Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-for-linus-2.6

This commit is contained in:
Linus Torvalds 2005-09-12 20:02:18 -07:00
commit 35d91f75c2
22 changed files with 1648 additions and 146 deletions

View File

@ -60,6 +60,8 @@ scsi.txt
- short blurb on using SCSI support as a module.
scsi_mid_low_api.txt
- info on API between SCSI layer and low level drivers
scsi_eh.txt
- info on SCSI midlayer error handling infrastructure
st.txt
- info on scsi tape driver
sym53c500_cs.txt

View File

@ -0,0 +1,479 @@
SCSI EH
======================================
This document describes SCSI midlayer error handling infrastructure.
Please refer to Documentation/scsi/scsi_mid_low_api.txt for more
information regarding SCSI midlayer.
TABLE OF CONTENTS
[1] How SCSI commands travel through the midlayer and to EH
[1-1] struct scsi_cmnd
[1-2] How do scmd's get completed?
[1-2-1] Completing a scmd w/ scsi_done
[1-2-2] Completing a scmd w/ timeout
[1-3] How EH takes over
[2] How SCSI EH works
[2-1] EH through fine-grained callbacks
[2-1-1] Overview
[2-1-2] Flow of scmds through EH
[2-1-3] Flow of control
[2-2] EH through hostt->eh_strategy_handler()
[2-2-1] Pre hostt->eh_strategy_handler() SCSI midlayer conditions
[2-2-2] Post hostt->eh_strategy_handler() SCSI midlayer conditions
[2-2-3] Things to consider
[1] How SCSI commands travel through the midlayer and to EH
[1-1] struct scsi_cmnd
Each SCSI command is represented with struct scsi_cmnd (== scmd). A
scmd has two list_head's to link itself into lists. The two are
scmd->list and scmd->eh_entry. The former is used for free list or
per-device allocated scmd list and not of much interest to this EH
discussion. The latter is used for completion and EH lists and unless
otherwise stated scmds are always linked using scmd->eh_entry in this
discussion.
[1-2] How do scmd's get completed?
Once LLDD gets hold of a scmd, either the LLDD will complete the
command by calling scsi_done callback passed from midlayer when
invoking hostt->queuecommand() or SCSI midlayer will time it out.
[1-2-1] Completing a scmd w/ scsi_done
For all non-EH commands, scsi_done() is the completion callback. It
does the following.
1. Delete timeout timer. If it fails, it means that timeout timer
has expired and is going to finish the command. Just return.
2. Link scmd to per-cpu scsi_done_q using scmd->en_entry
3. Raise SCSI_SOFTIRQ
SCSI_SOFTIRQ handler scsi_softirq calls scsi_decide_disposition() to
determine what to do with the command. scsi_decide_disposition()
looks at the scmd->result value and sense data to determine what to do
with the command.
- SUCCESS
scsi_finish_command() is invoked for the command. The
function does some maintenance choirs and notify completion by
calling scmd->done() callback, which, for fs requests, would
be HLD completion callback - sd:sd_rw_intr, sr:rw_intr,
st:st_intr.
- NEEDS_RETRY
- ADD_TO_MLQUEUE
scmd is requeued to blk queue.
- otherwise
scsi_eh_scmd_add(scmd, 0) is invoked for the command. See
[1-3] for details of this funciton.
[1-2-2] Completing a scmd w/ timeout
The timeout handler is scsi_times_out(). When a timeout occurs, this
function
1. invokes optional hostt->eh_timedout() callback. Return value can
be one of
- EH_HANDLED
This indicates that eh_timedout() dealt with the timeout. The
scmd is passed to __scsi_done() and thus linked into per-cpu
scsi_done_q. Normal command completion described in [1-2-1]
follows.
- EH_RESET_TIMER
This indicates that more time is required to finish the
command. Timer is restarted. This action is counted as a
retry and only allowed scmd->allowed + 1(!) times. Once the
limit is reached, action for EH_NOT_HANDLED is taken instead.
*NOTE* This action is racy as the LLDD could finish the scmd
after the timeout has expired but before it's added back. In
such cases, scsi_done() would think that timeout has occurred
and return without doing anything. We lose completion and the
command will time out again.
- EH_NOT_HANDLED
This is the same as when eh_timedout() callback doesn't exist.
Step #2 is taken.
2. scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD) is invoked for the
command. See [1-3] for more information.
[1-3] How EH takes over
scmds enter EH via scsi_eh_scmd_add(), which does the following.
1. Turns on scmd->eh_eflags as requested. It's 0 for error
completions and SCSI_EH_CANCEL_CMD for timeouts.
2. Links scmd->eh_entry to shost->eh_cmd_q
3. Sets SHOST_RECOVERY bit in shost->shost_state
4. Increments shost->host_failed
5. Wakes up SCSI EH thread if shost->host_busy == shost->host_failed
As can be seen above, once any scmd is added to shost->eh_cmd_q,
SHOST_RECOVERY shost_state bit is turned on. This prevents any new
scmd to be issued from blk queue to the host; eventually, all scmds on
the host either complete normally, fail and get added to eh_cmd_q, or
time out and get added to shost->eh_cmd_q.
If all scmds either complete or fail, the number of in-flight scmds
becomes equal to the number of failed scmds - i.e. shost->host_busy ==
shost->host_failed. This wakes up SCSI EH thread. So, once woken up,
SCSI EH thread can expect that all in-flight commands have failed and
are linked on shost->eh_cmd_q.
Note that this does not mean lower layers are quiescent. If a LLDD
completed a scmd with error status, the LLDD and lower layers are
assumed to forget about the scmd at that point. However, if a scmd
has timed out, unless hostt->eh_timedout() made lower layers forget
about the scmd, which currently no LLDD does, the command is still
active as long as lower layers are concerned and completion could
occur at any time. Of course, all such completions are ignored as the
timer has already expired.
We'll talk about how SCSI EH takes actions to abort - make LLDD
forget about - timed out scmds later.
[2] How SCSI EH works
LLDD's can implement SCSI EH actions in one of the following two
ways.
- Fine-grained EH callbacks
LLDD can implement fine-grained EH callbacks and let SCSI
midlayer drive error handling and call appropriate callbacks.
This will be dicussed further in [2-1].
- eh_strategy_handler() callback
This is one big callback which should perform whole error
handling. As such, it should do all choirs SCSI midlayer
performs during recovery. This will be discussed in [2-2].
Once recovery is complete, SCSI EH resumes normal operation by
calling scsi_restart_operations(), which
1. Checks if door locking is needed and locks door.
2. Clears SHOST_RECOVERY shost_state bit
3. Wakes up waiters on shost->host_wait. This occurs if someone
calls scsi_block_when_processing_errors() on the host.
(*QUESTION* why is it needed? All operations will be blocked
anyway after it reaches blk queue.)
4. Kicks queues in all devices on the host in the asses
[2-1] EH through fine-grained callbacks
[2-1-1] Overview
If eh_strategy_handler() is not present, SCSI midlayer takes charge
of driving error handling. EH's goals are two - make LLDD, host and
device forget about timed out scmds and make them ready for new
commands. A scmd is said to be recovered if the scmd is forgotten by
lower layers and lower layers are ready to process or fail the scmd
again.
To achieve these goals, EH performs recovery actions with increasing
severity. Some actions are performed by issueing SCSI commands and
others are performed by invoking one of the following fine-grained
hostt EH callbacks. Callbacks may be omitted and omitted ones are
considered to fail always.
int (* eh_abort_handler)(struct scsi_cmnd *);
int (* eh_device_reset_handler)(struct scsi_cmnd *);
int (* eh_bus_reset_handler)(struct scsi_cmnd *);
int (* eh_host_reset_handler)(struct scsi_cmnd *);
Higher-severity actions are taken only when lower-severity actions
cannot recover some of failed scmds. Also, note that failure of the
highest-severity action means EH failure and results in offlining of
all unrecovered devices.
During recovery, the following rules are followed
- Recovery actions are performed on failed scmds on the to do list,
eh_work_q. If a recovery action succeeds for a scmd, recovered
scmds are removed from eh_work_q.
Note that single recovery action on a scmd can recover multiple
scmds. e.g. resetting a device recovers all failed scmds on the
device.
- Higher severity actions are taken iff eh_work_q is not empty after
lower severity actions are complete.
- EH reuses failed scmds to issue commands for recovery. For
timed-out scmds, SCSI EH ensures that LLDD forgets about a scmd
before reusing it for EH commands.
When a scmd is recovered, the scmd is moved from eh_work_q to EH
local eh_done_q using scsi_eh_finish_cmd(). After all scmds are
recovered (eh_work_q is empty), scsi_eh_flush_done_q() is invoked to
either retry or error-finish (notify upper layer of failure) recovered
scmds.
scmds are retried iff its sdev is still online (not offlined during
EH), REQ_FAILFAST is not set and ++scmd->retries is less than
scmd->allowed.
[2-1-2] Flow of scmds through EH
1. Error completion / time out
ACTION: scsi_eh_scmd_add() is invoked for scmd
- set scmd->eh_eflags
- add scmd to shost->eh_cmd_q
- set SHOST_RECOVERY
- shost->host_failed++
LOCKING: shost->host_lock
2. EH starts
ACTION: move all scmds to EH's local eh_work_q. shost->eh_cmd_q
is cleared.
LOCKING: shost->host_lock (not strictly necessary, just for
consistency)
3. scmd recovered
ACTION: scsi_eh_finish_cmd() is invoked to EH-finish scmd
- shost->host_failed--
- clear scmd->eh_eflags
- scsi_setup_cmd_retry()
- move from local eh_work_q to local eh_done_q
LOCKING: none
4. EH completes
ACTION: scsi_eh_flush_done_q() retries scmds or notifies upper
layer of failure.
- scmd is removed from eh_done_q and scmd->eh_entry is cleared
- if retry is necessary, scmd is requeued using
scsi_queue_insert()
- otherwise, scsi_finish_command() is invoked for scmd
LOCKING: queue or finish function performs appropriate locking
[2-1-3] Flow of control
EH through fine-grained callbacks start from scsi_unjam_host().
<<scsi_unjam_host>>
1. Lock shost->host_lock, splice_init shost->eh_cmd_q into local
eh_work_q and unlock host_lock. Note that shost->eh_cmd_q is
cleared by this action.
2. Invoke scsi_eh_get_sense.
<<scsi_eh_get_sense>>
This action is taken for each error-completed
(!SCSI_EH_CANCEL_CMD) commands without valid sense data. Most
SCSI transports/LLDDs automatically acquire sense data on
command failures (autosense). Autosense is recommended for
performance reasons and as sense information could get out of
sync inbetween occurrence of CHECK CONDITION and this action.
Note that if autosense is not supported, scmd->sense_buffer
contains invalid sense data when error-completing the scmd
with scsi_done(). scsi_decide_disposition() always returns
FAILED in such cases thus invoking SCSI EH. When the scmd
reaches here, sense data is acquired and
scsi_decide_disposition() is called again.
1. Invoke scsi_request_sense() which issues REQUEST_SENSE
command. If fails, no action. Note that taking no action
causes higher-severity recovery to be taken for the scmd.
2. Invoke scsi_decide_disposition() on the scmd
- SUCCESS
scmd->retries is set to scmd->allowed preventing
scsi_eh_flush_done_q() from retrying the scmd and
scsi_eh_finish_cmd() is invoked.
- NEEDS_RETRY
scsi_eh_finish_cmd() invoked
- otherwise
No action.
3. If !list_empty(&eh_work_q), invoke scsi_eh_abort_cmds().
<<scsi_eh_abort_cmds>>
This action is taken for each timed out command.
hostt->eh_abort_handler() is invoked for each scmd. The
handler returns SUCCESS if it has succeeded to make LLDD and
all related hardware forget about the scmd.
If a timedout scmd is successfully aborted and the sdev is
either offline or ready, scsi_eh_finish_cmd() is invoked for
the scmd. Otherwise, the scmd is left in eh_work_q for
higher-severity actions.
Note that both offline and ready status mean that the sdev is
ready to process new scmds, where processing also implies
immediate failing; thus, if a sdev is in one of the two
states, no further recovery action is needed.
Device readiness is tested using scsi_eh_tur() which issues
TEST_UNIT_READY command. Note that the scmd must have been
aborted successfully before reusing it for TEST_UNIT_READY.
4. If !list_empty(&eh_work_q), invoke scsi_eh_ready_devs()
<<scsi_eh_ready_devs>>
This function takes four increasingly more severe measures to
make failed sdevs ready for new commands.
1. Invoke scsi_eh_stu()
<<scsi_eh_stu>>
For each sdev which has failed scmds with valid sense data
of which scsi_check_sense()'s verdict is FAILED,
START_STOP_UNIT command is issued w/ start=1. Note that
as we explicitly choose error-completed scmds, it is known
that lower layers have forgotten about the scmd and we can
reuse it for STU.
If STU succeeds and the sdev is either offline or ready,
all failed scmds on the sdev are EH-finished with
scsi_eh_finish_cmd().
*NOTE* If hostt->eh_abort_handler() isn't implemented or
failed, we may still have timed out scmds at this point
and STU doesn't make lower layers forget about those
scmds. Yet, this function EH-finish all scmds on the sdev
if STU succeeds leaving lower layers in an inconsistent
state. It seems that STU action should be taken only when
a sdev has no timed out scmd.
2. If !list_empty(&eh_work_q), invoke scsi_eh_bus_device_reset().
<<scsi_eh_bus_device_reset>>
This action is very similar to scsi_eh_stu() except that,
instead of issuing STU, hostt->eh_device_reset_handler()
is used. Also, as we're not issuing SCSI commands and
resetting clears all scmds on the sdev, there is no need
to choose error-completed scmds.
3. If !list_empty(&eh_work_q), invoke scsi_eh_bus_reset()
<<scsi_eh_bus_reset>>
hostt->eh_bus_reset_handler() is invoked for each channel
with failed scmds. If bus reset succeeds, all failed
scmds on all ready or offline sdevs on the channel are
EH-finished.
4. If !list_empty(&eh_work_q), invoke scsi_eh_host_reset()
<<scsi_eh_host_reset>>
This is the last resort. hostt->eh_host_reset_handler()
is invoked. If host reset succeeds, all failed scmds on
all ready or offline sdevs on the host are EH-finished.
5. If !list_empty(&eh_work_q), invoke scsi_eh_offline_sdevs()
<<scsi_eh_offline_sdevs>>
Take all sdevs which still have unrecovered scmds offline
and EH-finish the scmds.
5. Invoke scsi_eh_flush_done_q().
<<scsi_eh_flush_done_q>>
At this point all scmds are recovered (or given up) and
put on eh_done_q by scsi_eh_finish_cmd(). This function
flushes eh_done_q by either retrying or notifying upper
layer of failure of the scmds.
[2-2] EH through hostt->eh_strategy_handler()
hostt->eh_strategy_handler() is invoked in the place of
scsi_unjam_host() and it is responsible for whole recovery process.
On completion, the handler should have made lower layers forget about
all failed scmds and either ready for new commands or offline. Also,
it should perform SCSI EH maintenance choirs to maintain integrity of
SCSI midlayer. IOW, of the steps described in [2-1-2], all steps
except for #1 must be implemented by eh_strategy_handler().
[2-2-1] Pre hostt->eh_strategy_handler() SCSI midlayer conditions
The following conditions are true on entry to the handler.
- Each failed scmd's eh_flags field is set appropriately.
- Each failed scmd is linked on scmd->eh_cmd_q by scmd->eh_entry.
- SHOST_RECOVERY is set.
- shost->host_failed == shost->host_busy
[2-2-2] Post hostt->eh_strategy_handler() SCSI midlayer conditions
The following conditions must be true on exit from the handler.
- shost->host_failed is zero.
- Each scmd's eh_eflags field is cleared.
- Each scmd is in such a state that scsi_setup_cmd_retry() on the
scmd doesn't make any difference.
- shost->eh_cmd_q is cleared.
- Each scmd->eh_entry is cleared.
- Either scsi_queue_insert() or scsi_finish_command() is called on
each scmd. Note that the handler is free to use scmd->retries and
->allowed to limit the number of retries.
[2-2-3] Things to consider
- Know that timed out scmds are still active on lower layers. Make
lower layers forget about them before doing anything else with
those scmds.
- For consistency, when accessing/modifying shost data structure,
grab shost->host_lock.
- On completion, each failed sdev must have forgotten about all
active scmds.
- On completion, each failed sdev must be ready for new commands or
offline.
--
Tejun Heo
htejun@gmail.com
11th September 2005

View File

@ -123,6 +123,7 @@ static int verify_command(struct file *file, unsigned char *cmd)
safe_for_read(READ_12),
safe_for_read(READ_16),
safe_for_read(READ_BUFFER),
safe_for_read(READ_DEFECT_DATA),
safe_for_read(READ_LONG),
safe_for_read(INQUIRY),
safe_for_read(MODE_SENSE),

View File

@ -790,7 +790,7 @@ static void sbp2_host_reset(struct hpsb_host *host)
static int sbp2_start_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct scsi_device *sdev;
int error;
SBP2_DEBUG("sbp2_start_device");
@ -939,10 +939,10 @@ alloc_fail:
sbp2_max_speed_and_size(scsi_id);
/* Add this device to the scsi layer now */
sdev = scsi_add_device(scsi_id->scsi_host, 0, scsi_id->ud->id, 0);
if (IS_ERR(sdev)) {
error = scsi_add_device(scsi_id->scsi_host, 0, scsi_id->ud->id, 0);
if (error) {
SBP2_ERR("scsi_add_device failed");
return PTR_ERR(sdev);
return error;
}
return 0;

View File

@ -59,6 +59,7 @@
Fix 'handled=1' ISR usage, remove bogus IRQ check.
Remove un-needed eh_abort handler.
Add support for embedded firmware error strings.
2.26.02.003 - Correctly handle single sgl's with use_sg=1.
*/
#include <linux/module.h>
@ -81,7 +82,7 @@
#include "3w-9xxx.h"
/* Globals */
#define TW_DRIVER_VERSION "2.26.02.002"
#define TW_DRIVER_VERSION "2.26.02.003"
static TW_Device_Extension *twa_device_extension_list[TW_MAX_SLOT];
static unsigned int twa_device_extension_count;
static int twa_major = -1;
@ -1805,6 +1806,8 @@ static int twa_scsiop_execute_scsi(TW_Device_Extension *tw_dev, int request_id,
if (tw_dev->srb[request_id]->request_bufflen < TW_MIN_SGL_LENGTH) {
command_packet->sg_list[0].address = tw_dev->generic_buffer_phys[request_id];
command_packet->sg_list[0].length = TW_MIN_SGL_LENGTH;
if (tw_dev->srb[request_id]->sc_data_direction == DMA_TO_DEVICE || tw_dev->srb[request_id]->sc_data_direction == DMA_BIDIRECTIONAL)
memcpy(tw_dev->generic_buffer_virt[request_id], tw_dev->srb[request_id]->request_buffer, tw_dev->srb[request_id]->request_bufflen);
} else {
buffaddr = twa_map_scsi_single_data(tw_dev, request_id);
if (buffaddr == 0)
@ -1823,6 +1826,12 @@ static int twa_scsiop_execute_scsi(TW_Device_Extension *tw_dev, int request_id,
if (tw_dev->srb[request_id]->use_sg > 0) {
if ((tw_dev->srb[request_id]->use_sg == 1) && (tw_dev->srb[request_id]->request_bufflen < TW_MIN_SGL_LENGTH)) {
if (tw_dev->srb[request_id]->sc_data_direction == DMA_TO_DEVICE || tw_dev->srb[request_id]->sc_data_direction == DMA_BIDIRECTIONAL) {
struct scatterlist *sg = (struct scatterlist *)tw_dev->srb[request_id]->request_buffer;
char *buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
memcpy(tw_dev->generic_buffer_virt[request_id], buf, sg->length);
kunmap_atomic(buf - sg->offset, KM_IRQ0);
}
command_packet->sg_list[0].address = tw_dev->generic_buffer_phys[request_id];
command_packet->sg_list[0].length = TW_MIN_SGL_LENGTH;
} else {
@ -1888,11 +1897,20 @@ out:
/* This function completes an execute scsi operation */
static void twa_scsiop_execute_scsi_complete(TW_Device_Extension *tw_dev, int request_id)
{
/* Copy the response if too small */
if ((tw_dev->srb[request_id]->request_buffer) && (tw_dev->srb[request_id]->request_bufflen < TW_MIN_SGL_LENGTH)) {
memcpy(tw_dev->srb[request_id]->request_buffer,
tw_dev->generic_buffer_virt[request_id],
tw_dev->srb[request_id]->request_bufflen);
if (tw_dev->srb[request_id]->request_bufflen < TW_MIN_SGL_LENGTH &&
(tw_dev->srb[request_id]->sc_data_direction == DMA_FROM_DEVICE ||
tw_dev->srb[request_id]->sc_data_direction == DMA_BIDIRECTIONAL)) {
if (tw_dev->srb[request_id]->use_sg == 0) {
memcpy(tw_dev->srb[request_id]->request_buffer,
tw_dev->generic_buffer_virt[request_id],
tw_dev->srb[request_id]->request_bufflen);
}
if (tw_dev->srb[request_id]->use_sg == 1) {
struct scatterlist *sg = (struct scatterlist *)tw_dev->srb[request_id]->request_buffer;
char *buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
memcpy(buf, tw_dev->generic_buffer_virt[request_id], sg->length);
kunmap_atomic(buf - sg->offset, KM_IRQ0);
}
}
} /* End twa_scsiop_execute_scsi_complete() */

View File

@ -235,6 +235,13 @@ config SCSI_ISCSI_ATTRS
each attached iSCSI device to sysfs, say Y.
Otherwise, say N.
config SCSI_SAS_ATTRS
tristate "SAS Transport Attributes"
depends on SCSI
help
If you wish to export transport-specific information about
each attached SAS device to sysfs, say Y.
endmenu
menu "SCSI low-level drivers"

View File

@ -31,6 +31,7 @@ obj-$(CONFIG_RAID_ATTRS) += raid_class.o
obj-$(CONFIG_SCSI_SPI_ATTRS) += scsi_transport_spi.o
obj-$(CONFIG_SCSI_FC_ATTRS) += scsi_transport_fc.o
obj-$(CONFIG_SCSI_ISCSI_ATTRS) += scsi_transport_iscsi.o
obj-$(CONFIG_SCSI_SAS_ATTRS) += scsi_transport_sas.o
obj-$(CONFIG_SCSI_AMIGA7XX) += amiga7xx.o 53c7xx.o
obj-$(CONFIG_A3000_SCSI) += a3000.o wd33c93.o

View File

@ -966,21 +966,21 @@ static void
lpfc_get_host_fabric_name (struct Scsi_Host *shost)
{
struct lpfc_hba *phba = (struct lpfc_hba*)shost->hostdata[0];
u64 nodename;
u64 node_name;
spin_lock_irq(shost->host_lock);
if ((phba->fc_flag & FC_FABRIC) ||
((phba->fc_topology == TOPOLOGY_LOOP) &&
(phba->fc_flag & FC_PUBLIC_LOOP)))
memcpy(&nodename, &phba->fc_fabparam.nodeName, sizeof(u64));
node_name = wwn_to_u64(phba->fc_fabparam.nodeName.wwn);
else
/* fabric is local port if there is no F/FL_Port */
memcpy(&nodename, &phba->fc_nodename, sizeof(u64));
node_name = wwn_to_u64(phba->fc_nodename.wwn);
spin_unlock_irq(shost->host_lock);
fc_host_fabric_name(shost) = be64_to_cpu(nodename);
fc_host_fabric_name(shost) = node_name;
}
@ -1103,21 +1103,20 @@ lpfc_get_starget_node_name(struct scsi_target *starget)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct lpfc_hba *phba = (struct lpfc_hba *) shost->hostdata[0];
uint64_t node_name = 0;
u64 node_name = 0;
struct lpfc_nodelist *ndlp = NULL;
spin_lock_irq(shost->host_lock);
/* Search the mapped list for this target ID */
list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
if (starget->id == ndlp->nlp_sid) {
memcpy(&node_name, &ndlp->nlp_nodename,
sizeof(struct lpfc_name));
node_name = wwn_to_u64(ndlp->nlp_nodename.wwn);
break;
}
}
spin_unlock_irq(shost->host_lock);
fc_starget_node_name(starget) = be64_to_cpu(node_name);
fc_starget_node_name(starget) = node_name;
}
static void
@ -1125,21 +1124,20 @@ lpfc_get_starget_port_name(struct scsi_target *starget)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct lpfc_hba *phba = (struct lpfc_hba *) shost->hostdata[0];
uint64_t port_name = 0;
u64 port_name = 0;
struct lpfc_nodelist *ndlp = NULL;
spin_lock_irq(shost->host_lock);
/* Search the mapped list for this target ID */
list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
if (starget->id == ndlp->nlp_sid) {
memcpy(&port_name, &ndlp->nlp_portname,
sizeof(struct lpfc_name));
port_name = wwn_to_u64(ndlp->nlp_portname.wwn);
break;
}
}
spin_unlock_irq(shost->host_lock);
fc_starget_port_name(starget) = be64_to_cpu(port_name);
fc_starget_port_name(starget) = port_name;
}
static void

View File

@ -1017,13 +1017,10 @@ lpfc_register_remote_port(struct lpfc_hba * phba,
struct fc_rport *rport;
struct lpfc_rport_data *rdata;
struct fc_rport_identifiers rport_ids;
uint64_t wwn;
/* Remote port has reappeared. Re-register w/ FC transport */
memcpy(&wwn, &ndlp->nlp_nodename, sizeof(uint64_t));
rport_ids.node_name = be64_to_cpu(wwn);
memcpy(&wwn, &ndlp->nlp_portname, sizeof(uint64_t));
rport_ids.port_name = be64_to_cpu(wwn);
rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.wwn);
rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.wwn);
rport_ids.port_id = ndlp->nlp_DID;
rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;
if (ndlp->nlp_type & NLP_FCP_TARGET)

View File

@ -262,12 +262,14 @@ struct lpfc_sli_ct_request {
#define FF_FRAME_SIZE 2048
struct lpfc_name {
union {
struct {
#ifdef __BIG_ENDIAN_BITFIELD
uint8_t nameType:4; /* FC Word 0, bit 28:31 */
uint8_t IEEEextMsn:4; /* FC Word 0, bit 24:27, bit 8:11 of IEEE ext */
uint8_t nameType:4; /* FC Word 0, bit 28:31 */
uint8_t IEEEextMsn:4; /* FC Word 0, bit 24:27, bit 8:11 of IEEE ext */
#else /* __LITTLE_ENDIAN_BITFIELD */
uint8_t IEEEextMsn:4; /* FC Word 0, bit 24:27, bit 8:11 of IEEE ext */
uint8_t nameType:4; /* FC Word 0, bit 28:31 */
uint8_t IEEEextMsn:4; /* FC Word 0, bit 24:27, bit 8:11 of IEEE ext */
uint8_t nameType:4; /* FC Word 0, bit 28:31 */
#endif
#define NAME_IEEE 0x1 /* IEEE name - nameType */
@ -276,8 +278,11 @@ struct lpfc_name {
#define NAME_IP_TYPE 0x4 /* IP address */
#define NAME_CCITT_TYPE 0xC
#define NAME_CCITT_GR_TYPE 0xE
uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */
uint8_t IEEE[6]; /* FC IEEE address */
uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */
uint8_t IEEE[6]; /* FC IEEE address */
};
uint8_t wwn[8];
};
};
struct csp {

View File

@ -1333,7 +1333,6 @@ lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
unsigned long bar0map_len, bar2map_len;
int error = -ENODEV, retval;
int i;
u64 wwname;
if (pci_enable_device(pdev))
goto out;
@ -1524,10 +1523,8 @@ lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
* Must done after lpfc_sli_hba_setup()
*/
memcpy(&wwname, &phba->fc_nodename, sizeof(u64));
fc_host_node_name(host) = be64_to_cpu(wwname);
memcpy(&wwname, &phba->fc_portname, sizeof(u64));
fc_host_port_name(host) = be64_to_cpu(wwname);
fc_host_node_name(host) = wwn_to_u64(phba->fc_nodename.wwn);
fc_host_port_name(host) = wwn_to_u64(phba->fc_portname.wwn);
fc_host_supported_classes(host) = FC_COS_CLASS3;
memset(fc_host_supported_fc4s(host), 0,

View File

@ -360,16 +360,16 @@ qla2x00_get_starget_node_name(struct scsi_target *starget)
struct Scsi_Host *host = dev_to_shost(starget->dev.parent);
scsi_qla_host_t *ha = to_qla_host(host);
fc_port_t *fcport;
uint64_t node_name = 0;
u64 node_name = 0;
list_for_each_entry(fcport, &ha->fcports, list) {
if (starget->id == fcport->os_target_id) {
node_name = *(uint64_t *)fcport->node_name;
node_name = wwn_to_u64(fcport->node_name);
break;
}
}
fc_starget_node_name(starget) = be64_to_cpu(node_name);
fc_starget_node_name(starget) = node_name;
}
static void
@ -378,16 +378,16 @@ qla2x00_get_starget_port_name(struct scsi_target *starget)
struct Scsi_Host *host = dev_to_shost(starget->dev.parent);
scsi_qla_host_t *ha = to_qla_host(host);
fc_port_t *fcport;
uint64_t port_name = 0;
u64 port_name = 0;
list_for_each_entry(fcport, &ha->fcports, list) {
if (starget->id == fcport->os_target_id) {
port_name = *(uint64_t *)fcport->port_name;
port_name = wwn_to_u64(fcport->port_name);
break;
}
}
fc_starget_port_name(starget) = be64_to_cpu(port_name);
fc_starget_port_name(starget) = port_name;
}
static void
@ -460,9 +460,7 @@ struct fc_function_template qla2xxx_transport_functions = {
void
qla2x00_init_host_attr(scsi_qla_host_t *ha)
{
fc_host_node_name(ha->host) =
be64_to_cpu(*(uint64_t *)ha->init_cb->node_name);
fc_host_port_name(ha->host) =
be64_to_cpu(*(uint64_t *)ha->init_cb->port_name);
fc_host_node_name(ha->host) = wwn_to_u64(ha->init_cb->node_name);
fc_host_port_name(ha->host) = wwn_to_u64(ha->init_cb->port_name);
fc_host_supported_classes(ha->host) = FC_COS_CLASS3;
}

View File

@ -2066,8 +2066,8 @@ qla2x00_reg_remote_port(scsi_qla_host_t *ha, fc_port_t *fcport)
return;
}
rport_ids.node_name = be64_to_cpu(*(uint64_t *)fcport->node_name);
rport_ids.port_name = be64_to_cpu(*(uint64_t *)fcport->port_name);
rport_ids.node_name = wwn_to_u64(fcport->node_name);
rport_ids.port_name = wwn_to_u64(fcport->port_name);
rport_ids.port_id = fcport->d_id.b.domain << 16 |
fcport->d_id.b.area << 8 | fcport->d_id.b.al_pa;
rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;

View File

@ -97,6 +97,30 @@ int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
}
static void scsi_run_queue(struct request_queue *q);
static void scsi_release_buffers(struct scsi_cmnd *cmd);
/*
* Function: scsi_unprep_request()
*
* Purpose: Remove all preparation done for a request, including its
* associated scsi_cmnd, so that it can be requeued.
*
* Arguments: req - request to unprepare
*
* Lock status: Assumed that no locks are held upon entry.
*
* Returns: Nothing.
*/
static void scsi_unprep_request(struct request *req)
{
struct scsi_cmnd *cmd = req->special;
req->flags &= ~REQ_DONTPREP;
req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
scsi_release_buffers(cmd);
scsi_put_command(cmd);
}
/*
* Function: scsi_queue_insert()
@ -116,12 +140,14 @@ static void scsi_run_queue(struct request_queue *q);
* commands.
* Notes: This could be called either from an interrupt context or a
* normal process context.
* Notes: Upon return, cmd is a stale pointer.
*/
int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
{
struct Scsi_Host *host = cmd->device->host;
struct scsi_device *device = cmd->device;
struct request_queue *q = device->request_queue;
struct request *req = cmd->request;
unsigned long flags;
SCSI_LOG_MLQUEUE(1,
@ -162,8 +188,9 @@ int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
* function. The SCSI request function detects the blocked condition
* and plugs the queue appropriately.
*/
scsi_unprep_request(req);
spin_lock_irqsave(q->queue_lock, flags);
blk_requeue_request(q, cmd->request);
blk_requeue_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
@ -339,7 +366,7 @@ int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
int result;
if (sshdr) {
sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
if (!sense)
return DRIVER_ERROR << 24;
memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
@ -552,15 +579,16 @@ static void scsi_run_queue(struct request_queue *q)
* I/O errors in the middle of the request, in which case
* we need to request the blocks that come after the bad
* sector.
* Notes: Upon return, cmd is a stale pointer.
*/
static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
{
struct request *req = cmd->request;
unsigned long flags;
cmd->request->flags &= ~REQ_DONTPREP;
scsi_unprep_request(req);
spin_lock_irqsave(q->queue_lock, flags);
blk_requeue_request(q, cmd->request);
blk_requeue_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
@ -595,13 +623,14 @@ void scsi_run_host_queues(struct Scsi_Host *shost)
*
* Lock status: Assumed that lock is not held upon entry.
*
* Returns: cmd if requeue done or required, NULL otherwise
* Returns: cmd if requeue required, NULL otherwise.
*
* Notes: This is called for block device requests in order to
* mark some number of sectors as complete.
*
* We are guaranteeing that the request queue will be goosed
* at some point during this call.
* Notes: If cmd was requeued, upon return it will be a stale pointer.
*/
static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
int bytes, int requeue)
@ -624,14 +653,15 @@ static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
if (!uptodate && blk_noretry_request(req))
end_that_request_chunk(req, 0, leftover);
else {
if (requeue)
if (requeue) {
/*
* Bleah. Leftovers again. Stick the
* leftovers in the front of the
* queue, and goose the queue again.
*/
scsi_requeue_command(q, cmd);
cmd = NULL;
}
return cmd;
}
}
@ -857,15 +887,13 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
* requeueing right here - we will requeue down below
* when we handle the bad sectors.
*/
cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
/*
* If the command completed without error, then either finish off the
* rest of the command, or start a new one.
* If the command completed without error, then either
* finish off the rest of the command, or start a new one.
*/
if (result == 0 || cmd == NULL ) {
if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
return;
}
}
/*
* Now, if we were good little boys and girls, Santa left us a request
@ -880,7 +908,7 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
* and quietly refuse further access.
*/
cmd->device->changed = 1;
cmd = scsi_end_request(cmd, 0,
scsi_end_request(cmd, 0,
this_count, 1);
return;
} else {
@ -914,7 +942,7 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
scsi_requeue_command(q, cmd);
result = 0;
} else {
cmd = scsi_end_request(cmd, 0, this_count, 1);
scsi_end_request(cmd, 0, this_count, 1);
return;
}
break;
@ -931,7 +959,7 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
dev_printk(KERN_INFO,
&cmd->device->sdev_gendev,
"Device not ready.\n");
cmd = scsi_end_request(cmd, 0, this_count, 1);
scsi_end_request(cmd, 0, this_count, 1);
return;
case VOLUME_OVERFLOW:
if (!(req->flags & REQ_QUIET)) {
@ -941,7 +969,7 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
__scsi_print_command(cmd->data_cmnd);
scsi_print_sense("", cmd);
}
cmd = scsi_end_request(cmd, 0, block_bytes, 1);
scsi_end_request(cmd, 0, block_bytes, 1);
return;
default:
break;
@ -972,7 +1000,7 @@ void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
block_bytes = req->hard_cur_sectors << 9;
if (!block_bytes)
block_bytes = req->data_len;
cmd = scsi_end_request(cmd, 0, block_bytes, 1);
scsi_end_request(cmd, 0, block_bytes, 1);
}
}
EXPORT_SYMBOL(scsi_io_completion);
@ -1118,7 +1146,7 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
if (unlikely(!scsi_device_online(sdev))) {
printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
sdev->host->host_no, sdev->id, sdev->lun);
return BLKPREP_KILL;
goto kill;
}
if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
/* OK, we're not in a running state don't prep
@ -1128,7 +1156,7 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
* at all allowed down */
printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
sdev->host->host_no, sdev->id, sdev->lun);
return BLKPREP_KILL;
goto kill;
}
/* OK, we only allow special commands (i.e. not
* user initiated ones */
@ -1160,11 +1188,11 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
if(specials_only == SDEV_QUIESCE ||
specials_only == SDEV_BLOCK)
return BLKPREP_DEFER;
goto defer;
printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
sdev->host->host_no, sdev->id, sdev->lun);
return BLKPREP_KILL;
goto kill;
}
@ -1182,7 +1210,7 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
cmd->tag = req->tag;
} else {
blk_dump_rq_flags(req, "SCSI bad req");
return BLKPREP_KILL;
goto kill;
}
/* note the overloading of req->special. When the tag
@ -1220,8 +1248,13 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
* required).
*/
ret = scsi_init_io(cmd);
if (ret) /* BLKPREP_KILL return also releases the command */
return ret;
switch(ret) {
case BLKPREP_KILL:
/* BLKPREP_KILL return also releases the command */
goto kill;
case BLKPREP_DEFER:
goto defer;
}
/*
* Initialize the actual SCSI command for this request.
@ -1231,7 +1264,7 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
if (unlikely(!drv->init_command(cmd))) {
scsi_release_buffers(cmd);
scsi_put_command(cmd);
return BLKPREP_KILL;
goto kill;
}
} else {
memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
@ -1262,6 +1295,9 @@ static int scsi_prep_fn(struct request_queue *q, struct request *req)
if (sdev->device_busy == 0)
blk_plug_device(q);
return BLKPREP_DEFER;
kill:
req->errors = DID_NO_CONNECT << 16;
return BLKPREP_KILL;
}
/*
@ -1336,19 +1372,24 @@ static inline int scsi_host_queue_ready(struct request_queue *q,
}
/*
* Kill requests for a dead device
* Kill a request for a dead device
*/
static void scsi_kill_requests(request_queue_t *q)
static void scsi_kill_request(struct request *req, request_queue_t *q)
{
struct request *req;
struct scsi_cmnd *cmd = req->special;
while ((req = elv_next_request(q)) != NULL) {
blkdev_dequeue_request(req);
req->flags |= REQ_QUIET;
while (end_that_request_first(req, 0, req->nr_sectors))
;
end_that_request_last(req);
blkdev_dequeue_request(req);
if (unlikely(cmd == NULL)) {
printk(KERN_CRIT "impossible request in %s.\n",
__FUNCTION__);
BUG();
}
scsi_init_cmd_errh(cmd);
cmd->result = DID_NO_CONNECT << 16;
atomic_inc(&cmd->device->iorequest_cnt);
__scsi_done(cmd);
}
/*
@ -1371,7 +1412,8 @@ static void scsi_request_fn(struct request_queue *q)
if (!sdev) {
printk("scsi: killing requests for dead queue\n");
scsi_kill_requests(q);
while ((req = elv_next_request(q)) != NULL)
scsi_kill_request(req, q);
return;
}
@ -1398,11 +1440,7 @@ static void scsi_request_fn(struct request_queue *q)
if (unlikely(!scsi_device_online(sdev))) {
printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
sdev->host->host_no, sdev->id, sdev->lun);
blkdev_dequeue_request(req);
req->flags |= REQ_QUIET;
while (end_that_request_first(req, 0, req->nr_sectors))
;
end_that_request_last(req);
scsi_kill_request(req, q);
continue;
}
@ -1415,6 +1453,14 @@ static void scsi_request_fn(struct request_queue *q)
sdev->device_busy++;
spin_unlock(q->queue_lock);
cmd = req->special;
if (unlikely(cmd == NULL)) {
printk(KERN_CRIT "impossible request in %s.\n"
"please mail a stack trace to "
"linux-scsi@vger.kernel.org",
__FUNCTION__);
BUG();
}
spin_lock(shost->host_lock);
if (!scsi_host_queue_ready(q, shost, sdev))
@ -1433,15 +1479,6 @@ static void scsi_request_fn(struct request_queue *q)
*/
spin_unlock_irq(shost->host_lock);
cmd = req->special;
if (unlikely(cmd == NULL)) {
printk(KERN_CRIT "impossible request in %s.\n"
"please mail a stack trace to "
"linux-scsi@vger.kernel.org",
__FUNCTION__);
BUG();
}
/*
* Finally, initialize any error handling parameters, and set up
* the timers for timeouts.
@ -1477,6 +1514,7 @@ static void scsi_request_fn(struct request_queue *q)
* cases (host limits or settings) should run the queue at some
* later time.
*/
scsi_unprep_request(req);
spin_lock_irq(q->queue_lock);
blk_requeue_request(q, req);
sdev->device_busy--;

View File

@ -124,6 +124,7 @@ extern void scsi_sysfs_unregister(void);
extern void scsi_sysfs_device_initialize(struct scsi_device *);
extern int scsi_sysfs_target_initialize(struct scsi_device *);
extern struct scsi_transport_template blank_transport_template;
extern void __scsi_remove_device(struct scsi_device *);
extern struct bus_type scsi_bus_type;

View File

@ -870,8 +870,12 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
out_free_sdev:
if (res == SCSI_SCAN_LUN_PRESENT) {
if (sdevp) {
scsi_device_get(sdev);
*sdevp = sdev;
if (scsi_device_get(sdev) == 0) {
*sdevp = sdev;
} else {
__scsi_remove_device(sdev);
res = SCSI_SCAN_NO_RESPONSE;
}
}
} else {
if (sdev->host->hostt->slave_destroy)
@ -1260,6 +1264,19 @@ struct scsi_device *__scsi_add_device(struct Scsi_Host *shost, uint channel,
}
EXPORT_SYMBOL(__scsi_add_device);
int scsi_add_device(struct Scsi_Host *host, uint channel,
uint target, uint lun)
{
struct scsi_device *sdev =
__scsi_add_device(host, channel, target, lun, NULL);
if (IS_ERR(sdev))
return PTR_ERR(sdev);
scsi_device_put(sdev);
return 0;
}
EXPORT_SYMBOL(scsi_add_device);
void scsi_rescan_device(struct device *dev)
{
struct scsi_driver *drv;
@ -1276,27 +1293,8 @@ void scsi_rescan_device(struct device *dev)
}
EXPORT_SYMBOL(scsi_rescan_device);
/**
* scsi_scan_target - scan a target id, possibly including all LUNs on the
* target.
* @sdevsca: Scsi_Device handle for scanning
* @shost: host to scan
* @channel: channel to scan
* @id: target id to scan
*
* Description:
* Scan the target id on @shost, @channel, and @id. Scan at least LUN
* 0, and possibly all LUNs on the target id.
*
* Use the pre-allocated @sdevscan as a handle for the scanning. This
* function sets sdevscan->host, sdevscan->id and sdevscan->lun; the
* scanning functions modify sdevscan->lun.
*
* First try a REPORT LUN scan, if that does not scan the target, do a
* sequential scan of LUNs on the target id.
**/
void scsi_scan_target(struct device *parent, unsigned int channel,
unsigned int id, unsigned int lun, int rescan)
static void __scsi_scan_target(struct device *parent, unsigned int channel,
unsigned int id, unsigned int lun, int rescan)
{
struct Scsi_Host *shost = dev_to_shost(parent);
int bflags = 0;
@ -1310,9 +1308,7 @@ void scsi_scan_target(struct device *parent, unsigned int channel,
*/
return;
starget = scsi_alloc_target(parent, channel, id);
if (!starget)
return;
@ -1358,6 +1354,33 @@ void scsi_scan_target(struct device *parent, unsigned int channel,
put_device(&starget->dev);
}
/**
* scsi_scan_target - scan a target id, possibly including all LUNs on the
* target.
* @parent: host to scan
* @channel: channel to scan
* @id: target id to scan
* @lun: Specific LUN to scan or SCAN_WILD_CARD
* @rescan: passed to LUN scanning routines
*
* Description:
* Scan the target id on @parent, @channel, and @id. Scan at least LUN 0,
* and possibly all LUNs on the target id.
*
* First try a REPORT LUN scan, if that does not scan the target, do a
* sequential scan of LUNs on the target id.
**/
void scsi_scan_target(struct device *parent, unsigned int channel,
unsigned int id, unsigned int lun, int rescan)
{
struct Scsi_Host *shost = dev_to_shost(parent);
down(&shost->scan_mutex);
if (scsi_host_scan_allowed(shost))
__scsi_scan_target(parent, channel, id, lun, rescan);
up(&shost->scan_mutex);
}
EXPORT_SYMBOL(scsi_scan_target);
static void scsi_scan_channel(struct Scsi_Host *shost, unsigned int channel,
@ -1383,10 +1406,12 @@ static void scsi_scan_channel(struct Scsi_Host *shost, unsigned int channel,
order_id = shost->max_id - id - 1;
else
order_id = id;
scsi_scan_target(&shost->shost_gendev, channel, order_id, lun, rescan);
__scsi_scan_target(&shost->shost_gendev, channel,
order_id, lun, rescan);
}
else
scsi_scan_target(&shost->shost_gendev, channel, id, lun, rescan);
__scsi_scan_target(&shost->shost_gendev, channel,
id, lun, rescan);
}
int scsi_scan_host_selected(struct Scsi_Host *shost, unsigned int channel,
@ -1484,12 +1509,15 @@ void scsi_forget_host(struct Scsi_Host *shost)
*/
struct scsi_device *scsi_get_host_dev(struct Scsi_Host *shost)
{
struct scsi_device *sdev;
struct scsi_device *sdev = NULL;
struct scsi_target *starget;
down(&shost->scan_mutex);
if (!scsi_host_scan_allowed(shost))
goto out;
starget = scsi_alloc_target(&shost->shost_gendev, 0, shost->this_id);
if (!starget)
return NULL;
goto out;
sdev = scsi_alloc_sdev(starget, 0, NULL);
if (sdev) {
@ -1497,6 +1525,8 @@ struct scsi_device *scsi_get_host_dev(struct Scsi_Host *shost)
sdev->borken = 0;
}
put_device(&starget->dev);
out:
up(&shost->scan_mutex);
return sdev;
}
EXPORT_SYMBOL(scsi_get_host_dev);

View File

@ -653,7 +653,7 @@ int scsi_sysfs_add_sdev(struct scsi_device *sdev)
error = attr_add(&sdev->sdev_gendev,
sdev->host->hostt->sdev_attrs[i]);
if (error) {
scsi_remove_device(sdev);
__scsi_remove_device(sdev);
goto out;
}
}
@ -667,7 +667,7 @@ int scsi_sysfs_add_sdev(struct scsi_device *sdev)
scsi_sysfs_sdev_attrs[i]);
error = device_create_file(&sdev->sdev_gendev, attr);
if (error) {
scsi_remove_device(sdev);
__scsi_remove_device(sdev);
goto out;
}
}
@ -687,17 +687,10 @@ int scsi_sysfs_add_sdev(struct scsi_device *sdev)
return error;
}
/**
* scsi_remove_device - unregister a device from the scsi bus
* @sdev: scsi_device to unregister
**/
void scsi_remove_device(struct scsi_device *sdev)
void __scsi_remove_device(struct scsi_device *sdev)
{
struct Scsi_Host *shost = sdev->host;
down(&shost->scan_mutex);
if (scsi_device_set_state(sdev, SDEV_CANCEL) != 0)
goto out;
return;
class_device_unregister(&sdev->sdev_classdev);
device_del(&sdev->sdev_gendev);
@ -706,8 +699,17 @@ void scsi_remove_device(struct scsi_device *sdev)
sdev->host->hostt->slave_destroy(sdev);
transport_unregister_device(&sdev->sdev_gendev);
put_device(&sdev->sdev_gendev);
out:
up(&shost->scan_mutex);
}
/**
* scsi_remove_device - unregister a device from the scsi bus
* @sdev: scsi_device to unregister
**/
void scsi_remove_device(struct scsi_device *sdev)
{
down(&sdev->host->scan_mutex);
__scsi_remove_device(sdev);
up(&sdev->host->scan_mutex);
}
EXPORT_SYMBOL(scsi_remove_device);

View File

@ -0,0 +1,820 @@
/*
* Copyright (C) 2005 Dell Inc.
* Released under GPL v2.
*
* Serial Attached SCSI (SAS) transport class.
*
* The SAS transport class contains common code to deal with SAS HBAs,
* an aproximated representation of SAS topologies in the driver model,
* and various sysfs attributes to expose these topologies and managment
* interfaces to userspace.
*
* In addition to the basic SCSI core objects this transport class
* introduces two additional intermediate objects: The SAS PHY
* as represented by struct sas_phy defines an "outgoing" PHY on
* a SAS HBA or Expander, and the SAS remote PHY represented by
* struct sas_rphy defines an "incoming" PHY on a SAS Expander or
* end device. Note that this is purely a software concept, the
* underlying hardware for a PHY and a remote PHY is the exactly
* the same.
*
* There is no concept of a SAS port in this code, users can see
* what PHYs form a wide port based on the port_identifier attribute,
* which is the same for all PHYs in a port.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/err.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#define SAS_HOST_ATTRS 0
#define SAS_PORT_ATTRS 11
#define SAS_RPORT_ATTRS 5
struct sas_internal {
struct scsi_transport_template t;
struct sas_function_template *f;
struct class_device_attribute private_host_attrs[SAS_HOST_ATTRS];
struct class_device_attribute private_phy_attrs[SAS_PORT_ATTRS];
struct class_device_attribute private_rphy_attrs[SAS_RPORT_ATTRS];
struct transport_container phy_attr_cont;
struct transport_container rphy_attr_cont;
/*
* The array of null terminated pointers to attributes
* needed by scsi_sysfs.c
*/
struct class_device_attribute *host_attrs[SAS_HOST_ATTRS + 1];
struct class_device_attribute *phy_attrs[SAS_PORT_ATTRS + 1];
struct class_device_attribute *rphy_attrs[SAS_RPORT_ATTRS + 1];
};
#define to_sas_internal(tmpl) container_of(tmpl, struct sas_internal, t)
struct sas_host_attrs {
struct list_head rphy_list;
spinlock_t lock;
u32 next_target_id;
};
#define to_sas_host_attrs(host) ((struct sas_host_attrs *)(host)->shost_data)
/*
* Hack to allow attributes of the same name in different objects.
*/
#define SAS_CLASS_DEVICE_ATTR(_prefix,_name,_mode,_show,_store) \
struct class_device_attribute class_device_attr_##_prefix##_##_name = \
__ATTR(_name,_mode,_show,_store)
/*
* Pretty printing helpers
*/
#define sas_bitfield_name_match(title, table) \
static ssize_t \
get_sas_##title##_names(u32 table_key, char *buf) \
{ \
char *prefix = ""; \
ssize_t len = 0; \
int i; \
\
for (i = 0; i < sizeof(table)/sizeof(table[0]); i++) { \
if (table[i].value & table_key) { \
len += sprintf(buf + len, "%s%s", \
prefix, table[i].name); \
prefix = ", "; \
} \
} \
len += sprintf(buf + len, "\n"); \
return len; \
}
#define sas_bitfield_name_search(title, table) \
static ssize_t \
get_sas_##title##_names(u32 table_key, char *buf) \
{ \
ssize_t len = 0; \
int i; \
\
for (i = 0; i < sizeof(table)/sizeof(table[0]); i++) { \
if (table[i].value == table_key) { \
len += sprintf(buf + len, "%s", \
table[i].name); \
break; \
} \
} \
len += sprintf(buf + len, "\n"); \
return len; \
}
static struct {
u32 value;
char *name;
} sas_device_type_names[] = {
{ SAS_PHY_UNUSED, "unused" },
{ SAS_END_DEVICE, "end device" },
{ SAS_EDGE_EXPANDER_DEVICE, "edge expander" },
{ SAS_FANOUT_EXPANDER_DEVICE, "fanout expander" },
};
sas_bitfield_name_search(device_type, sas_device_type_names)
static struct {
u32 value;
char *name;
} sas_protocol_names[] = {
{ SAS_PROTOCOL_SATA, "sata" },
{ SAS_PROTOCOL_SMP, "smp" },
{ SAS_PROTOCOL_STP, "stp" },
{ SAS_PROTOCOL_SSP, "ssp" },
};
sas_bitfield_name_match(protocol, sas_protocol_names)
static struct {
u32 value;
char *name;
} sas_linkspeed_names[] = {
{ SAS_LINK_RATE_UNKNOWN, "Unknown" },
{ SAS_PHY_DISABLED, "Phy disabled" },
{ SAS_LINK_RATE_FAILED, "Link Rate failed" },
{ SAS_SATA_SPINUP_HOLD, "Spin-up hold" },
{ SAS_LINK_RATE_1_5_GBPS, "1.5 Gbit" },
{ SAS_LINK_RATE_3_0_GBPS, "3.0 Gbit" },
};
sas_bitfield_name_search(linkspeed, sas_linkspeed_names)
/*
* SAS host attributes
*/
static int sas_host_setup(struct transport_container *tc, struct device *dev,
struct class_device *cdev)
{
struct Scsi_Host *shost = dev_to_shost(dev);
struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
INIT_LIST_HEAD(&sas_host->rphy_list);
spin_lock_init(&sas_host->lock);
sas_host->next_target_id = 0;
return 0;
}
static DECLARE_TRANSPORT_CLASS(sas_host_class,
"sas_host", sas_host_setup, NULL, NULL);
static int sas_host_match(struct attribute_container *cont,
struct device *dev)
{
struct Scsi_Host *shost;
struct sas_internal *i;
if (!scsi_is_host_device(dev))
return 0;
shost = dev_to_shost(dev);
if (!shost->transportt)
return 0;
if (shost->transportt->host_attrs.ac.class !=
&sas_host_class.class)
return 0;
i = to_sas_internal(shost->transportt);
return &i->t.host_attrs.ac == cont;
}
static int do_sas_phy_delete(struct device *dev, void *data)
{
if (scsi_is_sas_phy(dev))
sas_phy_delete(dev_to_phy(dev));
return 0;
}
/**
* sas_remove_host -- tear down a Scsi_Host's SAS data structures
* @shost: Scsi Host that is torn down
*
* Removes all SAS PHYs and remote PHYs for a given Scsi_Host.
* Must be called just before scsi_remove_host for SAS HBAs.
*/
void sas_remove_host(struct Scsi_Host *shost)
{
device_for_each_child(&shost->shost_gendev, NULL, do_sas_phy_delete);
}
EXPORT_SYMBOL(sas_remove_host);
/*
* SAS Port attributes
*/
#define sas_phy_show_simple(field, name, format_string, cast) \
static ssize_t \
show_sas_phy_##name(struct class_device *cdev, char *buf) \
{ \
struct sas_phy *phy = transport_class_to_phy(cdev); \
\
return snprintf(buf, 20, format_string, cast phy->field); \
}
#define sas_phy_simple_attr(field, name, format_string, type) \
sas_phy_show_simple(field, name, format_string, (type)) \
static CLASS_DEVICE_ATTR(name, S_IRUGO, show_sas_phy_##name, NULL)
#define sas_phy_show_protocol(field, name) \
static ssize_t \
show_sas_phy_##name(struct class_device *cdev, char *buf) \
{ \
struct sas_phy *phy = transport_class_to_phy(cdev); \
\
if (!phy->field) \
return snprintf(buf, 20, "none\n"); \
return get_sas_protocol_names(phy->field, buf); \
}
#define sas_phy_protocol_attr(field, name) \
sas_phy_show_protocol(field, name) \
static CLASS_DEVICE_ATTR(name, S_IRUGO, show_sas_phy_##name, NULL)
#define sas_phy_show_linkspeed(field) \
static ssize_t \
show_sas_phy_##field(struct class_device *cdev, char *buf) \
{ \
struct sas_phy *phy = transport_class_to_phy(cdev); \
\
return get_sas_linkspeed_names(phy->field, buf); \
}
#define sas_phy_linkspeed_attr(field) \
sas_phy_show_linkspeed(field) \
static CLASS_DEVICE_ATTR(field, S_IRUGO, show_sas_phy_##field, NULL)
static ssize_t
show_sas_device_type(struct class_device *cdev, char *buf)
{
struct sas_phy *phy = transport_class_to_phy(cdev);
if (!phy->identify.device_type)
return snprintf(buf, 20, "none\n");
return get_sas_device_type_names(phy->identify.device_type, buf);
}
static CLASS_DEVICE_ATTR(device_type, S_IRUGO, show_sas_device_type, NULL);
sas_phy_protocol_attr(identify.initiator_port_protocols,
initiator_port_protocols);
sas_phy_protocol_attr(identify.target_port_protocols,
target_port_protocols);
sas_phy_simple_attr(identify.sas_address, sas_address, "0x%016llx\n",
unsigned long long);
sas_phy_simple_attr(identify.phy_identifier, phy_identifier, "%d\n", u8);
sas_phy_simple_attr(port_identifier, port_identifier, "%d\n", u8);
sas_phy_linkspeed_attr(negotiated_linkrate);
sas_phy_linkspeed_attr(minimum_linkrate_hw);
sas_phy_linkspeed_attr(minimum_linkrate);
sas_phy_linkspeed_attr(maximum_linkrate_hw);
sas_phy_linkspeed_attr(maximum_linkrate);
static DECLARE_TRANSPORT_CLASS(sas_phy_class,
"sas_phy", NULL, NULL, NULL);
static int sas_phy_match(struct attribute_container *cont, struct device *dev)
{
struct Scsi_Host *shost;
struct sas_internal *i;
if (!scsi_is_sas_phy(dev))
return 0;
shost = dev_to_shost(dev->parent);
if (!shost->transportt)
return 0;
if (shost->transportt->host_attrs.ac.class !=
&sas_host_class.class)
return 0;
i = to_sas_internal(shost->transportt);
return &i->phy_attr_cont.ac == cont;
}
static void sas_phy_release(struct device *dev)
{
struct sas_phy *phy = dev_to_phy(dev);
put_device(dev->parent);
kfree(phy);
}
/**
* sas_phy_alloc -- allocates and initialize a SAS PHY structure
* @parent: Parent device
* @number: Port number
*
* Allocates an SAS PHY structure. It will be added in the device tree
* below the device specified by @parent, which has to be either a Scsi_Host
* or sas_rphy.
*
* Returns:
* SAS PHY allocated or %NULL if the allocation failed.
*/
struct sas_phy *sas_phy_alloc(struct device *parent, int number)
{
struct Scsi_Host *shost = dev_to_shost(parent);
struct sas_phy *phy;
phy = kmalloc(sizeof(*phy), GFP_KERNEL);
if (!phy)
return NULL;
memset(phy, 0, sizeof(*phy));
get_device(parent);
phy->number = number;
device_initialize(&phy->dev);
phy->dev.parent = get_device(parent);
phy->dev.release = sas_phy_release;
sprintf(phy->dev.bus_id, "phy-%d:%d", shost->host_no, number);
transport_setup_device(&phy->dev);
return phy;
}
EXPORT_SYMBOL(sas_phy_alloc);
/**
* sas_phy_add -- add a SAS PHY to the device hierachy
* @phy: The PHY to be added
*
* Publishes a SAS PHY to the rest of the system.
*/
int sas_phy_add(struct sas_phy *phy)
{
int error;
error = device_add(&phy->dev);
if (!error) {
transport_add_device(&phy->dev);
transport_configure_device(&phy->dev);
}
return error;
}
EXPORT_SYMBOL(sas_phy_add);
/**
* sas_phy_free -- free a SAS PHY
* @phy: SAS PHY to free
*
* Frees the specified SAS PHY.
*
* Note:
* This function must only be called on a PHY that has not
* sucessfully been added using sas_phy_add().
*/
void sas_phy_free(struct sas_phy *phy)
{
transport_destroy_device(&phy->dev);
put_device(phy->dev.parent);
put_device(phy->dev.parent);
put_device(phy->dev.parent);
kfree(phy);
}
EXPORT_SYMBOL(sas_phy_free);
/**
* sas_phy_delete -- remove SAS PHY
* @phy: SAS PHY to remove
*
* Removes the specified SAS PHY. If the SAS PHY has an
* associated remote PHY it is removed before.
*/
void
sas_phy_delete(struct sas_phy *phy)
{
struct device *dev = &phy->dev;
if (phy->rphy)
sas_rphy_delete(phy->rphy);
transport_remove_device(dev);
device_del(dev);
transport_destroy_device(dev);
put_device(dev->parent);
}
EXPORT_SYMBOL(sas_phy_delete);
/**
* scsi_is_sas_phy -- check if a struct device represents a SAS PHY
* @dev: device to check
*
* Returns:
* %1 if the device represents a SAS PHY, %0 else
*/
int scsi_is_sas_phy(const struct device *dev)
{
return dev->release == sas_phy_release;
}
EXPORT_SYMBOL(scsi_is_sas_phy);
/*
* SAS remote PHY attributes.
*/
#define sas_rphy_show_simple(field, name, format_string, cast) \
static ssize_t \
show_sas_rphy_##name(struct class_device *cdev, char *buf) \
{ \
struct sas_rphy *rphy = transport_class_to_rphy(cdev); \
\
return snprintf(buf, 20, format_string, cast rphy->field); \
}
#define sas_rphy_simple_attr(field, name, format_string, type) \
sas_rphy_show_simple(field, name, format_string, (type)) \
static SAS_CLASS_DEVICE_ATTR(rphy, name, S_IRUGO, \
show_sas_rphy_##name, NULL)
#define sas_rphy_show_protocol(field, name) \
static ssize_t \
show_sas_rphy_##name(struct class_device *cdev, char *buf) \
{ \
struct sas_rphy *rphy = transport_class_to_rphy(cdev); \
\
if (!rphy->field) \
return snprintf(buf, 20, "none\n"); \
return get_sas_protocol_names(rphy->field, buf); \
}
#define sas_rphy_protocol_attr(field, name) \
sas_rphy_show_protocol(field, name) \
static SAS_CLASS_DEVICE_ATTR(rphy, name, S_IRUGO, \
show_sas_rphy_##name, NULL)
static ssize_t
show_sas_rphy_device_type(struct class_device *cdev, char *buf)
{
struct sas_rphy *rphy = transport_class_to_rphy(cdev);
if (!rphy->identify.device_type)
return snprintf(buf, 20, "none\n");
return get_sas_device_type_names(
rphy->identify.device_type, buf);
}
static SAS_CLASS_DEVICE_ATTR(rphy, device_type, S_IRUGO,
show_sas_rphy_device_type, NULL);
sas_rphy_protocol_attr(identify.initiator_port_protocols,
initiator_port_protocols);
sas_rphy_protocol_attr(identify.target_port_protocols, target_port_protocols);
sas_rphy_simple_attr(identify.sas_address, sas_address, "0x%016llx\n",
unsigned long long);
sas_rphy_simple_attr(identify.phy_identifier, phy_identifier, "%d\n", u8);
static DECLARE_TRANSPORT_CLASS(sas_rphy_class,
"sas_rphy", NULL, NULL, NULL);
static int sas_rphy_match(struct attribute_container *cont, struct device *dev)
{
struct Scsi_Host *shost;
struct sas_internal *i;
if (!scsi_is_sas_rphy(dev))
return 0;
shost = dev_to_shost(dev->parent->parent);
if (!shost->transportt)
return 0;
if (shost->transportt->host_attrs.ac.class !=
&sas_host_class.class)
return 0;
i = to_sas_internal(shost->transportt);
return &i->rphy_attr_cont.ac == cont;
}
static void sas_rphy_release(struct device *dev)
{
struct sas_rphy *rphy = dev_to_rphy(dev);
put_device(dev->parent);
kfree(rphy);
}
/**
* sas_rphy_alloc -- allocates and initialize a SAS remote PHY structure
* @parent: SAS PHY this remote PHY is conneted to
*
* Allocates an SAS remote PHY structure, connected to @parent.
*
* Returns:
* SAS PHY allocated or %NULL if the allocation failed.
*/
struct sas_rphy *sas_rphy_alloc(struct sas_phy *parent)
{
struct Scsi_Host *shost = dev_to_shost(&parent->dev);
struct sas_rphy *rphy;
rphy = kmalloc(sizeof(*rphy), GFP_KERNEL);
if (!rphy) {
put_device(&parent->dev);
return NULL;
}
memset(rphy, 0, sizeof(*rphy));
device_initialize(&rphy->dev);
rphy->dev.parent = get_device(&parent->dev);
rphy->dev.release = sas_rphy_release;
sprintf(rphy->dev.bus_id, "rphy-%d:%d",
shost->host_no, parent->number);
transport_setup_device(&rphy->dev);
return rphy;
}
EXPORT_SYMBOL(sas_rphy_alloc);
/**
* sas_rphy_add -- add a SAS remote PHY to the device hierachy
* @rphy: The remote PHY to be added
*
* Publishes a SAS remote PHY to the rest of the system.
*/
int sas_rphy_add(struct sas_rphy *rphy)
{
struct sas_phy *parent = dev_to_phy(rphy->dev.parent);
struct Scsi_Host *shost = dev_to_shost(parent->dev.parent);
struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
struct sas_identify *identify = &rphy->identify;
int error;
if (parent->rphy)
return -ENXIO;
parent->rphy = rphy;
error = device_add(&rphy->dev);
if (error)
return error;
transport_add_device(&rphy->dev);
transport_configure_device(&rphy->dev);
spin_lock(&sas_host->lock);
list_add_tail(&rphy->list, &sas_host->rphy_list);
if (identify->device_type == SAS_END_DEVICE &&
(identify->target_port_protocols &
(SAS_PROTOCOL_SSP|SAS_PROTOCOL_STP|SAS_PROTOCOL_SATA)))
rphy->scsi_target_id = sas_host->next_target_id++;
else
rphy->scsi_target_id = -1;
spin_unlock(&sas_host->lock);
if (rphy->scsi_target_id != -1) {
scsi_scan_target(&rphy->dev, parent->number,
rphy->scsi_target_id, ~0, 0);
}
return 0;
}
EXPORT_SYMBOL(sas_rphy_add);
/**
* sas_rphy_free -- free a SAS remote PHY
* @rphy SAS remote PHY to free
*
* Frees the specified SAS remote PHY.
*
* Note:
* This function must only be called on a remote
* PHY that has not sucessfully been added using
* sas_rphy_add().
*/
void sas_rphy_free(struct sas_rphy *rphy)
{
struct Scsi_Host *shost = dev_to_shost(rphy->dev.parent->parent);
struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
spin_lock(&sas_host->lock);
list_del(&rphy->list);
spin_unlock(&sas_host->lock);
transport_destroy_device(&rphy->dev);
put_device(rphy->dev.parent);
put_device(rphy->dev.parent);
put_device(rphy->dev.parent);
kfree(rphy);
}
EXPORT_SYMBOL(sas_rphy_free);
/**
* sas_rphy_delete -- remove SAS remote PHY
* @rphy: SAS remote PHY to remove
*
* Removes the specified SAS remote PHY.
*/
void
sas_rphy_delete(struct sas_rphy *rphy)
{
struct device *dev = &rphy->dev;
struct sas_phy *parent = dev_to_phy(dev->parent);
struct Scsi_Host *shost = dev_to_shost(parent->dev.parent);
struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
transport_destroy_device(&rphy->dev);
scsi_remove_target(&rphy->dev);
spin_lock(&sas_host->lock);
list_del(&rphy->list);
spin_unlock(&sas_host->lock);
transport_remove_device(dev);
device_del(dev);
transport_destroy_device(dev);
put_device(&parent->dev);
}
EXPORT_SYMBOL(sas_rphy_delete);
/**
* scsi_is_sas_rphy -- check if a struct device represents a SAS remote PHY
* @dev: device to check
*
* Returns:
* %1 if the device represents a SAS remote PHY, %0 else
*/
int scsi_is_sas_rphy(const struct device *dev)
{
return dev->release == sas_rphy_release;
}
EXPORT_SYMBOL(scsi_is_sas_rphy);
/*
* SCSI scan helper
*/
static struct device *sas_target_parent(struct Scsi_Host *shost,
int channel, uint id)
{
struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
struct sas_rphy *rphy;
struct device *dev = NULL;
spin_lock(&sas_host->lock);
list_for_each_entry(rphy, &sas_host->rphy_list, list) {
struct sas_phy *parent = dev_to_phy(rphy->dev.parent);
if (parent->number == channel &&
rphy->scsi_target_id == id)
dev = &rphy->dev;
}
spin_unlock(&sas_host->lock);
return dev;
}
/*
* Setup / Teardown code
*/
#define SETUP_RPORT_ATTRIBUTE(field) \
i->private_rphy_attrs[count] = class_device_attr_##field; \
i->private_rphy_attrs[count].attr.mode = S_IRUGO; \
i->private_rphy_attrs[count].store = NULL; \
i->rphy_attrs[count] = &i->private_rphy_attrs[count]; \
count++
#define SETUP_PORT_ATTRIBUTE(field) \
i->private_phy_attrs[count] = class_device_attr_##field; \
i->private_phy_attrs[count].attr.mode = S_IRUGO; \
i->private_phy_attrs[count].store = NULL; \
i->phy_attrs[count] = &i->private_phy_attrs[count]; \
count++
/**
* sas_attach_transport -- instantiate SAS transport template
* @ft: SAS transport class function template
*/
struct scsi_transport_template *
sas_attach_transport(struct sas_function_template *ft)
{
struct sas_internal *i;
int count;
i = kmalloc(sizeof(struct sas_internal), GFP_KERNEL);
if (!i)
return NULL;
memset(i, 0, sizeof(struct sas_internal));
i->t.target_parent = sas_target_parent;
i->t.host_attrs.ac.attrs = &i->host_attrs[0];
i->t.host_attrs.ac.class = &sas_host_class.class;
i->t.host_attrs.ac.match = sas_host_match;
transport_container_register(&i->t.host_attrs);
i->t.host_size = sizeof(struct sas_host_attrs);
i->phy_attr_cont.ac.class = &sas_phy_class.class;
i->phy_attr_cont.ac.attrs = &i->phy_attrs[0];
i->phy_attr_cont.ac.match = sas_phy_match;
transport_container_register(&i->phy_attr_cont);
i->rphy_attr_cont.ac.class = &sas_rphy_class.class;
i->rphy_attr_cont.ac.attrs = &i->rphy_attrs[0];
i->rphy_attr_cont.ac.match = sas_rphy_match;
transport_container_register(&i->rphy_attr_cont);
i->f = ft;
count = 0;
i->host_attrs[count] = NULL;
count = 0;
SETUP_PORT_ATTRIBUTE(initiator_port_protocols);
SETUP_PORT_ATTRIBUTE(target_port_protocols);
SETUP_PORT_ATTRIBUTE(device_type);
SETUP_PORT_ATTRIBUTE(sas_address);
SETUP_PORT_ATTRIBUTE(phy_identifier);
SETUP_PORT_ATTRIBUTE(port_identifier);
SETUP_PORT_ATTRIBUTE(negotiated_linkrate);
SETUP_PORT_ATTRIBUTE(minimum_linkrate_hw);
SETUP_PORT_ATTRIBUTE(minimum_linkrate);
SETUP_PORT_ATTRIBUTE(maximum_linkrate_hw);
SETUP_PORT_ATTRIBUTE(maximum_linkrate);
i->phy_attrs[count] = NULL;
count = 0;
SETUP_RPORT_ATTRIBUTE(rphy_initiator_port_protocols);
SETUP_RPORT_ATTRIBUTE(rphy_target_port_protocols);
SETUP_RPORT_ATTRIBUTE(rphy_device_type);
SETUP_RPORT_ATTRIBUTE(rphy_sas_address);
SETUP_RPORT_ATTRIBUTE(rphy_phy_identifier);
i->rphy_attrs[count] = NULL;
return &i->t;
}
EXPORT_SYMBOL(sas_attach_transport);
/**
* sas_release_transport -- release SAS transport template instance
* @t: transport template instance
*/
void sas_release_transport(struct scsi_transport_template *t)
{
struct sas_internal *i = to_sas_internal(t);
transport_container_unregister(&i->t.host_attrs);
transport_container_unregister(&i->phy_attr_cont);
transport_container_unregister(&i->rphy_attr_cont);
kfree(i);
}
EXPORT_SYMBOL(sas_release_transport);
static __init int sas_transport_init(void)
{
int error;
error = transport_class_register(&sas_host_class);
if (error)
goto out;
error = transport_class_register(&sas_phy_class);
if (error)
goto out_unregister_transport;
error = transport_class_register(&sas_rphy_class);
if (error)
goto out_unregister_phy;
return 0;
out_unregister_phy:
transport_class_unregister(&sas_phy_class);
out_unregister_transport:
transport_class_unregister(&sas_host_class);
out:
return error;
}
static void __exit sas_transport_exit(void)
{
transport_class_unregister(&sas_host_class);
transport_class_unregister(&sas_phy_class);
transport_class_unregister(&sas_rphy_class);
}
MODULE_AUTHOR("Christoph Hellwig");
MODULE_DESCRIPTION("SAS Transphy Attributes");
MODULE_LICENSE("GPL");
module_init(sas_transport_init);
module_exit(sas_transport_exit);

View File

@ -61,7 +61,7 @@ static int sg_version_num = 30533; /* 2 digits for each component */
#ifdef CONFIG_SCSI_PROC_FS
#include <linux/proc_fs.h>
static char *sg_version_date = "20050901";
static char *sg_version_date = "20050908";
static int sg_proc_init(void);
static void sg_proc_cleanup(void);
@ -1299,7 +1299,7 @@ sg_mmap(struct file *filp, struct vm_area_struct *vma)
sg_rb_correct4mmap(rsv_schp, 1); /* do only once per fd lifetime */
sfp->mmap_called = 1;
}
vma->vm_flags |= (VM_RESERVED | VM_IO);
vma->vm_flags |= VM_RESERVED;
vma->vm_private_data = sfp;
vma->vm_ops = &sg_mmap_vm_ops;
return 0;

View File

@ -178,8 +178,8 @@ static inline struct scsi_target *scsi_target(struct scsi_device *sdev)
extern struct scsi_device *__scsi_add_device(struct Scsi_Host *,
uint, uint, uint, void *hostdata);
#define scsi_add_device(host, channel, target, lun) \
__scsi_add_device(host, channel, target, lun, NULL)
extern int scsi_add_device(struct Scsi_Host *host, uint channel,
uint target, uint lun);
extern void scsi_remove_device(struct scsi_device *);
extern int scsi_device_cancel(struct scsi_device *, int);

View File

@ -439,4 +439,12 @@ int fc_remote_port_block(struct fc_rport *rport);
void fc_remote_port_unblock(struct fc_rport *rport);
int scsi_is_fc_rport(const struct device *);
static inline u64 wwn_to_u64(u8 *wwn)
{
return (u64)wwn[0] << 56 | (u64)wwn[1] << 48 |
(u64)wwn[2] << 40 | (u64)wwn[3] << 32 |
(u64)wwn[4] << 24 | (u64)wwn[5] << 16 |
(u64)wwn[6] << 8 | (u64)wwn[7];
}
#endif /* SCSI_TRANSPORT_FC_H */

View File

@ -0,0 +1,100 @@
#ifndef SCSI_TRANSPORT_SAS_H
#define SCSI_TRANSPORT_SAS_H
#include <linux/transport_class.h>
#include <linux/types.h>
struct scsi_transport_template;
struct sas_rphy;
enum sas_device_type {
SAS_PHY_UNUSED,
SAS_END_DEVICE,
SAS_EDGE_EXPANDER_DEVICE,
SAS_FANOUT_EXPANDER_DEVICE,
};
enum sas_protocol {
SAS_PROTOCOL_SATA = 0x01,
SAS_PROTOCOL_SMP = 0x02,
SAS_PROTOCOL_STP = 0x04,
SAS_PROTOCOL_SSP = 0x08,
};
enum sas_linkrate {
SAS_LINK_RATE_UNKNOWN,
SAS_PHY_DISABLED,
SAS_LINK_RATE_FAILED,
SAS_SATA_SPINUP_HOLD,
SAS_SATA_PORT_SELECTOR,
SAS_LINK_RATE_1_5_GBPS,
SAS_LINK_RATE_3_0_GBPS,
SAS_LINK_VIRTUAL,
};
struct sas_identify {
enum sas_device_type device_type;
enum sas_protocol initiator_port_protocols;
enum sas_protocol target_port_protocols;
u64 sas_address;
u8 phy_identifier;
};
/* The functions by which the transport class and the driver communicate */
struct sas_function_template {
};
struct sas_phy {
struct device dev;
int number;
struct sas_identify identify;
enum sas_linkrate negotiated_linkrate;
enum sas_linkrate minimum_linkrate_hw;
enum sas_linkrate minimum_linkrate;
enum sas_linkrate maximum_linkrate_hw;
enum sas_linkrate maximum_linkrate;
u8 port_identifier;
struct sas_rphy *rphy;
};
#define dev_to_phy(d) \
container_of((d), struct sas_phy, dev)
#define transport_class_to_phy(cdev) \
dev_to_phy((cdev)->dev)
#define phy_to_shost(phy) \
dev_to_shost((phy)->dev.parent)
struct sas_rphy {
struct device dev;
struct sas_identify identify;
struct list_head list;
u32 scsi_target_id;
};
#define dev_to_rphy(d) \
container_of((d), struct sas_rphy, dev)
#define transport_class_to_rphy(cdev) \
dev_to_rphy((cdev)->dev)
#define rphy_to_shost(rphy) \
dev_to_shost((rphy)->dev.parent)
extern void sas_remove_host(struct Scsi_Host *);
extern struct sas_phy *sas_phy_alloc(struct device *, int);
extern void sas_phy_free(struct sas_phy *);
extern int sas_phy_add(struct sas_phy *);
extern void sas_phy_delete(struct sas_phy *);
extern int scsi_is_sas_phy(const struct device *);
extern struct sas_rphy *sas_rphy_alloc(struct sas_phy *);
void sas_rphy_free(struct sas_rphy *);
extern int sas_rphy_add(struct sas_rphy *);
extern void sas_rphy_delete(struct sas_rphy *);
extern int scsi_is_sas_rphy(const struct device *);
extern struct scsi_transport_template *
sas_attach_transport(struct sas_function_template *);
extern void sas_release_transport(struct scsi_transport_template *);
#endif /* SCSI_TRANSPORT_SAS_H */