
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
||||
* in cases like this where there are no data dependencies.
|
||||
**/
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#ifdef CONFIG_X86_PPRO_FENCE
|
||||
#define dma_rmb() rmb()
|
||||
#else
|
||||
#define dma_rmb() barrier()
|
||||
#endif
|
||||
#define dma_wmb() barrier()
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
#define smp_mb() mb()
|
||||
#ifdef CONFIG_X86_PPRO_FENCE
|
||||
# define smp_rmb() rmb()
|
||||
#else
|
||||
# define smp_rmb() barrier()
|
||||
#endif
|
||||
#define smp_rmb() dma_rmb()
|
||||
#define smp_wmb() barrier()
|
||||
#define smp_read_barrier_depends() read_barrier_depends()
|
||||
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
|
||||
#else /* !SMP */
|
||||
#define smp_mb() barrier()
|
||||
#define smp_rmb() barrier()
|
||||
#define smp_wmb() barrier()
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
#define set_mb(var, value) do { var = value; barrier(); } while (0)
|
||||
#endif /* SMP */
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
#if defined(CONFIG_X86_PPRO_FENCE)
|
||||
|
||||
/*
|
||||
|
|
|
@ -29,20 +29,18 @@
|
|||
|
||||
#endif /* CONFIG_X86_32 */
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#ifdef CONFIG_X86_PPRO_FENCE
|
||||
#define dma_rmb() rmb()
|
||||
#else /* CONFIG_X86_PPRO_FENCE */
|
||||
#define dma_rmb() barrier()
|
||||
#endif /* CONFIG_X86_PPRO_FENCE */
|
||||
#define dma_wmb() barrier()
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
#define smp_mb() mb()
|
||||
#ifdef CONFIG_X86_PPRO_FENCE
|
||||
#define smp_rmb() rmb()
|
||||
#else /* CONFIG_X86_PPRO_FENCE */
|
||||
#define smp_rmb() barrier()
|
||||
#endif /* CONFIG_X86_PPRO_FENCE */
|
||||
|
||||
#define smp_rmb() dma_rmb()
|
||||
#define smp_wmb() barrier()
|
||||
|
||||
#define smp_read_barrier_depends() read_barrier_depends()
|
||||
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
|
||||
|
||||
#else /* CONFIG_SMP */
|
||||
|
@ -50,11 +48,13 @@
|
|||
#define smp_mb() barrier()
|
||||
#define smp_rmb() barrier()
|
||||
#define smp_wmb() barrier()
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
#define set_mb(var, value) do { var = value; barrier(); } while (0)
|
||||
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#define smp_read_barrier_depends() do { } while (0)
|
||||
|
||||
/*
|
||||
* Stop RDTSC speculation. This is needed when you need to use RDTSC
|
||||
* (or get_cycles or vread that possibly accesses the TSC) in a defined
|
||||
|
|
|
@ -684,10 +684,9 @@ static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
|
|||
struct fixed_phy_status *status)
|
||||
{
|
||||
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
||||
u32 link, duplex, pause, speed;
|
||||
u32 duplex, pause, speed;
|
||||
u32 reg;
|
||||
|
||||
link = core_readl(priv, CORE_LNKSTS);
|
||||
duplex = core_readl(priv, CORE_DUPSTS);
|
||||
pause = core_readl(priv, CORE_PAUSESTS);
|
||||
speed = core_readl(priv, CORE_SPDSTS);
|
||||
|
@ -701,21 +700,25 @@ static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
|
|||
* which means that we need to force the link at the port override
|
||||
* level to get the data to flow. We do use what the interrupt handler
|
||||
* did determine before.
|
||||
*
|
||||
* For the other ports, we just force the link status, since this is
|
||||
* a fixed PHY device.
|
||||
*/
|
||||
if (port == 7) {
|
||||
status->link = priv->port_sts[port].link;
|
||||
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(7));
|
||||
status->duplex = 1;
|
||||
} else {
|
||||
status->link = 1;
|
||||
status->duplex = !!(duplex & (1 << port));
|
||||
}
|
||||
|
||||
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
||||
reg |= SW_OVERRIDE;
|
||||
if (status->link)
|
||||
reg |= LINK_STS;
|
||||
else
|
||||
reg &= ~LINK_STS;
|
||||
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(7));
|
||||
status->duplex = 1;
|
||||
} else {
|
||||
status->link = !!(link & (1 << port));
|
||||
status->duplex = !!(duplex & (1 << port));
|
||||
}
|
||||
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
||||
|
||||
switch (speed) {
|
||||
case SPDSTS_10:
|
||||
|
|
|
@ -615,14 +615,14 @@ static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
|
|||
|
||||
rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
||||
|
||||
if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD))
|
||||
if (!rx_desc->d.staterr)
|
||||
break;
|
||||
|
||||
/* This memory barrier is needed to keep us from reading
|
||||
* any other fields out of the rx_desc until we know the
|
||||
* RXD_STATUS_DD bit is set
|
||||
* descriptor has been written back
|
||||
*/
|
||||
rmb();
|
||||
dma_rmb();
|
||||
|
||||
/* retrieve a buffer from the ring */
|
||||
skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
|
||||
|
|
|
@ -6910,14 +6910,14 @@ static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
|
|||
|
||||
rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
||||
|
||||
if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
|
||||
if (!rx_desc->wb.upper.status_error)
|
||||
break;
|
||||
|
||||
/* This memory barrier is needed to keep us from reading
|
||||
* any other fields out of the rx_desc until we know the
|
||||
* RXD_STAT_DD bit is set
|
||||
* descriptor has been written back
|
||||
*/
|
||||
rmb();
|
||||
dma_rmb();
|
||||
|
||||
/* retrieve a buffer from the ring */
|
||||
skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
|
||||
|
|
|
@ -2009,15 +2009,14 @@ static int ixgbe_clean_rx_irq(struct ixgbe_q_vector *q_vector,
|
|||
|
||||
rx_desc = IXGBE_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
||||
|
||||
if (!ixgbe_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
|
||||
if (!rx_desc->wb.upper.status_error)
|
||||
break;
|
||||
|
||||
/*
|
||||
* This memory barrier is needed to keep us from reading
|
||||
/* This memory barrier is needed to keep us from reading
|
||||
* any other fields out of the rx_desc until we know the
|
||||
* RXD_STAT_DD bit is set
|
||||
* descriptor has been written back
|
||||
*/
|
||||
rmb();
|
||||
dma_rmb();
|
||||
|
||||
/* retrieve a buffer from the ring */
|
||||
skb = ixgbe_fetch_rx_buffer(rx_ring, rx_desc);
|
||||
|
|
|
@ -5919,7 +5919,7 @@ static void rtl_hw_start_8411(struct rtl8169_private *tp)
|
|||
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0x0000, ERIAR_EXGMAC);
|
||||
}
|
||||
|
||||
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
|
||||
static void rtl_hw_start_8168g(struct rtl8169_private *tp)
|
||||
{
|
||||
void __iomem *ioaddr = tp->mmio_addr;
|
||||
struct pci_dev *pdev = tp->pci_dev;
|
||||
|
@ -5954,6 +5954,24 @@ static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
|
|||
rtl_pcie_state_l2l3_enable(tp, false);
|
||||
}
|
||||
|
||||
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
|
||||
{
|
||||
void __iomem *ioaddr = tp->mmio_addr;
|
||||
static const struct ephy_info e_info_8168g_1[] = {
|
||||
{ 0x00, 0x0000, 0x0008 },
|
||||
{ 0x0c, 0x37d0, 0x0820 },
|
||||
{ 0x1e, 0x0000, 0x0001 },
|
||||
{ 0x19, 0x8000, 0x0000 }
|
||||
};
|
||||
|
||||
rtl_hw_start_8168g(tp);
|
||||
|
||||
/* disable aspm and clock request before access ephy */
|
||||
RTL_W8(Config2, RTL_R8(Config2) & ~ClkReqEn);
|
||||
RTL_W8(Config5, RTL_R8(Config5) & ~ASPM_en);
|
||||
rtl_ephy_init(tp, e_info_8168g_1, ARRAY_SIZE(e_info_8168g_1));
|
||||
}
|
||||
|
||||
static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
|
||||
{
|
||||
void __iomem *ioaddr = tp->mmio_addr;
|
||||
|
@ -5964,7 +5982,7 @@ static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
|
|||
{ 0x1e, 0xffff, 0x20eb }
|
||||
};
|
||||
|
||||
rtl_hw_start_8168g_1(tp);
|
||||
rtl_hw_start_8168g(tp);
|
||||
|
||||
/* disable aspm and clock request before access ephy */
|
||||
RTL_W8(Config2, RTL_R8(Config2) & ~ClkReqEn);
|
||||
|
@ -5983,7 +6001,7 @@ static void rtl_hw_start_8411_2(struct rtl8169_private *tp)
|
|||
{ 0x1e, 0x0000, 0x2000 }
|
||||
};
|
||||
|
||||
rtl_hw_start_8168g_1(tp);
|
||||
rtl_hw_start_8168g(tp);
|
||||
|
||||
/* disable aspm and clock request before access ephy */
|
||||
RTL_W8(Config2, RTL_R8(Config2) & ~ClkReqEn);
|
||||
|
@ -6605,6 +6623,9 @@ static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
|
|||
{
|
||||
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
|
||||
|
||||
/* Force memory writes to complete before releasing descriptor */
|
||||
dma_wmb();
|
||||
|
||||
desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
|
||||
}
|
||||
|
||||
|
@ -6612,7 +6633,6 @@ static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
|
|||
u32 rx_buf_sz)
|
||||
{
|
||||
desc->addr = cpu_to_le64(mapping);
|
||||
wmb();
|
||||
rtl8169_mark_to_asic(desc, rx_buf_sz);
|
||||
}
|
||||
|
||||
|
@ -7073,16 +7093,18 @@ static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
|
|||
|
||||
skb_tx_timestamp(skb);
|
||||
|
||||
wmb();
|
||||
/* Force memory writes to complete before releasing descriptor */
|
||||
dma_wmb();
|
||||
|
||||
/* Anti gcc 2.95.3 bugware (sic) */
|
||||
status = opts[0] | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
|
||||
txd->opts1 = cpu_to_le32(status);
|
||||
|
||||
tp->cur_tx += frags + 1;
|
||||
|
||||
/* Force all memory writes to complete before notifying device */
|
||||
wmb();
|
||||
|
||||
tp->cur_tx += frags + 1;
|
||||
|
||||
RTL_W8(TxPoll, NPQ);
|
||||
|
||||
mmiowb();
|
||||
|
@ -7181,11 +7203,16 @@ static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp)
|
|||
struct ring_info *tx_skb = tp->tx_skb + entry;
|
||||
u32 status;
|
||||
|
||||
rmb();
|
||||
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
|
||||
if (status & DescOwn)
|
||||
break;
|
||||
|
||||
/* This barrier is needed to keep us from reading
|
||||
* any other fields out of the Tx descriptor until
|
||||
* we know the status of DescOwn
|
||||
*/
|
||||
dma_rmb();
|
||||
|
||||
rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb,
|
||||
tp->TxDescArray + entry);
|
||||
if (status & LastFrag) {
|
||||
|
@ -7280,11 +7307,16 @@ static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget
|
|||
struct RxDesc *desc = tp->RxDescArray + entry;
|
||||
u32 status;
|
||||
|
||||
rmb();
|
||||
status = le32_to_cpu(desc->opts1) & tp->opts1_mask;
|
||||
|
||||
if (status & DescOwn)
|
||||
break;
|
||||
|
||||
/* This barrier is needed to keep us from reading
|
||||
* any other fields out of the Rx descriptor until
|
||||
* we know the status of DescOwn
|
||||
*/
|
||||
dma_rmb();
|
||||
|
||||
if (unlikely(status & RxRES)) {
|
||||
netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
|
||||
status);
|
||||
|
@ -7346,7 +7378,6 @@ process_pkt:
|
|||
}
|
||||
release_descriptor:
|
||||
desc->opts2 = 0;
|
||||
wmb();
|
||||
rtl8169_mark_to_asic(desc, rx_buf_sz);
|
||||
}
|
||||
|
||||
|
|
|
@ -42,6 +42,14 @@
|
|||
#define wmb() mb()
|
||||
#endif
|
||||
|
||||
#ifndef dma_rmb
|
||||
#define dma_rmb() rmb()
|
||||
#endif
|
||||
|
||||
#ifndef dma_wmb
|
||||
#define dma_wmb() wmb()
|
||||
#endif
|
||||
|
||||
#ifndef read_barrier_depends
|
||||
#define read_barrier_depends() do { } while (0)
|
||||
#endif
|
||||
|
|
|
@ -1281,8 +1281,7 @@ struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev);
|
|||
*
|
||||
* @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
|
||||
* driver to indicate that it requires IV generation for this
|
||||
* particular key. Setting this flag does not necessarily mean that SKBs
|
||||
* will have sufficient tailroom for ICV or MIC.
|
||||
* particular key.
|
||||
* @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
|
||||
* the driver for a TKIP key if it requires Michael MIC
|
||||
* generation in software.
|
||||
|
@ -1294,9 +1293,7 @@ struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev);
|
|||
* @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver
|
||||
* if space should be prepared for the IV, but the IV
|
||||
* itself should not be generated. Do not set together with
|
||||
* @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. Setting this flag does
|
||||
* not necessarily mean that SKBs will have sufficient tailroom for ICV or
|
||||
* MIC.
|
||||
* @IEEE80211_KEY_FLAG_GENERATE_IV on the same key.
|
||||
* @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received
|
||||
* management frames. The flag can help drivers that have a hardware
|
||||
* crypto implementation that doesn't deal with management frames
|
||||
|
|
|
@ -512,7 +512,7 @@ static int dsa_slave_fixed_link_update(struct net_device *dev,
|
|||
}
|
||||
|
||||
/* slave device setup *******************************************************/
|
||||
static void dsa_slave_phy_setup(struct dsa_slave_priv *p,
|
||||
static int dsa_slave_phy_setup(struct dsa_slave_priv *p,
|
||||
struct net_device *slave_dev)
|
||||
{
|
||||
struct dsa_switch *ds = p->parent;
|
||||
|
@ -533,7 +533,7 @@ static void dsa_slave_phy_setup(struct dsa_slave_priv *p,
|
|||
ret = of_phy_register_fixed_link(port_dn);
|
||||
if (ret) {
|
||||
netdev_err(slave_dev, "failed to register fixed PHY\n");
|
||||
return;
|
||||
return ret;
|
||||
}
|
||||
phy_is_fixed = true;
|
||||
phy_dn = port_dn;
|
||||
|
@ -555,12 +555,17 @@ static void dsa_slave_phy_setup(struct dsa_slave_priv *p,
|
|||
*/
|
||||
if (!p->phy) {
|
||||
p->phy = ds->slave_mii_bus->phy_map[p->port];
|
||||
if (!p->phy)
|
||||
return -ENODEV;
|
||||
|
||||
phy_connect_direct(slave_dev, p->phy, dsa_slave_adjust_link,
|
||||
p->phy_interface);
|
||||
} else {
|
||||
netdev_info(slave_dev, "attached PHY at address %d [%s]\n",
|
||||
p->phy->addr, p->phy->drv->name);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dsa_slave_suspend(struct net_device *slave_dev)
|
||||
|
@ -653,12 +658,17 @@ dsa_slave_create(struct dsa_switch *ds, struct device *parent,
|
|||
p->old_link = -1;
|
||||
p->old_duplex = -1;
|
||||
|
||||
dsa_slave_phy_setup(p, slave_dev);
|
||||
ret = dsa_slave_phy_setup(p, slave_dev);
|
||||
if (ret) {
|
||||
free_netdev(slave_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ret = register_netdev(slave_dev);
|
||||
if (ret) {
|
||||
netdev_err(master, "error %d registering interface %s\n",
|
||||
ret, slave_dev->name);
|
||||
phy_disconnect(p->phy);
|
||||
free_netdev(slave_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
|
|
@ -1011,6 +1011,10 @@ ieee80211_vif_use_reserved_reassign(struct ieee80211_sub_if_data *sdata)
|
|||
|
||||
ieee80211_vif_update_chandef(sdata, &sdata->reserved_chandef);
|
||||
|
||||
ieee80211_recalc_smps_chanctx(local, new_ctx);
|
||||
ieee80211_recalc_radar_chanctx(local, new_ctx);
|
||||
ieee80211_recalc_chanctx_min_def(local, new_ctx);
|
||||
|
||||
if (changed)
|
||||
ieee80211_bss_info_change_notify(sdata, changed);
|
||||
|
||||
|
|
|
@ -140,7 +140,9 @@ static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
|
|||
if (!ret) {
|
||||
key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
|
||||
|
||||
if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
|
||||
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
|
||||
sdata->crypto_tx_tailroom_needed_cnt--;
|
||||
|
||||
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
|
||||
|
@ -188,7 +190,9 @@ static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
|
|||
sta = key->sta;
|
||||
sdata = key->sdata;
|
||||
|
||||
if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
|
||||
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
|
||||
increment_tailroom_need_count(sdata);
|
||||
|
||||
ret = drv_set_key(key->local, DISABLE_KEY, sdata,
|
||||
|
@ -656,7 +660,7 @@ void ieee80211_free_sta_keys(struct ieee80211_local *local,
|
|||
int i;
|
||||
|
||||
mutex_lock(&local->key_mtx);
|
||||
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
|
||||
for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
|
||||
key = key_mtx_dereference(local, sta->gtk[i]);
|
||||
if (!key)
|
||||
continue;
|
||||
|
@ -884,7 +888,9 @@ void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
|
|||
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
|
||||
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
|
||||
|
||||
if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
|
||||
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
|
||||
(key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
|
||||
increment_tailroom_need_count(key->sdata);
|
||||
}
|
||||
|
||||
|
|
|
@ -178,6 +178,7 @@ ieee80211_determine_chantype(struct ieee80211_sub_if_data *sdata,
|
|||
if (!(ht_cap->cap_info &
|
||||
cpu_to_le16(IEEE80211_HT_CAP_SUP_WIDTH_20_40))) {
|
||||
ret = IEEE80211_STA_DISABLE_40MHZ;
|
||||
vht_chandef = *chandef;
|
||||
goto out;
|
||||
}
|
||||
|
||||
|
|
|
@ -1761,14 +1761,14 @@ ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
|
|||
sc = le16_to_cpu(hdr->seq_ctrl);
|
||||
frag = sc & IEEE80211_SCTL_FRAG;
|
||||
|
||||
if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
|
||||
goto out;
|
||||
|
||||
if (is_multicast_ether_addr(hdr->addr1)) {
|
||||
rx->local->dot11MulticastReceivedFrameCount++;
|
||||
goto out;
|
||||
goto out_no_led;
|
||||
}
|
||||
|
||||
if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
|
||||
goto out;
|
||||
|
||||
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
|
||||
|
||||
if (skb_linearize(rx->skb))
|
||||
|
@ -1859,9 +1859,10 @@ ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
|
|||
status->rx_flags |= IEEE80211_RX_FRAGMENTED;
|
||||
|
||||
out:
|
||||
ieee80211_led_rx(rx->local);
|
||||
out_no_led:
|
||||
if (rx->sta)
|
||||
rx->sta->rx_packets++;
|
||||
ieee80211_led_rx(rx->local);
|
||||
return RX_CONTINUE;
|
||||
}
|
||||
|
||||
|
|
|
@ -603,7 +603,7 @@ bool cfg80211_chandef_usable(struct wiphy *wiphy,
|
|||
{
|
||||
struct ieee80211_sta_ht_cap *ht_cap;
|
||||
struct ieee80211_sta_vht_cap *vht_cap;
|
||||
u32 width, control_freq;
|
||||
u32 width, control_freq, cap;
|
||||
|
||||
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
|
||||
return false;
|
||||
|
@ -643,7 +643,8 @@ bool cfg80211_chandef_usable(struct wiphy *wiphy,
|
|||
return false;
|
||||
break;
|
||||
case NL80211_CHAN_WIDTH_80P80:
|
||||
if (!(vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))
|
||||
cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
|
||||
if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ)
|
||||
return false;
|
||||
case NL80211_CHAN_WIDTH_80:
|
||||
if (!vht_cap->vht_supported)
|
||||
|
@ -654,7 +655,9 @@ bool cfg80211_chandef_usable(struct wiphy *wiphy,
|
|||
case NL80211_CHAN_WIDTH_160:
|
||||
if (!vht_cap->vht_supported)
|
||||
return false;
|
||||
if (!(vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ))
|
||||
cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
|
||||
if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
|
||||
cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ)
|
||||
return false;
|
||||
prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
|
||||
width = 160;
|
||||
|
|
|
@ -6128,7 +6128,7 @@ nl80211_parse_sched_scan(struct wiphy *wiphy, struct wireless_dev *wdev,
|
|||
}
|
||||
|
||||
/* there was no other matchset, so the RSSI one is alone */
|
||||
if (i == 0)
|
||||
if (i == 0 && n_match_sets)
|
||||
request->match_sets[0].rssi_thold = default_match_rssi;
|
||||
|
||||
request->min_rssi_thold = INT_MAX;
|
||||
|
|
|
@ -1549,12 +1549,18 @@ static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
|
|||
if (!wdev->beacon_interval)
|
||||
goto out;
|
||||
|
||||
ret = cfg80211_reg_can_beacon(wiphy,
|
||||
&wdev->chandef, wdev->iftype);
|
||||
break;
|
||||
case NL80211_IFTYPE_ADHOC:
|
||||
if (!wdev->ssid_len)
|
||||
goto out;
|
||||
|
||||
ret = cfg80211_reg_can_beacon(wiphy,
|
||||
&wdev->chandef, wdev->iftype);
|
||||
break;
|
||||
case NL80211_IFTYPE_STATION:
|
||||
case NL80211_IFTYPE_P2P_CLIENT:
|
||||
case NL80211_IFTYPE_ADHOC:
|
||||
if (!wdev->current_bss ||
|
||||
!wdev->current_bss->pub.channel)
|
||||
goto out;
|
||||
|
@ -1920,7 +1926,7 @@ static enum reg_request_treatment
|
|||
reg_process_hint_driver(struct wiphy *wiphy,
|
||||
struct regulatory_request *driver_request)
|
||||
{
|
||||
const struct ieee80211_regdomain *regd;
|
||||
const struct ieee80211_regdomain *regd, *tmp;
|
||||
enum reg_request_treatment treatment;
|
||||
|
||||
treatment = __reg_process_hint_driver(driver_request);
|
||||
|
@ -1940,7 +1946,10 @@ reg_process_hint_driver(struct wiphy *wiphy,
|
|||
reg_free_request(driver_request);
|
||||
return REG_REQ_IGNORE;
|
||||
}
|
||||
|
||||
tmp = get_wiphy_regdom(wiphy);
|
||||
rcu_assign_pointer(wiphy->regd, regd);
|
||||
rcu_free_regdom(tmp);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1999,11 +2008,8 @@ __reg_process_hint_country_ie(struct wiphy *wiphy,
|
|||
return REG_REQ_IGNORE;
|
||||
return REG_REQ_ALREADY_SET;
|
||||
}
|
||||
/*
|
||||
* Two consecutive Country IE hints on the same wiphy.
|
||||
* This should be picked up early by the driver/stack
|
||||
*/
|
||||
if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
|
||||
|
||||
if (regdom_changes(country_ie_request->alpha2))
|
||||
return REG_REQ_OK;
|
||||
return REG_REQ_ALREADY_SET;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue